import gradio as gr | |
from huggingface_hub import InferenceClient | |
from typing import List, Dict | |
# Response function for the chatbot | |
def respond( | |
message: str, | |
history: List[Dict[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
hf_token: gr.OAuthToken, | |
): | |
""" | |
Sends a user input to the summarization model using text-to-text interface. | |
""" | |
client = InferenceClient( | |
token=hf_token.token, | |
model="Bocklitz-Lab/lit2vec-tldr-bart-model" | |
) | |
# You can prepend the system message if needed | |
input_text = f"{system_message}\n\n{message}" | |
response = client.text_to_text( | |
input=input_text, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
yield response | |
# Define the Gradio interface | |
chatbot = gr.ChatInterface( | |
fn=respond, | |
type="messages", | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly chatbot.", | |
label="System message", | |
lines=1 | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
# Set up the full Gradio Blocks layout with login | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.LoginButton() | |
chatbot.render() | |
# Run the app | |
if __name__ == "__main__": | |
demo.launch() | |