Spaces:
Running
Running
File size: 43,215 Bytes
090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd 64d96d3 090dddd 64d96d3 090dddd ad042b1 090dddd ffa19f8 090dddd ffa19f8 090dddd ad042b1 ffa19f8 ad042b1 ffa19f8 ad042b1 ffa19f8 ad042b1 ffa19f8 ad042b1 ffa19f8 ad042b1 090dddd ffa19f8 64d96d3 090dddd 64d96d3 090dddd ad042b1 64d96d3 ad042b1 345f1ee ad042b1 345f1ee ad042b1 ffa19f8 ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd 64d96d3 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd ad042b1 090dddd 64d96d3 090dddd ad042b1 090dddd ad042b1 64d96d3 ad042b1 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd 64d96d3 090dddd ad042b1 090dddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
import gradio as gr
from huggingface_hub import HfApi, create_repo
import os
import re
import json
import torch
import random
from typing import List, Dict, Union, Tuple
from gliner import GLiNER
from datasets import load_dataset
from dotenv import load_dotenv
# Load environment variables from .env
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_ACCESS_TOKEN")
# Available models for annotation
AVAILABLE_MODELS = [
"BookingCare/gliner-multi-healthcare",
"knowledgator/gliner-multitask-large-v0.5",
"knowledgator/gliner-multitask-base-v0.5"
]
# Dataset Viewer Classes and Functions
class DynamicDataset:
def __init__(
self, data: List[Dict[str, Union[List[Union[int, str]], bool]]]
) -> None:
self.data = data
self.data_len = len(self.data)
self.current = -1
for example in self.data:
if not "validated" in example.keys():
example["validated"] = False
def next_example(self):
self.current += 1
if self.current > self.data_len-1:
self.current = self.data_len -1
elif self.current < 0:
self.current = 0
def previous_example(self):
self.current -= 1
if self.current > self.data_len-1:
self.current = self.data_len -1
elif self.current < 0:
self.current = 0
def example_by_id(self, id):
self.current = id
if self.current > self.data_len-1:
self.current = self.data_len -1
elif self.current < 0:
self.current = 0
def validate(self):
self.data[self.current]["validated"] = True
def load_current_example(self):
return self.data[self.current]
def tokenize_text(text):
"""Tokenize the input text into a list of tokens."""
return re.findall(r'\w+(?:[-_]\w+)*|\S', text)
def join_tokens(tokens):
# Joining tokens with space, but handling special characters correctly
text = ""
for token in tokens:
if token in {",", ".", "!", "?", ":", ";", "..."}:
text = text.rstrip() + token
else:
text += " " + token
return text.strip()
def prepare_for_highlight(data):
tokens = data["tokenized_text"]
ner = data["ner"]
highlighted_text = []
current_entity = None
entity_tokens = []
normal_tokens = []
for idx, token in enumerate(tokens):
# Check if the current token is the start of a new entity
if current_entity is None or idx > current_entity[1]:
if entity_tokens:
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
entity_tokens = []
current_entity = next((entity for entity in ner if entity[0] == idx), None)
# If current token is part of an entity
if current_entity and current_entity[0] <= idx <= current_entity[1]:
if normal_tokens:
highlighted_text.append((" ".join(normal_tokens), None))
normal_tokens = []
entity_tokens.append(token + " ")
else:
if entity_tokens:
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
entity_tokens = []
normal_tokens.append(token + " ")
# Append any remaining tokens
if entity_tokens:
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
if normal_tokens:
highlighted_text.append((" ".join(normal_tokens), None))
# Clean up spaces before punctuation
cleaned_highlighted_text = []
for text, label in highlighted_text:
cleaned_text = re.sub(r'\s(?=[,\.!?…:;])', '', text)
cleaned_highlighted_text.append((cleaned_text, label))
return cleaned_highlighted_text
def extract_tokens_and_labels(data: List[Dict[str, Union[str, None]]]) -> Dict[str, Union[List[str], List[Tuple[int, int, str]]]]:
tokens = []
ner = []
token_start_idx = 0
for entry in data:
char = entry['token']
label = entry['class_or_confidence']
# Tokenize the current text chunk
token_list = tokenize_text(char)
# Append tokens to the main tokens list
tokens.extend(token_list)
if label:
token_end_idx = token_start_idx + len(token_list) - 1
ner.append((token_start_idx, token_end_idx, label))
token_start_idx += len(token_list)
return tokens, ner
# Global variables for dataset viewer
dynamic_dataset = None
def load_dataset():
global dynamic_dataset
