Spaces:
Running
Running
Upload 2 files
Browse files- Dockerfile +74 -0
- app.py +511 -0
Dockerfile
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dockerfile customized for deployment on HuggingFace Spaces platform
|
2 |
+
|
3 |
+
# -- The Dockerfile has been tailored specifically for use on HuggingFace.
|
4 |
+
# -- It implies that certain modifications or optimizations have been made with HuggingFace's environment in mind.
|
5 |
+
# -- It uses "HuggingFace Spaces" to be more specific about the target platform.
|
6 |
+
|
7 |
+
# FROM pytorch/pytorch:2.2.1-cuda12.1-cudnn8-devel
|
8 |
+
FROM pytorch/pytorch:2.4.0-cuda12.1-cudnn9-devel
|
9 |
+
# FOR HF
|
10 |
+
|
11 |
+
USER root
|
12 |
+
|
13 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
14 |
+
RUN apt-get update && apt-get install -y \
|
15 |
+
git \
|
16 |
+
cmake \
|
17 |
+
python3 \
|
18 |
+
python3-pip \
|
19 |
+
python3-venv \
|
20 |
+
python3-dev \
|
21 |
+
python3-numpy \
|
22 |
+
gcc \
|
23 |
+
build-essential \
|
24 |
+
gfortran \
|
25 |
+
wget \
|
26 |
+
curl \
|
27 |
+
pkg-config \
|
28 |
+
software-properties-common \
|
29 |
+
zip \
|
30 |
+
&& apt-get clean && rm -rf /tmp/* /var/tmp/*
|
31 |
+
|
32 |
+
RUN apt-get update && DEBIAN_FRONTEND=noninteractive \
|
33 |
+
apt-get install -y python3.10 python3-pip
|
34 |
+
|
35 |
+
RUN apt-get install -y libopenblas-base libopenmpi-dev
|
36 |
+
|
37 |
+
ENV TZ=Asia/Dubai
|
38 |
+
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
39 |
+
|
40 |
+
RUN useradd -m -u 1000 user
|
41 |
+
|
42 |
+
RUN apt-get update && apt-get install -y sudo && \
|
43 |
+
echo 'user ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers
|
44 |
+
|
45 |
+
USER user
|
46 |
+
ENV HOME=/home/user \
|
47 |
+
PATH=/home/user/.local/bin:$PATH
|
48 |
+
|
49 |
+
# RUN chown -R user:user $HOME/app
|
50 |
+
|
51 |
+
USER user
|
52 |
+
WORKDIR $HOME/app
|
53 |
+
|
54 |
+
RUN python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
55 |
+
RUN python -m pip install accelerate diffusers datasets timm flash-attn==2.6.1 gradio faster_whisper jiwer pydub
|
56 |
+
|
57 |
+
|
58 |
+
#This seems to be a must : Intel Extension for PyTorch 2.4 needs to work with PyTorch 2.4.*, but PyTorch 2.2.2 is
|
59 |
+
RUN python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
60 |
+
RUN python3 -m pip install -U accelerate scipy
|
61 |
+
RUN python3 -m pip install -U git+https://github.com/huggingface/transformers
|
62 |
+
|
63 |
+
WORKDIR $HOME/app
|
64 |
+
COPY --chown=user:user app.py .
|
65 |
+
COPY --chown=user:user heb.wav .
|
66 |
+
COPY --chown=user:user noise.wav .
