File size: 5,867 Bytes
7e1fa02
 
99738e0
 
 
 
 
 
 
47dbef4
 
eab1ee2
 
 
 
 
 
 
b4ccc7d
99738e0
8373499
99738e0
2a887f4
8373499
 
 
 
 
99738e0
 
 
ead67c4
47dbef4
 
 
 
8373499
 
 
47dbef4
8373499
 
 
 
 
 
 
 
 
47dbef4
 
 
 
 
 
 
 
99738e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47dbef4
2a887f4
47dbef4
 
 
 
 
 
 
 
 
 
99738e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1fa02
 
99738e0
 
 
 
 
 
 
7e1fa02
99738e0
 
7e1fa02
99738e0
 
7e1fa02
99738e0
 
 
 
 
 
7e1fa02
99738e0
 
 
 
 
 
 
 
 
 
 
 
 
7e1fa02
 
99738e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import torch
import spaces
import os
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from omegaconf import OmegaConf

from image_datasets.dataset import image_resize
def tensor_to_pil_image(in_image):
    tensor = in_image.squeeze(0)
    tensor = (tensor + 1) / 2
    tensor = tensor * 255
    numpy_array = tensor.permute(1, 2, 0).byte().numpy()
    pil_image = Image.fromarray(numpy_array)
    return pil_image
# from src.flux.xflux_pipeline import XFluxSampler
args = OmegaConf.load("inference_configs/inference.yaml")
# is_schnell = args.model_name == "flux-schnell"
# sampler = None
device = torch.device("cuda")
# dtype = torch.bfloat16
# dit = load_flow_model2(args.model_name, device="cpu").to(device, dtype=dtype)
# vae = load_ae(args.model_name, device="cpu").to(device, dtype=dtype)
# t5 = load_t5(device="cpu", max_length=256 if is_schnell else 512).to(device, dtype=dtype)
# clip = load_clip("cpu").to(device, dtype=dtype)
#test push
@spaces.GPU
def generate(image: Image.Image, edit_prompt: str):
    from src.flux.xflux_pipeline import XFluxSampler

    
    

    # vae.requires_grad_(False)
    # t5.requires_grad_(False)
    # clip.requires_grad_(False)

    # model_path = hf_hub_download(
    #     repo_id="Boese0601/ByteMorpher",
    #     filename="dit.safetensors",
    #     use_auth_token=os.getenv("HF_TOKEN")
    # )
    # state_dict = load_file(model_path)
    # dit.load_state_dict(state_dict)
    # dit.eval()
    # dit.to(device, dtype=dtype)

    sampler = XFluxSampler(
        ip_loaded=False,
        spatial_condition=False,
        clip_image_processor=None,
        image_encoder=None,
        improj=None
    )
    # global sampler
    # device = torch.device("cuda")
    # dtype = torch.bfloat16

    # if sampler is None:
        # dit = load_flow_model2(args.model_name, device="cpu").to(device, dtype=dtype)
        # vae = load_ae(args.model_name, device="cpu").to(device, dtype=dtype)
        # t5 = load_t5(device="cpu", max_length=256 if is_schnell else 512).to(device, dtype=dtype)
        # clip = load_clip("cpu").to(device, dtype=dtype)

        # vae.requires_grad_(False)
        # t5.requires_grad_(False)
        # clip.requires_grad_(False)

        # model_path = hf_hub_download(
        #     repo_id="Boese0601/ByteMorpher",
        #     filename="dit.safetensors",
        #     use_auth_token=os.getenv("HF_TOKEN")
        # )
        # state_dict = load_file(model_path)
        # dit.load_state_dict(state_dict)
        # dit.eval()

        # sampler = XFluxSampler(
        #     clip=clip,
        #     t5=t5,
        #     ae=vae,
        #     model=dit,
        #     device=device,
        #     ip_loaded=False,
        #     spatial_condition=False,
        #     clip_image_processor=None,
        #     image_encoder=None,
        #     improj=None
        # )

    img = image_resize(image, 512)
    w, h = img.size
    img = img.resize(((w // 32) * 32, (h // 32) * 32))
    img = torch.from_numpy((np.array(img) / 127.5) - 1)
    img = img.permute(2, 0, 1).unsqueeze(0).to(device, dtype=dtype)

    result = sampler(
        device='cuda',
        prompt=edit_prompt,
        width=args.sample_width,
        height=args.sample_height,
        num_steps=args.sample_steps,
        image_prompt=None,
        true_gs=args.cfg_scale,
        seed=args.seed,
        ip_scale=args.ip_scale if args.use_ip else 1.0,
        source_image=img if args.use_spatial_condition else None,
    )
    return tensor_to_pil_image(result)

def get_samples():
    sample_list = [
        {
            "image": "assets/0_camera_zoom/20486354.png",
            "edit_prompt": "Zoom in on the coral and add a small blue fish in the background.",
        },
    ]
    return [
        [
            Image.open(sample["image"]).resize((512, 512)),
            sample["edit_prompt"],
        ]
        for sample in sample_list
    ]

header = """
# ByteMorph

<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href=""><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/datasets/Boese0601/ByteMorph-Bench"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Boese0601/ByteMorph"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""

def create_app():
    with gr.Blocks() as app:
        gr.Markdown(header, elem_id="header")
        with gr.Row(equal_height=False):
            with gr.Column(variant="panel", elem_classes="inputPanel"):
                original_image = gr.Image(
                    type="pil", label="Condition Image", width=300, elem_id="input"
                )
                edit_prompt = gr.Textbox(lines=2, label="Edit Prompt", elem_id="edit_prompt")
                submit_btn = gr.Button("Run", elem_id="submit_btn")

            with gr.Column(variant="panel", elem_classes="outputPanel"):
                output_image = gr.Image(type="pil", elem_id="output")

        with gr.Row():
            examples = gr.Examples(
                examples=get_samples(),
                inputs=[original_image, edit_prompt],
                label="Examples",
            )

        submit_btn.click(
            fn=generate,
            inputs=[original_image, edit_prompt],
            outputs=output_image,
        )
        gr.HTML(
            """
            <div style="text-align: center;">
                * This demo's template was modified from <a href="https://arxiv.org/abs/2411.15098" target="_blank">OminiControl</a>.
            </div>
            """
        )
    return app

if __name__ == "__main__":
    create_app().launch(debug=False, share=False, ssr_mode=False)