try:
with open("data/annotated_data.json", 'rt') as dataset:
ANNOTATED_DATA = json.load(dataset)
dynamic_dataset = DynamicDataset(ANNOTATED_DATA)
max_value = len(dynamic_dataset.data) - 1 if dynamic_dataset.data else 0
return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=0, maximum=max_value)
except Exception as e:
return [("Error loading dataset: " + str(e), None)], gr.update(value=0, maximum=1)
def example_by_id(id):
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
try:
id = int(id) # Ensure id is an integer
dynamic_dataset.example_by_id(id)
current = dynamic_dataset.current
max_value = len(dynamic_dataset.data) - 1
return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
except Exception as e:
return [("Error navigating to example: " + str(e), None)], gr.update(value=0, maximum=1)
def next_example():
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
try:
dynamic_dataset.next_example()
current = dynamic_dataset.current
max_value = len(dynamic_dataset.data) - 1
return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
except Exception as e:
return [("Error navigating to next example: " + str(e), None)], gr.update(value=0, maximum=1)
def previous_example():
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
try:
dynamic_dataset.previous_example()
current = dynamic_dataset.current
max_value = len(dynamic_dataset.data) - 1
return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
except Exception as e:
return [("Error navigating to previous example: " + str(e), None)], gr.update(value=0, maximum=1)
def update_example(data):
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)]
tokens, ner = extract_tokens_and_labels(data)
dynamic_dataset.data[dynamic_dataset.current]["tokenized_text"] = tokens
dynamic_dataset.data[dynamic_dataset.current]["ner"] = ner
return prepare_for_highlight(dynamic_dataset.load_current_example())
def validate_example():
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)]
dynamic_dataset.data[dynamic_dataset.current]["validated"] = True
return [("The example was validated!", None)]
def save_dataset(inp):
global dynamic_dataset
if dynamic_dataset is None:
return [("Please load a dataset first", None)]
with open("data/annotated_data.json", "wt") as file:
json.dump(dynamic_dataset.data, file)
return [("The validated dataset was saved as data/annotated_data.json", None)]
# Original annotation functions
def transform_data(data):
tokens = tokenize_text(data['text'])
spans = []
for entity in data['entities']:
entity_tokens = tokenize_text(entity['word'])
entity_length = len(entity_tokens)
# Find the start and end indices of each entity in the tokenized text
for i in range(len(tokens) - entity_length + 1):
if tokens[i:i + entity_length] == entity_tokens:
spans.append([i, i + entity_length - 1, entity['entity']])
break
return {"tokenized_text": tokens, "ner": spans, "validated": False}
def merge_entities(entities):
if not entities:
return []
merged = []
current = entities[0]
for next_entity in entities[1:]:
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
current['word'] += ' ' + next_entity['word']
current['end'] = next_entity['end']
else:
merged.append(current)
current = next_entity
merged.append(current)
return merged
def annotate_text(
model, text, labels: List[str], threshold: float, nested_ner: bool
) -> Dict:
labels = [label.strip() for label in labels]
r = {
"text": text,
"entities": [
{
"entity": entity["label"],
"word": entity["text"],
"start": entity["start"],
"end": entity["end"],
"score": 0,
}
for entity in model.predict_entities(
text, labels, flat_ner=not nested_ner, threshold=threshold
)
],
}
r["entities"] = merge_entities(r["entities"])
return transform_data(r)
def batch_annotate_text(model: GLiNER, texts: List[str], labels: List[str], threshold: float, nested_ner: bool) -> List[Dict]:
"""Annotate multiple texts in batch"""
labels = [label.strip() for label in labels]
batch_entities = model.batch_predict_entities(texts, labels, flat_ner=not nested_ner, threshold=threshold)
results = []
for text, entities in zip(texts, batch_entities):
r = {
"text": text,
"entities": [
{
"entity": entity["label"],
"word": entity["text"],
"start": entity["start"],
"end": entity["end"],
"score": 0,
}
for entity in entities
],
}
r["entities"] = merge_entities(r["entities"])
results.append(transform_data(r))
return results
class AutoAnnotator:
def __init__(
self, model: str = "BookingCare/gliner-multi-healthcare",