|
67 |
+
|
68 |
+
ENV PYTHONUNBUFFERED=1 GRADIO_ALLOW_FLAGGING=never GRADIO_NUM_PORTS=1 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 SYSTEM=spaces
|
69 |
+
|
70 |
+
WORKDIR $HOME/app
|
71 |
+
|
72 |
+
EXPOSE 8097 7842 8501 8000 6666 7860
|
73 |
+
|
74 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from faster_whisper import WhisperModel
|
3 |
+
from pydub import AudioSegment
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import time
|
7 |
+
import torch
|
8 |
+
from pathlib import Path
|
9 |
+
import warnings
|
10 |
+
import numpy as np
|
11 |
+
import torchaudio
|
12 |
+
import scipy.io.wavfile as wavfile
|
13 |
+
from jiwer import wer, cer
|
14 |
+
import re
|
15 |
+
import string
|
16 |
+
|
17 |
+
# Suppress warnings for cleaner output
|
18 |
+
warnings.filterwarnings("ignore")
|
19 |
+
|
20 |
+
# Global variables for models
|
21 |
+
WHISPER_MODELS = {}
|
22 |
+
DEVICE = None
|
23 |
+
|
24 |
+
# Model configurations - Hebrew-focused models
|
25 |
+
AVAILABLE_WHISPER_MODELS = {
|
26 |
+
"ivrit-ai/faster-whisper-v2-d4": "Hebrew Faster-Whisper V2-D4 (Recommended)",
|
27 |
+
"ivrit-ai/faster-whisper-v2-d3": "Hebrew Faster-Whisper V2-D3",
|
28 |
+
"ivrit-ai/faster-whisper-v2-d2": "Hebrew Faster-Whisper V2-D2",
|
29 |
+
"large-v3": "OpenAI Whisper Large V3 (Multilingual)",
|
30 |
+
"large-v2": "OpenAI Whisper Large V2 (Multilingual)",
|
31 |
+
"medium": "OpenAI Whisper Medium (Multilingual)",
|
32 |
+
"small": "OpenAI Whisper Small (Multilingual)",
|
33 |
+
}
|
34 |
+
|
35 |
+
# Default audio and transcription
|
36 |
+
DEFAULT_AUDIO = "heb.wav"
|
37 |
+
DEFAULT_TRANSCRIPTION = "Χ©ΧΧΧ! ΧΧ ΧΧ Χ Χ Χ¨ΧΧ©ΧΧ ΧΧΧ¦ΧΧ ΧΧΧ ΧΧͺ ΧΧΧΧΧΧͺ ΧΧΧΧΧΧ¨ ΧΧΧΧ’Χ Χ©ΧΧ Χ. ΧΧΧ ΧͺΧΧΧΧ ΧΧΧΧΧ Χ§ΧΧ, ΧΧΧ¦ΧΧ¨ ΧΧΧΧΧΧΧΧ ΧΧ¦ΧΧΧΧͺΧΧΧ ΧΧ’ΧΧ ΧΧ¨ΧΧ ΧΧΧͺΧ¨. Χ’Χ¨ΧΧ ΧΧͺ ΧΧΧ§ΧΧΧΧͺ ΧΧΧΧ ΧΧΧ ΧΧΧͺΧΧΧ."
|
38 |
+
|
39 |
+
# Predefined audio files
|
40 |
+
PREDEFINED_AUDIO_FILES = {
|
41 |
+
"heb.wav": {
|
42 |
+
"file": "heb.wav",
|
43 |
+
"description": "Regular quality Hebrew audio",
|
44 |
+
"transcription": "Χ©ΧΧΧ! ΧΧ ΧΧ Χ Χ Χ¨ΧΧ©ΧΧ ΧΧΧ¦ΧΧ ΧΧΧ ΧΧͺ ΧΧΧΧΧΧͺ ΧΧΧΧΧΧ¨ ΧΧΧΧ’Χ Χ©ΧΧ Χ. ΧΧΧ ΧͺΧΧΧΧ ΧΧΧΧΧ Χ§ΧΧ, ΧΧΧ¦ΧΧ¨ ΧΧΧΧΧΧΧΧ ΧΧ¦ΧΧΧΧͺΧΧΧ ΧΧ’ΧΧ ΧΧ¨ΧΧ ΧΧΧͺΧ¨. Χ’Χ¨ΧΧ ΧΧͺ ΧΧΧ§ΧΧΧΧͺ ΧΧΧΧ ΧΧΧ ΧΧΧͺΧΧΧ."
