File size: 25,238 Bytes
a33a001
 
090dddd
 
a33a001
090dddd
ad042b1
a33a001
 
 
 
 
 
 
 
 
090dddd
 
 
 
 
 
 
 
a33a001
090dddd
a33a001
 
090dddd
ad042b1
a33a001
ad042b1
 
 
 
 
 
 
 
 
 
 
a33a001
ad042b1
 
 
 
a33a001
ad042b1
 
 
 
 
 
 
 
a33a001
ad042b1
 
 
 
 
 
 
 
 
 
 
 
a33a001
ad042b1
 
 
 
 
 
 
 
 
 
 
090dddd
a33a001
090dddd
ad042b1
 
090dddd
 
 
 
 
 
a33a001
090dddd
ad042b1
 
090dddd
 
 
 
a33a001
090dddd
ad042b1
 
090dddd
 
 
 
ad042b1
a33a001
 
090dddd
 
 
ad042b1
 
a33a001
090dddd
 
 
a33a001
ad042b1
090dddd
ad042b1
 
090dddd
a33a001
ad042b1
a33a001
ad042b1
 
 
a33a001
ad042b1
 
 
a33a001
ad042b1
090dddd
 
 
a33a001
 
 
090dddd
a33a001
 
9faf7cc
a33a001
 
 
090dddd
a33a001
 
 
090dddd
a33a001
090dddd
a33a001
 
 
 
 
090dddd
a33a001
 
090dddd
a33a001
090dddd
a33a001
 
 
090dddd
a33a001
 
 
090dddd
a33a001
090dddd
a33a001
 
 
 
 
 
 
 
 
 
 
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad042b1
a33a001
 
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad042b1
 
a33a001
 
 
ad042b1
a33a001
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad042b1
 
a33a001
 
 
 
ad042b1
 
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64d96d3
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64d96d3
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad042b1
a33a001
 
 
 
 
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad042b1
a33a001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
090dddd
a33a001
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
"""Main application module for NER annotation tool."""

import os
import json
import gradio as gr
from typing import List, Dict, Union, Tuple

from src.ner_annotation.core.dataset import DynamicDataset, prepare_for_highlight
from src.ner_annotation.core.annotator import AutoAnnotator
from src.ner_annotation.utils.text_processing import extract_tokens_and_labels
from src.ner_annotation.utils.file_processing import process_uploaded_file, load_from_local_file
from src.ner_annotation.utils.huggingface import (
    is_valid_repo_name,
    upload_to_hf,
    download_from_hf
)

# Available models for annotation
AVAILABLE_MODELS = [
    "BookingCare/gliner-multi-healthcare",
    "knowledgator/gliner-multitask-large-v0.5",
    "knowledgator/gliner-multitask-base-v0.5"
]

# Global variables
dynamic_dataset = None
annotator = None
sentences = []

def load_dataset():
    """Load the dataset and return the first example."""
    global dynamic_dataset
    try:
        with open("data/annotated_data.json", 'rt') as dataset:
            ANNOTATED_DATA = json.load(dataset)
        dynamic_dataset = DynamicDataset(ANNOTATED_DATA)
        max_value = len(dynamic_dataset.data) - 1 if dynamic_dataset.data else 0
        return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=0, maximum=max_value)
    except Exception as e:
        return [("Error loading dataset: " + str(e), None)], gr.update(value=0, maximum=1)

def example_by_id(id):
    """Navigate to a specific example by ID."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
    try:
        id = int(id)
        dynamic_dataset.example_by_id(id)
        current = dynamic_dataset.current
        max_value = len(dynamic_dataset.data) - 1
        return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
    except Exception as e:
        return [("Error navigating to example: " + str(e), None)], gr.update(value=0, maximum=1)

def next_example():
    """Move to the next example."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
    try:
        dynamic_dataset.next_example()
        current = dynamic_dataset.current
        max_value = len(dynamic_dataset.data) - 1
        return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
    except Exception as e:
        return [("Error navigating to next example: " + str(e), None)], gr.update(value=0, maximum=1)

def previous_example():
    """Move to the previous example."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)], gr.update(value=0, maximum=1)
    try:
        dynamic_dataset.previous_example()
        current = dynamic_dataset.current
        max_value = len(dynamic_dataset.data) - 1
        return prepare_for_highlight(dynamic_dataset.load_current_example()), gr.update(value=current, maximum=max_value)
    except Exception as e:
        return [("Error navigating to previous example: " + str(e), None)], gr.update(value=0, maximum=1)

def update_example(data):
    """Update the current example with new annotations."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)]
    tokens, ner = extract_tokens_and_labels(data)
    dynamic_dataset.data[dynamic_dataset.current]["tokenized_text"] = tokens
    dynamic_dataset.data[dynamic_dataset.current]["ner"] = ner
    return prepare_for_highlight(dynamic_dataset.load_current_example())