# device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
device = torch.device('cpu')
) -> None:
# Set PyTorch memory management settings
if torch.cuda.is_available():
torch.cuda.empty_cache()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
self.model = GLiNER.from_pretrained(model).to(device)
self.annotated_data = []
self.stat = {
"total": None,
"current": -1
}
def auto_annotate(
self, data: List[str], labels: List[str],
prompt: Union[str, List[str]] = None, threshold: float = 0.5, nested_ner: bool = False
) -> List[Dict]:
self.stat["total"] = len(data)
self.stat["current"] = -1 # Reset current progress
# Process texts in batches
processed_data = []
batch_size = 8 # Reduced batch size to prevent OOM errors
for i in range(0, len(data), batch_size):
batch_texts = data[i:i + batch_size]
batch_with_prompts = []
# Add prompts to batch texts
for text in batch_texts:
if isinstance(prompt, list):
prompt_text = random.choice(prompt)
else:
prompt_text = prompt
text_with_prompt = f"{prompt_text}\n{text}" if prompt_text else text
batch_with_prompts.append(text_with_prompt)
# Process batch
batch_results = batch_annotate_text(self.model, batch_with_prompts, labels, threshold, nested_ner)
processed_data.extend(batch_results)
# Clear CUDA cache after each batch
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Update progress
self.stat["current"] = min(i + batch_size, len(data))
self.annotated_data = processed_data
return self.annotated_data
# Global variables
annotator = None
sentences = []
def process_text_for_gliner(text: str, max_tokens: int = 256, overlap: int = 32) -> List[str]:
"""
Process text for GLiNER by splitting long texts into overlapping chunks.
Preserves sentence boundaries and context when possible.
Args:
text: The input text to process
max_tokens: Maximum number of tokens per chunk
overlap: Number of tokens to overlap between chunks
Returns:
List of text chunks suitable for GLiNER
"""
# First split into sentences to preserve natural boundaries
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
# Tokenize the sentence
sentence_tokens = tokenize_text(sentence)
sentence_length = len(sentence_tokens)
# If a single sentence is too long, split it
if sentence_length > max_tokens:
# If we have accumulated tokens, add them as a chunk
if current_chunk:
chunks.append(" ".join(current_chunk))
current_chunk = []
current_length = 0
# Split the long sentence into smaller chunks
start = 0
while start < sentence_length:
end = min(start + max_tokens, sentence_length)
chunk_tokens = sentence_tokens[start:end]
chunks.append(" ".join(chunk_tokens))
start = end - overlap if end < sentence_length else end
# If adding this sentence would exceed max_tokens, start a new chunk
elif current_length + sentence_length > max_tokens:
chunks.append(" ".join(current_chunk))
current_chunk = sentence_tokens
current_length = sentence_length
else:
current_chunk.extend(sentence_tokens)
current_length += sentence_length
# Add any remaining tokens as the final chunk
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def process_uploaded_file(file_obj):
if file_obj is None:
return "Please upload a file first!"
try:
# Read the uploaded file
global sentences
if file_obj.name.endswith('.csv'):
import pandas as pd
df = pd.read_csv(file_obj.name)
sentences = df['Nội dung'].dropna().tolist()
# Process each sentence and flatten the list
processed_sentences = []
for sentence in sentences:
processed_sentences.extend(process_text_for_gliner(sentence))
sentences = processed_sentences
else:
# Read the file content directly from the file object
content = file_obj.read().decode('utf-8')
raw_sentences = [line.strip() for line in content.splitlines() if line.strip()]
# Process each sentence and flatten the list
processed_sentences = []
for sentence in raw_sentences:
processed_sentences.extend(process_text_for_gliner(sentence))
sentences = processed_sentences
return f"Successfully loaded {len(sentences)} sentences from file!"
except Exception as e:
return f"Error reading file: {str(e)}"
def is_valid_repo_name(repo_name):
# Hugging Face repo names must not contain slashes or spaces
return bool(re.match(r'^[A-Za-z0-9_./-]+$', repo_name))
def create_hf_repo(repo_name: str, repo_type: str = "dataset", private: bool = False):
"""Create a new repository on Hugging Face Hub"""
if not is_valid_repo_name(repo_name):
raise Exception("Invalid repo name: must not contain slashes, spaces, or special characters except '-', '_', '.'")