|
45 |
+
},
|
46 |
+
"noise.wav": {
|
47 |
+
"file": "noise.wav",
|
48 |
+
"description": "Noisy Hebrew audio",
|
49 |
+
"transcription": "ΧΧ ΧΧ, Χ§Χ¨Χ ΧΧͺ ΧΧΧΧ‘ΧΧΧ ΧΧΧΧ ΧΧΧΧΧ ΧΧ Χ‘ΧΧͺ ΧΧΧ ΧΧͺ ΧΧ ΧΧ ΧΧΧ ΧΧ‘ΧΧΧ¨Χ-ΧΧ€ΧΧ ΧΧ€Χ¨ΧΧΧΧ.."
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
def normalize_hebrew_text(text):
|
54 |
+
"""Normalize Hebrew text for WER calculation"""
|
55 |
+
if not text:
|
56 |
+
return ""
|
57 |
+
|
58 |
+
# Remove diacritics (niqqud)
|
59 |
+
hebrew_diacritics = "".join([chr(i) for i in range(0x0591, 0x05C8)])
|
60 |
+
text = "".join(c for c in text if c not in hebrew_diacritics)
|
61 |
+
|
62 |
+
# Remove punctuation
|
63 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
64 |
+
|
65 |
+
# Remove extra whitespace and convert to lowercase
|
66 |
+
text = ' '.join(text.split()).strip().lower()
|
67 |
+
|
68 |
+
return text
|
69 |
+
|
70 |
+
def calculate_wer_cer(reference, hypothesis):
|
71 |
+
"""Calculate WER and CER for Hebrew text"""
|
72 |
+
try:
|
73 |
+
# Normalize both texts
|
74 |
+
ref_normalized = normalize_hebrew_text(reference)
|
75 |
+
hyp_normalized = normalize_hebrew_text(hypothesis)
|
76 |
+
|
77 |
+
if not ref_normalized or not hyp_normalized:
|
78 |
+
return float('inf'), float('inf'), ref_normalized, hyp_normalized
|
79 |
+
|
80 |
+
# Calculate WER and CER
|
81 |
+
word_error_rate = wer(ref_normalized, hyp_normalized)
|
82 |
+
char_error_rate = cer(ref_normalized, hyp_normalized)
|
83 |
+
|
84 |
+
return word_error_rate, char_error_rate, ref_normalized, hyp_normalized
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error calculating WER/CER: {e}")
|
88 |
+
return float('inf'), float('inf'), "", ""
|
89 |
+
|
90 |
+
def initialize_whisper_model(model_id, progress=gr.Progress()):
|
91 |
+
"""Initialize a specific Whisper model with progress indication"""
|
92 |
+
global WHISPER_MODELS, DEVICE
|
93 |
+
|
94 |
+
try:
|
95 |
+
# Skip if model is already loaded
|
96 |
+
if model_id in WHISPER_MODELS and WHISPER_MODELS[model_id] is not None:
|
97 |
+
print(f"β
Model {model_id} already loaded")
|
98 |
+
return True
|
99 |
+
|
100 |
+
# Determine device
|
101 |
+
if DEVICE is None:
|
102 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
103 |
+
|
104 |
+
compute_type = "float16" if torch.cuda.is_available() else "int8"
|
105 |
+
|
106 |
+
print(f"π§ Loading Whisper model: {model_id} on {DEVICE}")
|
107 |
+
progress(0.3, desc=f"Loading {model_id}...")
|
108 |
+
|
109 |
+
# Initialize Whisper model (faster-whisper)
|
110 |
+
WHISPER_MODELS[model_id] = WhisperModel(
|
111 |
+
model_id,
|
112 |
+
device=DEVICE,
|
113 |
+
compute_type=compute_type
|
114 |
+
)
|
115 |
+
|
116 |
+
progress(1.0, desc=f"Loaded {model_id} successfully!")
