File size: 14,799 Bytes
99738e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw, ImageFont
# from src.condition import Condition
from diffusers.pipelines import FluxPipeline
import numpy as np
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import torch.multiprocessing as mp
###
import argparse
import logging
import math
import os
import re
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from PIL import Image
import accelerate
import datasets
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from transformers.utils import ContextManagers
from omegaconf import OmegaConf
from copy import deepcopy
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr
from diffusers.utils import check_min_version, deprecate, make_image_grid
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from einops import rearrange
from src.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from src.flux.util import (configs, load_ae, load_clip,
                       load_flow_model2, load_t5, save_image, tensor_to_pil_image, load_checkpoint)
from src.flux.modules.layers import DoubleStreamBlockLoraProcessor, SingleStreamBlockLoraProcessor, IPDoubleStreamBlockProcessor, IPSingleStreamBlockProcessor, ImageProjModel
from src.flux.xflux_pipeline import XFluxSampler

from image_datasets.dataset import loader, eval_image_pair_loader, image_resize

from safetensors.torch import load_file
import json


# logger = get_logger(__name__, log_level="INFO")


def get_models(name: str, device, offload: bool, is_schnell: bool):
    t5 = load_t5(device, max_length=256 if is_schnell else 512)
    clip = load_clip(device)
    clip.requires_grad_(False)
    model = load_flow_model2(name, device="cpu")
    vae = load_ae(name, device="cpu" if offload else device)
    return model, vae, t5, clip

args = OmegaConf.load("inference_configs/inference.yaml") #OmegaConf.load(parse_args())
is_schnell = args.model_name == "flux-schnell"
set_seed(args.seed)
# logging_dir = os.path.join(args.output_dir, args.logging_dir)
device = "cuda"
dit, vae, t5, clip = get_models(name=args.model_name, device=device, offload=False, is_schnell=is_schnell)

# # load image encoder
# ip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(os.getenv("CLIP_VIT")).to(
#     # accelerator.device, dtype=torch.bfloat16
#     device, dtype=torch.bfloat16
# )
# ip_clip_image_processor = CLIPImageProcessor()

if args.use_ip:
    sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=device, ip_loaded=True,  spatial_condition=False, clip_image_processor=ip_clip_image_processor, image_encoder=ip_image_encoder, improj=ip_improj)
elif args.use_spatial_condition:
    sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=device, ip_loaded=False,  spatial_condition=True, clip_image_processor=None, image_encoder=None, improj=None,share_position_embedding=args.share_position_embedding)
else:
    sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=device, ip_loaded=False,  spatial_condition=False, clip_image_processor=None, image_encoder=None, improj=None)


# @spaces.GPU
def generate(image, edit_prompt):
    print("hello?????????!!!!!")

    # accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    # accelerator = Accelerator(
    #     gradient_accumulation_steps=1,
    #     mixed_precision=args.mixed_precision,
    #     log_with=args.report_to,
    #     project_config=accelerator_project_config,
    # )

    # Make one log on every process with the configuration for debugging.
    # logging.basicConfig(
    #     format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    #     datefmt="%m/%d/%Y %H:%M:%S",
    #     level=logging.INFO,
    # )
    # logger.info(accelerator.state, main_process_only=False)
    # if accelerator.is_local_main_process:
    #     datasets.utils.logging.set_verbosity_warning()
    #     transformers.utils.logging.set_verbosity_warning()
    #     diffusers.utils.logging.set_verbosity_info()
    # else:
    #     datasets.utils.logging.set_verbosity_error()
    #     transformers.utils.logging.set_verbosity_error()
    #     diffusers.utils.logging.set_verbosity_error()


    # if accelerator.is_main_process:
    #     if args.output_dir is not None:
    #         os.makedirs(args.output_dir, exist_ok=True)
    #         gpt_eval_path = os.path.join(args.output_dir,"Eval")
    #         os.makedirs(gpt_eval_path, exist_ok=True)