def validate_example():
    """Mark the current example as validated."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)]
    dynamic_dataset.data[dynamic_dataset.current]["validated"] = True
    return [("The example was validated!", None)]

def save_dataset(inp):
    """Save the dataset to a file."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return [("Please load a dataset first", None)]
    with open("data/annotated_data.json", "wt") as file:
        json.dump(dynamic_dataset.data, file)
    return [("The validated dataset was saved as data/annotated_data.json", None)]

def annotate(model, labels, threshold, prompt, save_to_hub, repo_name, repo_type, is_private):
    """Annotate the uploaded text using the selected model."""
    global annotator, sentences
    try:
        if not sentences:
            return "Please upload a file with text first!"
        if save_to_hub and not is_valid_repo_name(repo_name):
            return "Error: Invalid repo name. Only use letters, numbers, '-', '_', or '.' (no slashes or spaces)."
        
        labels = [label.strip() for label in labels.split(",")]
        annotator = AutoAnnotator(model)
        annotated_data = annotator.auto_annotate(sentences, labels, prompt, threshold)
        
        # Save annotated data locally
        os.makedirs("data", exist_ok=True)
        local_path = "data/annotated_data.json"
        with open(local_path, "wt") as file:
            json.dump(annotated_data, file, ensure_ascii=False)
        
        status_messages = [f"Successfully annotated and saved locally to {local_path}"]
        
        # Upload to Hugging Face Hub if requested
        if save_to_hub:
            try:
                repo_id = upload_to_hf(local_path, repo_name, repo_type, is_private)
                status_messages.append(f"Successfully uploaded to Hugging Face Hub repository: {repo_id}")
            except Exception as e:
                status_messages.append(f"Error with Hugging Face Hub: {str(e)}")
        
        return "\n".join(status_messages)
    except Exception as e:
        return f"Error during annotation: {str(e)}"

def load_from_huggingface(name):
    """Load a dataset from Hugging Face Hub."""
    global dynamic_dataset
    try:
        # Download dataset from Hugging Face Hub
        local_path = download_from_hf(name, "annotated_data.json")
        
        # Load the downloaded dataset
        with open(local_path, 'rt') as dataset:
            data = json.load(dataset)
        
        # Initialize the dataset
        dynamic_dataset = DynamicDataset(data)
        return "Successfully loaded dataset from Hugging Face Hub"
    except Exception as e:
        return f"Error loading dataset from Hugging Face Hub: {str(e)}"

def update_hf_dataset(repo_name, repo_type, is_private):
    """Upload the current dataset to Hugging Face Hub."""
    global dynamic_dataset
    if dynamic_dataset is None:
        return "Please load a dataset first"
    try:
        if not is_valid_repo_name(repo_name):
            return "Error: Invalid repo name. Only use letters, numbers, '-', '_', or '.' (no slashes or spaces)."
        
        # Save dataset locally first
        os.makedirs("data", exist_ok=True)
        local_path = "data/annotated_data.json"
        with open(local_path, "wt") as file:
            json.dump(dynamic_dataset.data, file, ensure_ascii=False)
        
        # Upload to Hugging Face Hub
        repo_id = upload_to_hf(local_path, repo_name, repo_type, is_private)
        return f"Successfully uploaded to Hugging Face Hub repository: {repo_id}"
    except Exception as e:
        return f"Error uploading to Hugging Face Hub: {str(e)}"

def process_conll(content):
    """Convert CoNLL format to JSON."""
    sentences = []
    current_sentence = {"text": "", "tokenized_text": [], "ner": []}
    
    for line in content.split('\n'):
        if not line.strip():
            if current_sentence["text"]:
                sentences.append(current_sentence)
                current_sentence = {"text": "", "tokenized_text": [], "ner": []}
            continue
        
        parts = line.split()
        if len(parts) >= 2:
            token, label = parts[0], parts[-1]
            current_sentence["tokenized_text"].append(token)
            current_sentence["ner"].append(label)
            current_sentence["text"] += token + " "
    
    if current_sentence["text"]:
        sentences.append(current_sentence)
    
    return sentences

def process_txt(content):
    """Convert plain text to JSON format."""
    sentences = []
    for line in content.split('\n'):
        if line.strip():
            sentences.append({
                "text": line.strip(),
                "tokenized_text": line.strip().split(),
                "ner": ["O"] * len(line.strip().split())
            })
    return sentences

def process_local_file(file_obj, format):
    """Process a local file and save it as JSON."""
    try:
        if file_obj is None:
            return "No file uploaded"
            