|
117 |
+
print(f"β
Model {model_id} initialized successfully!")
|
118 |
+
return True
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
print(f"β Error initializing model {model_id}: {str(e)}")
|
122 |
+
WHISPER_MODELS[model_id] = None
|
123 |
+
return False
|
124 |
+
|
125 |
+
def transcribe_audio_with_model(audio_file, model_id, language="he"):
|
126 |
+
"""Transcribe audio using a specific Whisper model"""
|
127 |
+
try:
|
128 |
+
# Initialize model if needed
|
129 |
+
if model_id not in WHISPER_MODELS or WHISPER_MODELS[model_id] is None:
|
130 |
+
success = initialize_whisper_model(model_id)
|
131 |
+
if not success:
|
132 |
+
return "", f"Failed to load model {model_id}"
|
133 |
+
|
134 |
+
model = WHISPER_MODELS[model_id]
|
135 |
+
|
136 |
+
print(f"π€ Transcribing with {model_id}: {Path(audio_file).name}")
|
137 |
+
|
138 |
+
# Transcribe with faster-whisper
|
139 |
+
segments, info = model.transcribe(
|
140 |
+
audio_file,
|
141 |
+
language=language,
|
142 |
+
beam_size=5,
|
143 |
+
best_of=5,
|
144 |
+
temperature=0.0
|
145 |
+
)
|
146 |
+
|
147 |
+
# Collect all segments
|
148 |
+
transcript_text = ""
|
149 |
+
for segment in segments:
|
150 |
+
transcript_text += segment.text + " "
|
151 |
+
|
152 |
+
transcript_text = transcript_text.strip()
|
153 |
+
|
154 |
+
print(f"β
Transcription completed with {model_id}. Length: {len(transcript_text)} characters")
|
155 |
+
return transcript_text, f"Success - Duration: {info.duration:.1f}s"
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
print(f"β Error transcribing with {model_id}: {str(e)}")
|
159 |
+
return "", f"Error: {str(e)}"
|
160 |
+
|
161 |
+
def evaluate_all_models(audio_file, reference_text, selected_models, progress=gr.Progress()):
|
162 |
+
"""Evaluate all selected models and calculate WER/CER"""
|
163 |
+
if not audio_file or not reference_text.strip():
|
164 |
+
return "β Please provide both audio file and reference transcription", []
|
165 |
+
|
166 |
+
if not selected_models:
|
167 |
+
return "β Please select at least one model to evaluate", []
|
168 |
+
|
169 |
+
results = []
|
170 |
+
detailed_results = []
|
171 |
+
|
172 |
+
print(f"π― Starting WER evaluation with {len(selected_models)} models...")
|
173 |
+
|
174 |
+
for i, model_id in enumerate(selected_models):
|
175 |
+
progress((i + 1) / len(selected_models), desc=f"Evaluating {model_id}...")
