import gradio as gr | |
from huggingface_hub import InferenceClient | |
def respond( | |
message, | |
history: list[dict[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
hf_token: gr.OAuthToken, | |
): | |
client = InferenceClient( | |
token=hf_token.token, | |
model="Bocklitz-Lab/lit2vec-tldr-bart-model" | |
) | |
full_input = f"{system_message.strip()}\n\n{message.strip()}" | |
response = client.text_generation( | |
full_input, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=False | |
) | |
yield response | |
chatbot = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(), | |
textbox=gr.Textbox(placeholder="Paste abstract of a chemistry paper...", container=False, scale=7), | |
additional_inputs=[ | |
gr.Textbox(value="Summarize this chemistry paper abstract:", label="System message"), | |
gr.Slider(minimum=16, maximum=1024, value=256, step=8, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
) | |
demo = gr.Blocks() | |
with demo: | |
with gr.Sidebar(): | |
gr.LoginButton() | |
chatbot.render() | |
# 👇 This MUST be called at the module level for Hugging Face Spaces to work | |
demo.launch() | |