Mahmoud Amiri
commited on
Commit
·
0cb05bc
1
Parent(s):
8b34c5c
update readme file
Browse files
README.md
CHANGED
@@ -1,16 +1,24 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hf_oauth: true
|
11 |
hf_oauth_scopes:
|
12 |
-
- inference-api
|
13 |
-
short_description: chemistry
|
14 |
---
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Lit2Vec TL;DR Summarizer
|
3 |
+
emoji: 🧪
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hf_oauth: true
|
11 |
hf_oauth_scopes:
|
12 |
+
- inference-api
|
13 |
+
short_description: Abstractive TL;DR summarizer for chemistry research abstracts.
|
14 |
---
|
15 |
|
16 |
+
Lit2Vec TL;DR is an abstractive summarization tool for chemistry research abstracts, built using Gradio and a fine-tuned DistilBART model. It generates concise, structured summaries capturing the **methods**, **results**, and **significance** of scientific papers.
|
17 |
+
|
18 |
+
This app uses models hosted on the 🤗 [Hugging Face Hub](https://huggingface.co/Bocklitz-Lab/lit2vec-tldr-bart-model) and supports reproducible, legally compliant summarization data. Ideal for knowledge graph construction, semantic indexing, and literature triage in chemical sciences.
|
19 |
+
|
20 |
+
- 🔬 Model: [`Bocklitz-Lab/lit2vec-tldr-bart-model`](https://huggingface.co/Bocklitz-Lab/lit2vec-tldr-bart-model)
|
21 |
+
- 📁 Dataset: [`lit2vec-tldr-bart-dataset`](https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset)
|
22 |
+
- 💻 Code: [GitHub Repo](https://github.com/Bocklitz-Lab/lit2vec-tldr-bart)
|
23 |
+
|
24 |
+
Paste any chemistry abstract to get a TL;DR-style structured summary with just one click.
|
app.py
CHANGED
@@ -53,7 +53,7 @@ with gr.Blocks() as demo:
|
|
53 |
gr.Markdown("## TL;DR Summarizer")
|
54 |
|
55 |
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
56 |
-
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=
|
57 |
|
58 |
input_text = gr.Textbox(label="Input text to summarize", lines=6, value=example_text)
|
59 |
summarize_button = gr.Button("Summarize Text")
|
|
|
53 |
gr.Markdown("## TL;DR Summarizer")
|
54 |
|
55 |
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
56 |
+
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=50)
|
57 |
|
58 |
input_text = gr.Textbox(label="Input text to summarize", lines=6, value=example_text)
|
59 |
summarize_button = gr.Button("Summarize Text")
|