|
176 |
+
print(f"\nπ Evaluating model: {model_id}")
|
177 |
+
|
178 |
+
# Transcribe with current model
|
179 |
+
start_time = time.time()
|
180 |
+
transcript, status = transcribe_audio_with_model(audio_file, model_id)
|
181 |
+
transcription_time = time.time() - start_time
|
182 |
+
|
183 |
+
if transcript:
|
184 |
+
# Calculate WER and CER
|
185 |
+
word_error_rate, char_error_rate, ref_norm, hyp_norm = calculate_wer_cer(reference_text, transcript)
|
186 |
+
|
187 |
+
# Store results
|
188 |
+
result = {
|
189 |
+
'model': model_id,
|
190 |
+
'model_name': AVAILABLE_WHISPER_MODELS.get(model_id, model_id),
|
191 |
+
'transcript': transcript,
|
192 |
+
'wer': word_error_rate,
|
193 |
+
'cer': char_error_rate,
|
194 |
+
'time': transcription_time,
|
195 |
+
'status': status,
|
196 |
+
'ref_normalized': ref_norm,
|
197 |
+
'hyp_normalized': hyp_norm
|
198 |
+
}
|
199 |
+
|
200 |
+
results.append(result)
|
201 |
+
|
202 |
+
print(f"β
{model_id}: WER={word_error_rate:.3f}, CER={char_error_rate:.3f}")
|
203 |
+
else:
|
204 |
+
print(f"β {model_id}: Transcription failed")
|
205 |
+
results.append({
|
206 |
+
'model': model_id,
|
207 |
+
'model_name': AVAILABLE_WHISPER_MODELS.get(model_id, model_id),
|
208 |
+
'transcript': 'FAILED',
|
209 |
+
'wer': float('inf'),
|
210 |
+
'cer': float('inf'),
|
211 |
+
'time': transcription_time,
|
212 |
+
'status': status,
|
213 |
+
'ref_normalized': '',
|
214 |
+
'hyp_normalized': ''
|
215 |
+
})
|
216 |
+
|
217 |
+
# Sort results by WER (best first)
|
218 |
+
results.sort(key=lambda x: x['wer'])
|
219 |
+
|
220 |
+
# Create summary report
|
221 |
+
summary_report = "# π WER Evaluation Results\n\n"
|
222 |
+
summary_report += f"**Audio File:** {os.path.basename(audio_file)}\n"
|
223 |
+
summary_report += f"**Reference Text:** {reference_text[:100]}...\n"
|
224 |
+
summary_report += f"**Models Tested:** {len(selected_models)}\n"
|
225 |
+
summary_report += f"**Device:** {DEVICE}\n\n"
|
226 |
+
|
227 |
+
# Add results summary
|
228 |
+
summary_report += "## Results Summary (sorted by WER)\n\n"
|
229 |
+
for i, result in enumerate(results):
|
230 |
+
if result['wer'] == float('inf'):
|
231 |
+
wer_display = "FAILED"
|
232 |
+
cer_display = "FAILED"
|
233 |
+
else:
|
234 |
+
wer_display = f"{result['wer']:.3f} ({result['wer']*100:.1f}%)"
|
235 |
+
cer_display = f"{result['cer']:.3f} ({result['cer']*100:.1f}%)"
|
236 |
+
|
237 |
+
summary_report += f"**{i+1}. {result['model_name']}**\n"
|
238 |
+
summary_report += f"- WER: {wer_display}\n"
|
239 |
+
summary_report += f"- CER: {cer_display}\n"
|
240 |
+
summary_report += f"- Processing Time: {result['time']:.2f}s\n\n"
|
241 |
+
|
242 |
+
# Create table data for Gradio with WER column
|
243 |
+
table_data = []
|
244 |
+
|
245 |
+
# Add ground truth row
|
246 |
+
table_data.append(["Ground Truth", reference_text, "N/A", "N/A"])
|
247 |
+
|
248 |
+
# Add model results
|
249 |
+
for result in results:
|
250 |
+
if result['wer'] == float('inf'):
|
251 |
+
wer_display = "FAILED"
|
252 |
+
cer_display = "FAILED"
|
253 |
+
else:
|
254 |
+
wer_display = f"{result['wer']:.3f}"
|
255 |
+
cer_display = f"{result['cer']:.3f}"
|
256 |
+
|
257 |
+
table_data.append([
|
258 |
+
result['model_name'],
|
259 |
+
result['transcript'],
|
260 |
+
wer_display,
|
261 |
+
cer_display
|
262 |
+
])
|
263 |
+
|
264 |
+
print("β
WER evaluation completed!")
