Spaces:
Running
on
Zero
Running
on
Zero
| # MLSD Line Detection | |
| # From https://github.com/navervision/mlsd | |
| # Apache-2.0 license | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import os | |
| from einops import rearrange | |
| from huggingface_hub import hf_hub_download | |
| from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny | |
| from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
| from .utils import pred_lines | |
| from ...annotator.util import annotator_ckpts_path | |
| class MLSDdetector: | |
| def __init__(self): | |
| model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") | |
| if not os.path.exists(model_path): | |
| model_path = hf_hub_download("lllyasviel/Annotators", "mlsd_large_512_fp32.pth") | |
| model = MobileV2_MLSD_Large() | |
| model.load_state_dict(torch.load(model_path), strict=True) | |
| self.model = model.cuda().eval() | |
| def __call__(self, input_image, thr_v, thr_d): | |
| assert input_image.ndim == 3 | |
| img = input_image | |
| img_output = np.zeros_like(img) | |
| try: | |
| with torch.no_grad(): | |
| lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
| for line in lines: | |
| x_start, y_start, x_end, y_end = [int(val) for val in line] | |
| cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
| except Exception as e: | |
| pass | |
| return img_output[:, :, 0] | |