HebSTT / app.py
BoltzmannEntropy's picture
Upload app.py
ca779ea verified
import gradio as gr
from faster_whisper import WhisperModel
from pydub import AudioSegment
import os
import tempfile
import time
import torch
from pathlib import Path
import warnings
import numpy as np
import torchaudio
import scipy.io.wavfile as wavfile
from jiwer import wer, cer
import re
import string
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Global variables for models
WHISPER_MODELS = {}
DEVICE = None
# Model configurations - Hebrew-focused models
AVAILABLE_WHISPER_MODELS = {
"ivrit-ai/faster-whisper-v2-d4": "Hebrew Faster-Whisper V2-D4 (Recommended)",
"ivrit-ai/faster-whisper-v2-d3": "Hebrew Faster-Whisper V2-D3",
"ivrit-ai/faster-whisper-v2-d2": "Hebrew Faster-Whisper V2-D2",
"large-v3": "OpenAI Whisper Large V3 (Multilingual)",
"large-v2": "OpenAI Whisper Large V2 (Multilingual)",
"medium": "OpenAI Whisper Medium (Multilingual)",
"small": "OpenAI Whisper Small (Multilingual)",
}
# Default audio and transcription
DEFAULT_AUDIO = "heb.wav"
DEFAULT_TRANSCRIPTION = "זו בדיקה פשוטה של איכות התימלול בעיברית"
# Predefined audio files
PREDEFINED_AUDIO_FILES = {
"heb.wav": {
"file": "heb.wav",
"description": "Regular quality Hebrew audio",
"transcription": "זו בדיקה פשוטה של איכות התימלול בעיברית"
},
"noise.wav": {
"file": "noise.wav",
"description": "Noisy Hebrew audio",
"transcription": "זו בדיקה פשוטה של איכות התימלול בעיברית"
}
}
def normalize_hebrew_text(text):
"""Normalize Hebrew text for WER calculation"""
if not text:
return ""
# Remove diacritics (niqqud)
hebrew_diacritics = "".join([chr(i) for i in range(0x0591, 0x05C8)])
text = "".join(c for c in text if c not in hebrew_diacritics)
# Remove punctuation
text = re.sub(r'[^\w\s]', ' ', text)
# Remove extra whitespace and convert to lowercase
text = ' '.join(text.split()).strip().lower()
return text
def calculate_wer_cer(reference, hypothesis):
"""Calculate WER and CER for Hebrew text"""
try:
# Normalize both texts
ref_normalized = normalize_hebrew_text(reference)
hyp_normalized = normalize_hebrew_text(hypothesis)
if not ref_normalized or not hyp_normalized:
return float('inf'), float('inf'), ref_normalized, hyp_normalized
# Calculate WER and CER
word_error_rate = wer(ref_normalized, hyp_normalized)
char_error_rate = cer(ref_normalized, hyp_normalized)
return word_error_rate, char_error_rate, ref_normalized, hyp_normalized
except Exception as e:
print(f"Error calculating WER/CER: {e}")
return float('inf'), float('inf'), "", ""
def initialize_whisper_model(model_id, progress=gr.Progress()):
"""Initialize a specific Whisper model with progress indication"""
global WHISPER_MODELS, DEVICE
try:
# Skip if model is already loaded
if model_id in WHISPER_MODELS and WHISPER_MODELS[model_id] is not None:
print(f"✅ Model {model_id} already loaded")
return True
# Determine device
if DEVICE is None:
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if torch.cuda.is_available() else "int8"
print(f"🔧 Loading Whisper model: {model_id} on {DEVICE}")
progress(0.3, desc=f"Loading {model_id}...")
# Initialize Whisper model (faster-whisper)
WHISPER_MODELS[model_id] = WhisperModel(
model_id,
device=DEVICE,
compute_type=compute_type
)
progress(1.0, desc=f"Loaded {model_id} successfully!")
print(f"✅ Model {model_id} initialized successfully!")
return True
except Exception as e:
print(f"❌ Error initializing model {model_id}: {str(e)}")
WHISPER_MODELS[model_id] = None
return False
def transcribe_audio_with_model(audio_file, model_id, language="he"):
"""Transcribe audio using a specific Whisper model"""
try:
# Initialize model if needed
if model_id not in WHISPER_MODELS or WHISPER_MODELS[model_id] is None:
success = initialize_whisper_model(model_id)
if not success:
return "", f"Failed to load model {model_id}"
model = WHISPER_MODELS[model_id]
print(f"🎤 Transcribing with {model_id}: {Path(audio_file).name}")
# Transcribe with faster-whisper
segments, info = model.transcribe(
audio_file,
language=language,
beam_size=5,
best_of=5,
temperature=0.0
)
# Collect all segments
transcript_text = ""
for segment in segments:
transcript_text += segment.text + " "
transcript_text = transcript_text.strip()
print(f"✅ Transcription completed with {model_id}. Length: {len(transcript_text)} characters")
return transcript_text, f"Success - Duration: {info.duration:.1f}s"
except Exception as e:
print(f"❌ Error transcribing with {model_id}: {str(e)}")
return "", f"Error: {str(e)}"
def evaluate_all_models(audio_file, reference_text, selected_models, progress=gr.Progress()):
"""Evaluate all selected models and calculate WER/CER"""
if not audio_file or not reference_text.strip():
return "❌ Please provide both audio file and reference transcription", []
if not selected_models:
return "❌ Please select at least one model to evaluate", []
results = []
detailed_results = []
print(f"🎯 Starting WER evaluation with {len(selected_models)} models...")