|
265 |
+
return summary_report, table_data
|
266 |
+
|
267 |
+
def create_gradio_interface():
|
268 |
+
"""Create and configure the Gradio interface"""
|
269 |
+
|
270 |
+
# Initialize device info
|
271 |
+
global DEVICE
|
272 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
273 |
+
|
274 |
+
status_msg = f"""β
Hebrew STT WER Evaluation Tool Ready!
|
275 |
+
π§ Device: {DEVICE}
|
276 |
+
π± Available Models: {len(AVAILABLE_WHISPER_MODELS)}
|
277 |
+
π― Purpose: Compare WER performance across Hebrew STT models"""
|
278 |
+
|
279 |
+
# Create Gradio interface
|
280 |
+
with gr.Blocks(
|
281 |
+
title="Hebrew STT WER Evaluation",
|
282 |
+
theme=gr.themes.Soft(),
|
283 |
+
css="""
|
284 |
+
.gradio-container { max-width: 1600px !important; }
|
285 |
+
.evaluation-section {
|
286 |
+
border: 2px solid #e0e0e0;
|
287 |
+
border-radius: 10px;
|
288 |
+
padding: 15px;
|
289 |
+
margin: 10px 0;
|
290 |
+
}
|
291 |
+
"""
|
292 |
+
) as demo:
|
293 |
+
|
294 |
+
gr.Markdown("""
|
295 |
+
# π Hebrew STT WER Evaluation Tool
|
296 |
+
|
297 |
+
Upload an audio file and reference transcription to test the performance of different Whisper models on Hebrew speech-to-text tasks.
|
298 |
+
""")
|
299 |
+
|
300 |
+
# Status section
|
301 |
+
with gr.Row():
|
302 |
+
status_display = gr.Textbox(
|
303 |
+
label="π§ System Status",
|
304 |
+
value=status_msg,
|
305 |
+
interactive=False,
|
306 |
+
lines=4
|
307 |
+
)
|
308 |
+
|
309 |
+
# Input section
|
310 |
+
with gr.Row():
|
311 |
+
# Audio and Reference Input
|
312 |
+
with gr.Column(scale=1, elem_classes=["evaluation-section"]):
|
313 |
+
gr.Markdown("### π Evaluation Inputs")
|
314 |
+
|
315 |
+
# Predefined audio selection
|
316 |
+
predefined_audio_dropdown = gr.Dropdown(
|
317 |
+
label="π΅ Select Predefined Audio File",
|
318 |
+
choices=[(f"{k} - {v['description']}", k) for k, v in PREDEFINED_AUDIO_FILES.items()],
|
319 |
+
value="web01.wav",
|
320 |
+
interactive=True
|
321 |
+
)
|
322 |
+
|
323 |
+
# OR upload custom audio
|
324 |
+
gr.Markdown("**OR**")
|
325 |
+
|
326 |
+
audio_input = gr.Audio(
|
327 |
+
label="π΅ Upload Custom Audio File - Upload Hebrew audio file for transcription",
|
328 |
+
type="filepath",
|
329 |
+
value=None
|
330 |
+
)
|
331 |
+
|
332 |
+
reference_text = gr.Textbox(
|
333 |
+
label="π Reference Transcription (Ground Truth) - The correct transcription for WER calculation",
|
334 |
+
placeholder="Enter the correct transcription of the audio file...",
|
335 |
+
value=DEFAULT_TRANSCRIPTION,
|
336 |
+
lines=5
|
337 |
+
)
|
338 |
+
|
339 |
+
# Model selection
|
340 |
+
model_selection = gr.CheckboxGroup(
|
341 |
+
label="π€ Select Models to Test - Choose which models to evaluate (2-4 recommended)",
|
342 |
+
choices=list(AVAILABLE_WHISPER_MODELS.keys()),
|
343 |
+
value=["ivrit-ai/faster-whisper-v2-d4", "large-v3"]
|
344 |
+
)
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
load_models_btn = gr.Button(
|
348 |
+
"π§ Pre-load Selected Models (Optional)",
|
349 |
+
variant="secondary"
|