try:
api = HfApi(token=HF_TOKEN)
# user = api.whoami()['name']
# repo_id = f"{user}/{repo_name}"
create_repo(
repo_id=repo_name,
repo_type=repo_type,
private=private,
exist_ok=True,
token=HF_TOKEN
)
return repo_name
except Exception as e:
raise Exception(f"Error creating repository: {str(e)}")
def annotate(model, labels, threshold, prompt, save_to_hub, repo_name, repo_type, is_private):
global annotator
try:
if not sentences:
return "Please upload a file with text first!"
if save_to_hub and not is_valid_repo_name(repo_name):
return "Error: Invalid repo name. Only use letters, numbers, '-', '_', or '.' (no slashes or spaces)."
labels = [label.strip() for label in labels.split(",")]
annotator = AutoAnnotator(model)
annotated_data = annotator.auto_annotate(sentences, labels, prompt, threshold)
# Save annotated data locally
os.makedirs("data", exist_ok=True)
local_path = "data/annotated_data.json"
with open(local_path, "wt") as file:
json.dump(annotated_data, file, ensure_ascii=False)
status_messages = [f"Successfully annotated and saved locally to {local_path}"]
# Upload to Hugging Face Hub if requested
if save_to_hub:
try:
repo_id = create_hf_repo(repo_name, repo_type, is_private)
api = HfApi(token=HF_TOKEN)
api.upload_file(
path_or_fileobj=local_path,
path_in_repo="annotated_data.json",
repo_id=repo_id,
repo_type=repo_type,
token=HF_TOKEN
)
status_messages.append(f"Successfully uploaded to Hugging Face Hub repository: {repo_id}")
except Exception as e:
status_messages.append(f"Error with Hugging Face Hub: {str(e)}")
return "\n".join(status_messages)
except Exception as e:
return f"Error during annotation: {str(e)}"
def convert_hf_dataset_to_ner_format(dataset):
"""Convert Hugging Face dataset to NER format"""
converted_data = []
for item in dataset:
# Assuming the dataset has 'tokens' and 'ner_tags' fields
# Adjust the field names based on your dataset structure
if 'tokens' in item and 'ner_tags' in item:
ner_spans = []
current_span = None
for i, (token, tag) in enumerate(zip(item['tokens'], item['ner_tags'])):
if tag != 'O': # Not Outside
if current_span is None:
current_span = [i, i, tag]
elif tag == current_span[2]:
current_span[1] = i
else:
ner_spans.append(current_span)
current_span = [i, i, tag]
elif current_span is not None:
ner_spans.append(current_span)
current_span = None
if current_span is not None:
ner_spans.append(current_span)
converted_data.append({
"tokenized_text": item['tokens'],
"ner": ner_spans,
"validated": False
})
return converted_data
def load_from_huggingface(dataset_name: str, split: str = "all"):
"""Load dataset from Hugging Face Hub"""
try:
dataset = load_dataset(dataset_name, split=split)
converted_data = convert_hf_dataset_to_ner_format(dataset)
# Save the converted data
os.makedirs("data", exist_ok=True)
with open("data/annotated_data.json", "wt") as file:
json.dump(converted_data, file, ensure_ascii=False)
return f"Successfully loaded and converted dataset: {dataset_name}"
except Exception as e:
return f"Error loading dataset: {str(e)}"
def load_from_local_file(file_path: str, file_format: str = "json"):
"""Load and convert data from local file in various formats"""
try:
if file_format == "json":
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if isinstance(data, list):
# If data is already in the correct format
if all("tokenized_text" in item and "ner" in item for item in data):
return data
# Convert from other JSON formats
converted_data = []
for item in data:
if "tokens" in item and "ner_tags" in item:
ner_spans = []
current_span = None
for i, (token, tag) in enumerate(zip(item["tokens"], item["ner_tags"])):
if tag != "O":
if current_span is None:
current_span = [i, i, tag]
elif tag == current_span[2]:
current_span[1] = i
else:
ner_spans.append(current_span)
current_span = [i, i, tag]
elif current_span is not None:
ner_spans.append(current_span)
current_span = None
if current_span is not None:
ner_spans.append(current_span)
converted_data.append({
"tokenized_text": item["tokens"],
"ner": ner_spans,
"validated": False
})
return converted_data
else:
raise ValueError("JSON file must contain a list of examples")
elif file_format == "conll":
converted_data = []
current_example = {"tokens": [], "ner_tags": []}
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
if line.startswith("#"):
continue
parts = line.split()
if len(parts) >= 2:
token, tag = parts[0], parts[-1]
current_example["tokens"].append(token)
current_example["ner_tags"].append(tag)
elif current_example["tokens"]:
# Convert current example
ner_spans = []
current_span = None
for i, (token, tag) in enumerate(zip(current_example["tokens"], current_example["ner_tags"])):
if tag != "O":
if current_span is None:
current_span = [i, i, tag]
elif tag == current_span[2]:
current_span[1] = i
else:
ner_spans.append(current_span)
current_span = [i, i, tag]
elif current_span is not None:
ner_spans.append(current_span)
current_span = None
if current_span is not None:
ner_spans.append(current_span)
converted_data.append({
"tokenized_text": current_example["tokens"],
"ner": ner_spans,
"validated": False
})
current_example = {"tokens": [], "ner_tags": []}
# Handle last example if exists
if current_example["tokens"]:
ner_spans = []
current_span = None
for i, (token, tag) in enumerate(zip(current_example["tokens"], current_example["ner_tags"])):
if tag != "O":
if current_span is None:
current_span = [i, i, tag]
elif tag == current_span[2]:
current_span[1] = i
else:
ner_spans.append(current_span)
current_span = [i, i, tag]
elif current_span is not None:
ner_spans.append(current_span)
current_span = None
if current_span is not None:
ner_spans.append(current_span)
converted_data.append({
"tokenized_text": current_example["tokens"],
"ner": ner_spans,
"validated": False
})
return converted_data
elif file_format == "txt":
# Simple text file with one sentence per line
converted_data = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
tokens = tokenize_text(line)
converted_data.append({
"tokenized_text": tokens,
"ner": [],
"validated": False
})
return converted_data
else:
raise ValueError(f"Unsupported file format: {file_format}")
except Exception as e:
raise Exception(f"Error loading file: {str(e)}")
def process_local_file(file_obj, file_format):
"""Process uploaded local file"""
if file_obj is None:
return "Please upload a file first!"
try:
# Load and convert the data
data = load_from_local_file(file_obj.name, file_format)
# Save the converted data
os.makedirs("data", exist_ok=True)
with open("data/annotated_data.json", "wt") as file:
json.dump(data, file, ensure_ascii=False)
return f"Successfully loaded and converted {len(data)} examples from {file_format} file!"
except Exception as e:
return f"Error processing file: {str(e)}"
# Add a function to download the annotated data
def download_annotated_data():
file_path = "data/annotated_data.json"
if os.path.exists(file_path):
return file_path
else:
return None
def download_to_folder():
"""Download annotated data to a local folder"""
try:
source_path = "data/annotated_data.json"
if not os.path.exists(source_path):
return "No annotated data found!"
# Create downloads directory if it doesn't exist
download_dir = os.path.expanduser("~/Downloads")
os.makedirs(download_dir, exist_ok=True)
# Copy file to downloads folder
import shutil
dest_path = os.path.join(download_dir, "annotated_data.json")
shutil.copy2(source_path, dest_path)
return f"Successfully downloaded to {dest_path}"
except Exception as e:
return f"Error downloading file: {str(e)}"
def update_hf_dataset(repo_name: str, repo_type: str = "dataset", is_private: bool = False):
"""Update or create a Hugging Face dataset with the current annotated data"""
try:
if not dynamic_dataset or not dynamic_dataset.data:
return "No data to upload! Please load or annotate data first."