for i, model_id in enumerate(selected_models):
progress((i + 1) / len(selected_models), desc=f"Evaluating {model_id}...")
print(f"\n🔄 Evaluating model: {model_id}")
# Transcribe with current model
start_time = time.time()
transcript, status = transcribe_audio_with_model(audio_file, model_id)
transcription_time = time.time() - start_time
if transcript:
# Calculate WER and CER
word_error_rate, char_error_rate, ref_norm, hyp_norm = calculate_wer_cer(reference_text, transcript)
# Store results
result = {
'model': model_id,
'model_name': AVAILABLE_WHISPER_MODELS.get(model_id, model_id),
'transcript': transcript,
'wer': word_error_rate,
'cer': char_error_rate,
'time': transcription_time,
'status': status,
'ref_normalized': ref_norm,
'hyp_normalized': hyp_norm
}
results.append(result)
print(f"✅ {model_id}: WER={word_error_rate:.3f}, CER={char_error_rate:.3f}")
else:
print(f"❌ {model_id}: Transcription failed")
results.append({
'model': model_id,
'model_name': AVAILABLE_WHISPER_MODELS.get(model_id, model_id),
'transcript': 'FAILED',
'wer': float('inf'),
'cer': float('inf'),
'time': transcription_time,
'status': status,
'ref_normalized': '',
'hyp_normalized': ''
})
# Sort results by WER (best first)
results.sort(key=lambda x: x['wer'])
# Create summary report
summary_report = "# 📊 WER Evaluation Results\n\n"
summary_report += f"**Audio File:** {os.path.basename(audio_file)}\n"
summary_report += f"**Reference Text:** {reference_text[:100]}...\n"
summary_report += f"**Models Tested:** {len(selected_models)}\n"
summary_report += f"**Device:** {DEVICE}\n\n"
# Add results summary
summary_report += "## Results Summary (sorted by WER)\n\n"
for i, result in enumerate(results):
if result['wer'] == float('inf'):
wer_display = "FAILED"
cer_display = "FAILED"
else:
wer_display = f"{result['wer']:.3f} ({result['wer']*100:.1f}%)"
cer_display = f"{result['cer']:.3f} ({result['cer']*100:.1f}%)"
summary_report += f"**{i+1}. {result['model_name']}**\n"
summary_report += f"- WER: {wer_display}\n"
summary_report += f"- CER: {cer_display}\n"
summary_report += f"- Processing Time: {result['time']:.2f}s\n\n"
# Create table data for Gradio with WER column
table_data = []
# Add ground truth row
table_data.append(["Ground Truth", reference_text, "N/A", "N/A"])
# Add model results
for result in results:
if result['wer'] == float('inf'):
wer_display = "FAILED"
cer_display = "FAILED"
else:
wer_display = f"{result['wer']:.3f}"
cer_display = f"{result['cer']:.3f}"
table_data.append([
result['model_name'],
result['transcript'],
wer_display,
cer_display
])
print("✅ WER evaluation completed!")
return summary_report, table_data
def create_gradio_interface():
"""Create and configure the Gradio interface"""
# Initialize device info
global DEVICE
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
status_msg = f"""✅ Hebrew STT WER Evaluation Tool Ready!
🔧 Device: {DEVICE}
📱 Available Models: {len(AVAILABLE_WHISPER_MODELS)}
🎯 Purpose: Compare WER performance across Hebrew STT models"""
# Create Gradio interface
with gr.Blocks(
title="Hebrew STT WER Evaluation",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1600px !important; }
.evaluation-section {
border: 2px solid #e0e0e0;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("""
# 📊 Hebrew STT WER Evaluation Tool
Upload an audio file and reference transcription to test the performance of different Whisper models on Hebrew speech-to-text tasks.