    # dit, vae, t5, clip = get_models(name=args.model_name, device=accelerator.device, offload=False, is_schnell=is_schnell)
    # dit, vae, t5, clip = get_models(name=args.model_name, device=device, offload=False, is_schnell=is_schnell)
    
    if args.use_lora:
        lora_attn_procs = {}
    if args.use_ip:
        ip_attn_procs = {}
    if args.double_blocks is None:
        double_blocks_idx = list(range(19))
    else:
        double_blocks_idx = [int(idx) for idx in args.double_blocks.split(",")]

    if args.single_blocks is None:
        single_blocks_idx = list(range(38))
    elif args.single_blocks is not None:
        single_blocks_idx = [int(idx) for idx in args.single_blocks.split(",")]

    if args.use_lora:
        for name, attn_processor in dit.attn_processors.items():
            match = re.search(r'\.(\d+)\.', name)
            if match:
                layer_index = int(match.group(1))

            if name.startswith("double_blocks") and layer_index in double_blocks_idx:
                # if accelerator.is_main_process:
                #     print("setting LoRA Processor for", name)
                lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(
                dim=3072, rank=args.rank
                )
            elif name.startswith("single_blocks") and layer_index in single_blocks_idx:
                # if accelerator.is_main_process:
                #     print("setting LoRA Processor for", name)
                lora_attn_procs[name] = SingleStreamBlockLoraProcessor(
                dim=3072, rank=args.rank
                )
            else:
                lora_attn_procs[name] = attn_processor

        dit.set_attn_processor(lora_attn_procs)
    
    # if args.use_ip:
    #     # unpack checkpoint
    #     checkpoint = load_checkpoint(args.ip_local_path, args.ip_repo_id, args.ip_name)
    #     prefix = "double_blocks."
    #     # blocks = {}
    #     proj = {}

    #     for key, value in checkpoint.items():
    #         # if key.startswith(prefix):
    #         #     blocks[key[len(prefix):].replace('.processor.', '.')] = value
    #         if key.startswith("ip_adapter_proj_model"):
    #             proj[key[len("ip_adapter_proj_model."):]] = value

    #     # # load image encoder
    #     # ip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(os.getenv("CLIP_VIT")).to(
    #     #     # accelerator.device, dtype=torch.bfloat16
    #     #     device, dtype=torch.bfloat16
    #     # )
    #     # ip_clip_image_processor = CLIPImageProcessor()

    #     # setup image embedding projection model
    #     ip_improj = ImageProjModel(4096, 768, 4)
    #     ip_improj.load_state_dict(proj)
    #     # ip_improj = ip_improj.to(accelerator.device, dtype=torch.bfloat16)
    #     ip_improj = ip_improj.to(device, dtype=torch.bfloat16)

    #     ip_attn_procs = {}

    #     for name, _ in dit.attn_processors.items():
    #         ip_state_dict = {}
    #         for k in checkpoint.keys():
    #             if name in k:
    #                 ip_state_dict[k.replace(f'{name}.', '')] = checkpoint[k]
    #         if ip_state_dict:
    #             ip_attn_procs[name] = IPDoubleStreamBlockProcessor(4096, 3072)
    #             ip_attn_procs[name].load_state_dict(ip_state_dict)
    #             ip_attn_procs[name].to(accelerator.device, dtype=torch.bfloat16)
    #         else:
    #             ip_attn_procs[name] = dit.attn_processors[name]
    #     dit.set_attn_processor(ip_attn_procs)


    vae.requires_grad_(False)
    t5.requires_grad_(False)
    clip.requires_grad_(False)



    # weight_dtype = torch.float32
    # if accelerator.mixed_precision == "fp16":
    #     weight_dtype = torch.float16
    #     args.mixed_precision = accelerator.mixed_precision
    # elif accelerator.mixed_precision == "bf16":
    #     weight_dtype = torch.bfloat16
    #     args.mixed_precision = accelerator.mixed_precision


    # print(f"Resuming from checkpoint {args.ckpt_dir}")
    # dit_stat_dict = load_file(args.ckpt_dir)
    # Get path from Hub
    model_path = hf_hub_download(
        repo_id="Boese0601/ByteMorpher",
        filename="dit.safetensors"
    )
    state_dict = load_file(model_path)
    dit.load_state_dict(state_dict)
    dit = dit.to(weight_dtype)
    dit.eval()