# Save current data to local file
os.makedirs("data", exist_ok=True)
local_path = "data/annotated_data.json"
with open(local_path, "wt") as file:
json.dump(dynamic_dataset.data, file, ensure_ascii=False)
# Create or update repository
try:
repo_id = create_hf_repo(repo_name, repo_type, is_private)
api = HfApi(token=HF_TOKEN)
api.upload_file(
path_or_fileobj=local_path,
path_in_repo="annotated_data.json",
repo_id=repo_id,
repo_type=repo_type,
token=HF_TOKEN
)
return f"Successfully uploaded to Hugging Face Hub repository: {repo_id}"
except Exception as e:
if "already exists" in str(e):
# If repo exists, just update the file
user = api.whoami()['name']
repo_id = f"{user}/{repo_name}"
api.upload_file(
path_or_fileobj=local_path,
path_in_repo="annotated_data.json",
repo_id=repo_id,
repo_type=repo_type,
token=HF_TOKEN
)
return f"Successfully updated existing repository: {repo_id}"
else:
raise e
except Exception as e:
return f"Error updating Hugging Face dataset: {str(e)}"
# Create the main interface with tabs
with gr.Blocks() as demo:
gr.Markdown("# NER Annotation Tool")
with gr.Tabs():
with gr.TabItem("Auto Annotation"):
with gr.Row():
with gr.Column():
file_uploader = gr.File(label="Upload text file (one sentence per line)")
upload_status = gr.Textbox(label="Upload Status")
file_uploader.change(fn=process_uploaded_file, inputs=[file_uploader], outputs=[upload_status])
with gr.Column():
model = gr.Dropdown(
label="Choose the model for annotation",
choices=AVAILABLE_MODELS,
value=AVAILABLE_MODELS[0]
)
labels = gr.Textbox(
label="Labels",
placeholder="Enter comma-separated labels (e.g., PERSON,ORG,LOC)",
scale=2
)
threshold = gr.Slider(
0, 1,
value=0.3,
step=0.01,
label="Threshold",
info="Lower threshold increases entity predictions"
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your annotation prompt (optional)",
scale=2
)
with gr.Group():
gr.Markdown("### Save Options")
save_to_hub = gr.Checkbox(
label="Save to Hugging Face Hub",
value=False
)
with gr.Group(visible=False) as hub_settings:
gr.Markdown("#### Hugging Face Hub Settings")
repo_name = gr.Textbox(
label="Repository Name",
placeholder="Enter repository name (e.g., my-ner-dataset)",
scale=2
)
repo_type = gr.Dropdown(
choices=["dataset", "model", "space"],
value="dataset",
label="Repository Type"
)
is_private = gr.Checkbox(
label="Private Repository",
value=False
)
annotate_btn = gr.Button("Annotate Data")
output_info = gr.Textbox(label="Processing Status")
# Add download buttons for annotated data
with gr.Row():
download_btn_annot = gr.Button("Download Annotated Data", visible=False)
download_file_annot = gr.File(label="Download", interactive=False, visible=False)
download_status = gr.Textbox(label="Download Status", visible=False)
def toggle_hub_settings(save_to_hub):
return {
hub_settings: gr.update(visible=save_to_hub)
}
save_to_hub.change(
fn=toggle_hub_settings,
inputs=[save_to_hub],
outputs=[hub_settings]
)
def show_download_buttons(status):
# Show download buttons only if annotation was successful
if status and status.startswith("Successfully annotated and saved locally"):
return gr.update(visible=True), gr.update(visible=True)
return gr.update(visible=False), gr.update(visible=False)
annotate_btn.click(
fn=annotate,
inputs=[
model, labels, threshold, prompt,
save_to_hub, repo_name, repo_type, is_private
],
outputs=[output_info]
)
output_info.change(
fn=show_download_buttons,
inputs=[output_info],
outputs=[download_btn_annot, download_status]
)
def handle_download_annot():
file_path = download_annotated_data()
if file_path:
return gr.update(value=file_path, visible=True)
else:
return gr.update(visible=False)
download_btn_annot.click(fn=handle_download_annot, inputs=None, outputs=[download_file_annot])
with gr.TabItem("Dataset Viewer"):
with gr.Row():
with gr.Column():
with gr.Row():
load_local_btn = gr.Button("Load Local Dataset")
load_hf_btn = gr.Button("Load from Hugging Face")