""")
# Status section
with gr.Row():
status_display = gr.Textbox(
label="🔧 System Status",
value=status_msg,
interactive=False,
lines=4
)
# Input section
with gr.Row():
# Audio and Reference Input
with gr.Column(scale=1, elem_classes=["evaluation-section"]):
gr.Markdown("### 📁 Evaluation Inputs")
# Predefined audio selection
predefined_audio_dropdown = gr.Dropdown(
label="🎵 Select Predefined Audio File",
choices=[(f"{k} - {v['description']}", k) for k, v in PREDEFINED_AUDIO_FILES.items()],
value="web01.wav",
interactive=True
)
# OR upload custom audio
gr.Markdown("**OR**")
audio_input = gr.Audio(
label="🎵 Upload Custom Audio File - Upload Hebrew audio file for transcription",
type="filepath",
value=None
)
reference_text = gr.Textbox(
label="📝 Reference Transcription (Ground Truth) - The correct transcription for WER calculation",
placeholder="Enter the correct transcription of the audio file...",
value=DEFAULT_TRANSCRIPTION,
lines=5
)
# Model selection
model_selection = gr.CheckboxGroup(
label="🤖 Select Models to Test - Choose which models to evaluate (2-4 recommended)",
choices=list(AVAILABLE_WHISPER_MODELS.keys()),
value=["ivrit-ai/faster-whisper-v2-d4", "large-v3"]
)
with gr.Row():
load_models_btn = gr.Button(
"🔧 Pre-load Selected Models (Optional)",
variant="secondary"
)
evaluate_btn = gr.Button(
"🎯 Run WER Evaluation",
variant="primary"
)
# Quick info panel
with gr.Column(scale=1, elem_classes=["evaluation-section"]):
gr.Markdown("### 📊 WER Evaluation Results")
gr.Markdown("""
**What is WER?**
Word Error Rate - measures transcription accuracy at word level
**How it works:**
1. Upload Hebrew audio file
2. Enter correct transcription
3. Select models to test
4. Tool transcribes with each model
5. Calculates WER & CER for each model
6. Ranks models by performance
**Evaluation Metrics:**
- **WER**: Word-level errors (%)
- **CER**: Character-level errors (%)
- **Processing Time**: Transcription speed
**Tips:**
- Use high-quality audio
- Ensure reference transcription is accurate
- Select 2-4 models for comparison
- Lower WER = better performance
""")
# Results section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📊 WER Evaluation Results")
results_output = gr.Markdown(
value="Evaluation results will appear here after running the test..."
)
results_table = gr.Dataframe(
label="Transcription Comparison",
headers=["Model", "Transcription", "WER", "CER"],
datatype=["str", "str", "str", "str"],
col_count=(4, "fixed")
)
# Event handlers
def load_predefined_audio(selected_file):
"""Load predefined audio file and its transcription"""
if selected_file and selected_file in PREDEFINED_AUDIO_FILES:
audio_data = PREDEFINED_AUDIO_FILES[selected_file]
return audio_data["file"], audio_data["transcription"]
return None, DEFAULT_TRANSCRIPTION
def load_selected_models(selected_models, progress=gr.Progress()):
"""Pre-load selected models"""
if not selected_models:
return "❌ No models selected"
status_msg = f"🔧 Loading {len(selected_models)} models...\n\n"
for model_id in selected_models:
try:
status_msg += f"⏳ Loading {model_id}...\n"
success = initialize_whisper_model(model_id, progress)
if success:
status_msg += f"✅ {model_id} loaded successfully\n"
else:
status_msg += f"❌ Error loading {model_id}\n"
status_msg += "\n"
except Exception as e:
status_msg += f"❌ Error loading {model_id}: {str(e)}\n\n"
loaded_count = len([m for m in selected_models if m in WHISPER_MODELS and WHISPER_MODELS[m] is not None])
status_msg += f"✅ Model loading complete! Available: {loaded_count}/{len(selected_models)}"
return status_msg
def run_wer_evaluation(audio_file, reference, selected_models, predefined_file, progress=gr.Progress()):
"""Run the complete WER evaluation"""
# Use predefined file if no custom audio is uploaded
if not audio_file and predefined_file:
audio_file = PREDEFINED_AUDIO_FILES[predefined_file]["file"]
if not audio_file:
return "❌ Please select a predefined audio file or upload a custom one", []
if not reference or not reference.strip():
return "❌ Please enter reference transcription", []
if not selected_models:
return "❌ Please select at least one model", []
# Run evaluation
results, table_data = evaluate_all_models(audio_file, reference, selected_models, progress)
return results, table_data
# Connect events
predefined_audio_dropdown.change(
fn=load_predefined_audio,
inputs=[predefined_audio_dropdown],
outputs=[audio_input, reference_text]
)
load_models_btn.click(
fn=load_selected_models,
inputs=[model_selection],
outputs=[status_display]
)
evaluate_btn.click(
fn=run_wer_evaluation,
inputs=[audio_input, reference_text, model_selection, predefined_audio_dropdown],
outputs=[results_output, results_table]
)
# Footer
gr.Markdown("""
---
### 🔧 Technical Information
- **STT Engine**: Faster-Whisper (optimized for Hebrew)
- **Evaluation Metrics**: WER (Word Error Rate) and CER (Character Error Rate)
- **Text Normalization**: Removes diacritics, punctuation, and extra whitespace
- **Purpose**: Compare performance of different transcription models on Hebrew text
### 📦 Setup Instructions
```bash
# Install dependencies
pip install gradio faster-whisper torch torchaudio jiwer
# For GPU support (recommended)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
```
### 📊 Output Format
The tool displays:
- Model ranking by WER
- Detailed results for each model
- Processing times
- Normalized transcription comparison
""")
return demo
# Launch the app
if __name__ == "__main__":
print("🎯 Launching Hebrew STT WER Evaluation Tool...")
demo = create_gradio_interface()
# Launch the demo
demo.launch(
share=False, # Set to True to create a public link
debug=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)