350 |
+
)
|
351 |
+
|
352 |
+
evaluate_btn = gr.Button(
|
353 |
+
"π― Run WER Evaluation",
|
354 |
+
variant="primary"
|
355 |
+
)
|
356 |
+
|
357 |
+
# Quick info panel
|
358 |
+
with gr.Column(scale=1, elem_classes=["evaluation-section"]):
|
359 |
+
gr.Markdown("### π WER Evaluation Results")
|
360 |
+
|
361 |
+
gr.Markdown("""
|
362 |
+
**What is WER?**
|
363 |
+
Word Error Rate - measures transcription accuracy at word level
|
364 |
+
|
365 |
+
**How it works:**
|
366 |
+
1. Upload Hebrew audio file
|
367 |
+
2. Enter correct transcription
|
368 |
+
3. Select models to test
|
369 |
+
4. Tool transcribes with each model
|
370 |
+
5. Calculates WER & CER for each model
|
371 |
+
6. Ranks models by performance
|
372 |
+
|
373 |
+
**Evaluation Metrics:**
|
374 |
+
- **WER**: Word-level errors (%)
|
375 |
+
- **CER**: Character-level errors (%)
|
376 |
+
- **Processing Time**: Transcription speed
|
377 |
+
|
378 |
+
**Tips:**
|
379 |
+
- Use high-quality audio
|
380 |
+
- Ensure reference transcription is accurate
|
381 |
+
- Select 2-4 models for comparison
|
382 |
+
- Lower WER = better performance
|
383 |
+
""")
|
384 |
+
|
385 |
+
# Results section
|
386 |
+
with gr.Row():
|
387 |
+
with gr.Column(scale=1):
|
388 |
+
gr.Markdown("### π WER Evaluation Results")
|
389 |
+
|
390 |
+
results_output = gr.Markdown(
|
391 |
+
value="Evaluation results will appear here after running the test..."
|
392 |
+
)
|
393 |
+
|
394 |
+
results_table = gr.Dataframe(
|
395 |
+
label="Transcription Comparison",
|
396 |
+
headers=["Model", "Transcription", "WER", "CER"],
|
397 |
+
datatype=["str", "str", "str", "str"],
|
398 |
+
col_count=(4, "fixed")
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
|
403 |
+
# Event handlers
|
404 |
+
def load_predefined_audio(selected_file):
|
405 |
+
"""Load predefined audio file and its transcription"""
|
406 |
+
if selected_file and selected_file in PREDEFINED_AUDIO_FILES:
|
407 |
+
audio_data = PREDEFINED_AUDIO_FILES[selected_file]
|
408 |
+
return audio_data["file"], audio_data["transcription"]
|
409 |
+
return None, DEFAULT_TRANSCRIPTION
|
410 |
+
|
411 |
+
def load_selected_models(selected_models, progress=gr.Progress()):
|
412 |
+
"""Pre-load selected models"""
|
413 |
+
if not selected_models:
|
414 |
+
return "β No models selected"
|
415 |
+
|
416 |
+
status_msg = f"π§ Loading {len(selected_models)} models...\n\n"
|
417 |
+
|
418 |
+
for model_id in selected_models:
|
419 |
+
try:
|
420 |
+
status_msg += f"β³ Loading {model_id}...\n"
|
421 |
+
success = initialize_whisper_model(model_id, progress)
|
422 |
+
if success:
|
423 |
+
status_msg += f"β
{model_id} loaded successfully\n"
|
424 |
+
else:
|
425 |
+
status_msg += f"β Error loading {model_id}\n"
|
426 |
+
status_msg += "\n"
|
427 |
+
except Exception as e:
|
428 |
+
status_msg += f"β Error loading {model_id}: {str(e)}\n\n"
|
429 |
+
|
430 |
+
loaded_count = len([m for m in selected_models if m in WHISPER_MODELS and WHISPER_MODELS[m] is not None])
|
431 |
+
status_msg += f"β