local_file = gr.File(label="Upload Local Dataset", visible=False)
file_format = gr.Dropdown(
choices=["json", "conll", "txt"],
value="json",
label="File Format",
visible=False
)
local_status = gr.Textbox(label="Local File Status", visible=False)
with gr.Group(visible=False) as hf_inputs:
with gr.Row():
dataset_name = gr.Textbox(
label="Hugging Face Dataset Name",
placeholder="Enter dataset name (e.g., conll2003)",
scale=3
)
dataset_split = gr.Dropdown(
choices=["train", "validation", "test"],
value="train",
label="Dataset Split",
scale=2
)
load_dataset_btn = gr.Button("Load Dataset", scale=1)
hf_status = gr.Textbox(label="Dataset Loading Status")
bar = gr.Slider(
minimum=0,
maximum=1,
step=1,
label="Progress",
interactive=True,
info="Use slider to navigate through examples"
)
with gr.Row():
previous_btn = gr.Button("Previous example")
apply_btn = gr.Button("Apply changes")
next_btn = gr.Button("Next example")
validate_btn = gr.Button("Validate")
save_btn = gr.Button("Save validated dataset")
# Add Hugging Face upload section
with gr.Group(visible=False) as hf_upload_group:
gr.Markdown("### Upload to Hugging Face")
hf_repo_name = gr.Textbox(
label="Repository Name",
placeholder="Enter repository name (e.g., my-ner-dataset)",
scale=2
)
hf_repo_type = gr.Dropdown(
choices=["dataset", "model", "space"],
value="dataset",
label="Repository Type"
)
hf_is_private = gr.Checkbox(
label="Private Repository",
value=False
)
upload_to_hf_btn = gr.Button("Upload to Hugging Face")
hf_upload_status = gr.Textbox(label="Upload Status")
with gr.Row():
show_hf_upload_btn = gr.Button("Show Upload Options")
hide_hf_upload_btn = gr.Button("Hide Upload Options", visible=False)
def toggle_hf_upload(show: bool):
return {
hf_upload_group: gr.update(visible=show),
show_hf_upload_btn: gr.update(visible=not show),
hide_hf_upload_btn: gr.update(visible=show)
}
show_hf_upload_btn.click(
fn=lambda: toggle_hf_upload(True),
inputs=None,
outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn]
)
hide_hf_upload_btn.click(
fn=lambda: toggle_hf_upload(False),
inputs=None,
outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn]
)
inp_box = gr.HighlightedText(value=None, interactive=True)
def toggle_local_inputs():
return {
local_file: gr.update(visible=True),
file_format: gr.update(visible=True),
local_status: gr.update(visible=True),
hf_inputs: gr.update(visible=False)
}
def toggle_hf_inputs():
return {
local_file: gr.update(visible=False),
file_format: gr.update(visible=False),
local_status: gr.update(visible=False),
hf_inputs: gr.update(visible=True)
}
load_local_btn.click(
fn=toggle_local_inputs,
inputs=None,
outputs=[local_file, file_format, local_status, hf_inputs]
)
load_hf_btn.click(
fn=toggle_hf_inputs,
inputs=None,
outputs=[local_file, file_format, local_status, hf_inputs]
)
def process_and_load_local(file_obj, format):
status = process_local_file(file_obj, format)
if "Successfully" in status:
return load_dataset()
return [status], 0, 0
local_file.change(
fn=process_and_load_local,
inputs=[local_file, file_format],
outputs=[inp_box, bar]
)
def load_hf_dataset(name, split):
status = load_from_huggingface(name, split)
if "Successfully" in status:
return load_dataset(), status
return [status], 0, 0, status
load_dataset_btn.click(
fn=load_hf_dataset,
inputs=[dataset_name, dataset_split],
outputs=[inp_box, bar, hf_status]
)
apply_btn.click(fn=update_example, inputs=inp_box, outputs=inp_box)
save_btn.click(fn=save_dataset, inputs=inp_box, outputs=inp_box)
validate_btn.click(fn=validate_example, inputs=None, outputs=inp_box)
next_btn.click(fn=next_example, inputs=None, outputs=[inp_box, bar])
previous_btn.click(fn=previous_example, inputs=None, outputs=[inp_box, bar])
bar.change(
fn=example_by_id,
inputs=[bar],
outputs=[inp_box, bar],
api_name="example_by_id"
)
# Add Hugging Face upload functionality
upload_to_hf_btn.click(
fn=update_hf_dataset,
inputs=[hf_repo_name, hf_repo_type, hf_is_private],
outputs=[hf_upload_status]
)
demo.launch() |