    # test_dataloader = loader(**args.data_config)
    test_dataloader = eval_image_pair_loader(**args.data_config)



    # from deepspeed import initialize
    dit = accelerator.prepare(dit)

    # if accelerator.is_main_process:
    #     accelerator.init_trackers(args.tracker_project_name, {"test": None})

    # logger.info("***** Running Evaluation *****")
    # logger.info(f"  Instantaneous batch size = {args.eval_batch_size}")



    # progress_bar = tqdm(
    #     range(0, len(test_dataloader)),
    #     initial=0,
    #     desc="Steps",
    #     disable=not accelerator.is_local_main_process,
    # )

    # for step, batch in enumerate(test_dataloader):
    # with accelerator.accumulate(dit):
    # img, tgt_image, prompt, edit_prompt, img_name, edit_name = batch
    img = image_resize(image, 512)
    w, h = img.size
    new_w = (w // 32) * 32
    new_h = (h // 32) * 32
    img = img.resize((new_w, new_h))
    img = torch.from_numpy((np.array(img) / 127.5) - 1)
    img = img.permute(2, 0, 1).unsqueeze(0)

    edit_prompt = edit_prompt

    # if args.use_ip:
    #     sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=accelerator.device, ip_loaded=True,  spatial_condition=False, clip_image_processor=ip_clip_image_processor, image_encoder=ip_image_encoder, improj=ip_improj)
    # elif args.use_spatial_condition:
    #     sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=accelerator.device, ip_loaded=False,  spatial_condition=True, clip_image_processor=None, image_encoder=None, improj=None,share_position_embedding=args.share_position_embedding)
    # else:
    #     sampler = XFluxSampler(clip=clip, t5=t5, ae=vae, model=dit, device=accelerator.device, ip_loaded=False,  spatial_condition=False, clip_image_processor=None, image_encoder=None, improj=None)
    with torch.no_grad():
        result = sampler(prompt=edit_prompt,
                            width=args.sample_width,
                            height=args.sample_height,
                            num_steps=args.sample_steps,
                            image_prompt=None, # ip_adapter
                            true_gs=args.cfg_scale,
                            seed=args.seed,
                            ip_scale=args.ip_scale if args.use_ip else 1.0,
                            source_image=img if args.use_spatial_condition else None,
                            )
    gen_img = result



    # progress_bar.update(1)

    # accelerator.wait_for_everyone()
    # accelerator.end_training()
    return gen_img


def get_samples():
    sample_list = [
        {
            "image": "assets/0_camera_zoom/20486354.png",
            "edit_prompt": "Zoom in on the coral and add a small blue fish in the background.",
        },
    ]
    return [
        [
            Image.open(sample["image"]).resize((512, 512)),
            sample["edit_prompt"],
        ]
        for sample in sample_list
    ]


header = """
# ByteMoprh

<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href=""><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/datasets/Boese0601/ByteMorph-Bench"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Boese0601/ByteMorph"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""


def create_app():
    with gr.Blocks() as app:
        gr.Markdown(header, elem_id="header")
        with gr.Row(equal_height=False):
            with gr.Column(variant="panel", elem_classes="inputPanel"):
                original_image = gr.Image(
                    type="pil", label="Condition Image", width=300, elem_id="input"
                )
                edit_prompt = gr.Textbox(lines=2, label="Edit Prompt", elem_id="edit_prompt")
                submit_btn = gr.Button("Run", elem_id="submit_btn")

            with gr.Column(variant="panel", elem_classes="outputPanel"):
                output_image = gr.Image(type="pil", elem_id="output")

        with gr.Row():
            examples = gr.Examples(
                examples=get_samples(),
                inputs=[original_image, edit_prompt],
                label="Examples",
            )

        submit_btn.click(
            fn=generate,
            inputs=[original_image, edit_prompt],
            outputs=output_image,
        )
        gr.HTML(
            """
            <div style="text-align: center;">
                * This demo's template was modified from <a href="https://arxiv.org/abs/2411.15098" target="_blank">OminiControl</a>.
            </div>
            """
        ) 
    return app


if __name__ == "__main__":
    print("CUDA available:", torch.cuda.is_available())
    print("CUDA version:", torch.version.cuda)
    print("GPU device name:", torch.cuda.get_device_name(0) if torch.cuda.is_available() else "None")
    # mp.set_start_method("spawn", force=True)
    create_app().launch(debug=False, share=True, ssr_mode=False)