Model loading complete! Available: {loaded_count}/{len(selected_models)}"
|
432 |
+
return status_msg
|
433 |
+
|
434 |
+
def run_wer_evaluation(audio_file, reference, selected_models, predefined_file, progress=gr.Progress()):
|
435 |
+
"""Run the complete WER evaluation"""
|
436 |
+
# Use predefined file if no custom audio is uploaded
|
437 |
+
if not audio_file and predefined_file:
|
438 |
+
audio_file = PREDEFINED_AUDIO_FILES[predefined_file]["file"]
|
439 |
+
|
440 |
+
if not audio_file:
|
441 |
+
return "β Please select a predefined audio file or upload a custom one", []
|
442 |
+
|
443 |
+
if not reference or not reference.strip():
|
444 |
+
return "β Please enter reference transcription", []
|
445 |
+
|
446 |
+
if not selected_models:
|
447 |
+
return "β Please select at least one model", []
|
448 |
+
|
449 |
+
# Run evaluation
|
450 |
+
results, table_data = evaluate_all_models(audio_file, reference, selected_models, progress)
|
451 |
+
return results, table_data
|
452 |
+
|
453 |
+
# Connect events
|
454 |
+
predefined_audio_dropdown.change(
|
455 |
+
fn=load_predefined_audio,
|
456 |
+
inputs=[predefined_audio_dropdown],
|
457 |
+
outputs=[audio_input, reference_text]
|
458 |
+
)
|
459 |
+
|
460 |
+
load_models_btn.click(
|
461 |
+
fn=load_selected_models,
|
462 |
+
inputs=[model_selection],
|
463 |
+
outputs=[status_display]
|
464 |
+
)
|
465 |
+
|
466 |
+
evaluate_btn.click(
|
467 |
+
fn=run_wer_evaluation,
|
468 |
+
inputs=[audio_input, reference_text, model_selection, predefined_audio_dropdown],
|
469 |
+
outputs=[results_output, results_table]
|
470 |
+
)
|
471 |
+
|
472 |
+
# Footer
|
473 |
+
gr.Markdown("""
|
474 |
+
---
|
475 |
+
### π§ Technical Information
|
476 |
+
- **STT Engine**: Faster-Whisper (optimized for Hebrew)
|
477 |
+
- **Evaluation Metrics**: WER (Word Error Rate) and CER (Character Error Rate)
|
478 |
+
- **Text Normalization**: Removes diacritics, punctuation, and extra whitespace
|
479 |
+
- **Purpose**: Compare performance of different transcription models on Hebrew text
|
480 |
+
|
481 |
+
### π¦ Setup Instructions
|
482 |
+
```bash
|
483 |
+
# Install dependencies
|
484 |
+
pip install gradio faster-whisper torch torchaudio jiwer
|
485 |
+
|
486 |
+
# For GPU support (recommended)
|
487 |
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
488 |
+
```
|
489 |
+
|
490 |
+
### π Output Format
|
491 |
+
The tool displays:
|
492 |
+
- Model ranking by WER
|
493 |
+
- Detailed results for each model
|
494 |
+
- Processing times
|
495 |
+
- Normalized transcription comparison
|
496 |
+
""")
|
497 |
+
|
498 |
+
return demo
|
499 |
+
|
500 |
+
# Launch the app
|
501 |
+
if __name__ == "__main__":
|
502 |
+
print("π― Launching Hebrew STT WER Evaluation Tool...")
|
503 |
+
demo = create_gradio_interface()
|
504 |
+
# Launch the demo
|
505 |
+
demo.launch(
|
506 |
+
share=False, # Set to True to create a public link
|
507 |
+
debug=True,
|
508 |
+
server_name="0.0.0.0",
|
509 |
+
server_port=7860,
|
510 |
+
show_error=True
|
511 |
+
)
|