        # Get the file content from the Gradio file object
        content = file_obj.name
        with open(content, 'r', encoding='utf-8') as f:
            content = f.read()
            
        if format == "json":
            data = json.loads(content)
        elif format == "conll":
            data = process_conll(content)
        elif format == "txt":
            data = process_txt(content)
        else:
            return "Unsupported file format"
        
        os.makedirs("data", exist_ok=True)
        with open("data/annotated_data.json", "wt") as f:
            json.dump(data, f, ensure_ascii=False)
        return "Successfully processed and saved file"
    except Exception as e:
        return f"Error processing file: {str(e)}"

def create_interface():
    """Create and return the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("# NER Annotation Tool")
        
        with gr.Tabs():
            with gr.TabItem("Auto Annotation"):
                with gr.Row():
                    with gr.Column():
                        file_uploader = gr.File(label="Upload text file (one sentence per line)")
                        upload_status = gr.Textbox(label="Upload Status")
                        file_uploader.change(fn=process_uploaded_file, inputs=[file_uploader], outputs=[upload_status])
                    
                    with gr.Column():
                        model = gr.Dropdown(
                            label="Choose the model for annotation",
                            choices=AVAILABLE_MODELS,
                            value=AVAILABLE_MODELS[0]
                        )
                        labels = gr.Textbox(
                            label="Labels",
                            placeholder="Enter comma-separated labels (e.g., PERSON,ORG,LOC)",
                            scale=2
                        )
                        threshold = gr.Slider(
                            0, 1,
                            value=0.3,
                            step=0.01,
                            label="Threshold",
                            info="Lower threshold increases entity predictions"
                        )
                        prompt = gr.Textbox(
                            label="Prompt",
                            placeholder="Enter your annotation prompt (optional)",
                            scale=2
                        )
                        
                        with gr.Group():
                            gr.Markdown("### Save Options")
                            save_to_hub = gr.Checkbox(
                                label="Save to Hugging Face Hub",
                                value=False
                            )
                            
                            with gr.Group(visible=False) as hub_settings:
                                gr.Markdown("#### Hugging Face Hub Settings")
                                repo_name = gr.Textbox(
                                    label="Repository Name",
                                    placeholder="Enter repository name (e.g., my-ner-dataset)",
                                    scale=2
                                )
                                repo_type = gr.Dropdown(
                                    choices=["dataset", "model", "space"],
                                    value="dataset",
                                    label="Repository Type"
                                )
                                is_private = gr.Checkbox(
                                    label="Private Repository",
                                    value=False
                                )
                        
                        annotate_btn = gr.Button("Annotate Data")
                        output_info = gr.Textbox(label="Processing Status")
                        
                        # Add download buttons for annotated data
                        with gr.Row():
                            download_btn_annot = gr.Button("Download Annotated Data", visible=False)
                        download_file_annot = gr.File(label="Download", interactive=False, visible=False)
                        download_status = gr.Textbox(label="Download Status", visible=False)
                        
                        def toggle_hub_settings(save_to_hub):
                            return {
                                hub_settings: gr.update(visible=save_to_hub)
                            }
                        
                        save_to_hub.change(
                            fn=toggle_hub_settings,
                            inputs=[save_to_hub],
                            outputs=[hub_settings]
                        )
                        
                        def show_download_buttons(status):
                            if status and status.startswith("Successfully annotated and saved locally"):
                                return gr.update(visible=True), gr.update(visible=True)
                            return gr.update(visible=False), gr.update(visible=False)
                        
                        annotate_btn.click(
                            fn=annotate,
                            inputs=[
                                model, labels, threshold, prompt,
                                save_to_hub, repo_name, repo_type, is_private
                            ],
                            outputs=[output_info]
                        )
                        output_info.change(
                            fn=show_download_buttons,
                            inputs=[output_info],
                            outputs=[download_btn_annot, download_status]
                        )
                        
                        def handle_download_annot():
                            file_path = "data/annotated_data.json"
                            if os.path.exists(file_path):
                                return gr.update(value=file_path, visible=True)
                            return gr.update(visible=False)
                        
                        download_btn_annot.click(
                            fn=handle_download_annot,
                            inputs=None,
                            outputs=[download_file_annot]
                        )
            
            with gr.TabItem("Dataset Viewer"):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### Dataset Controls")
                        with gr.Group():
                            with gr.Row():
                                load_local_btn = gr.Button("Load Local Dataset", variant="primary")
                                load_hf_btn = gr.Button("Load from Hugging Face", variant="secondary")
                            
                            with gr.Group() as local_inputs:
                                local_file = gr.File(label="Upload Local Dataset")
                                file_format = gr.Dropdown(
                                    choices=["json", "conll", "txt"],
                                    value="json",
                                    label="File Format"
                                )
                                local_status = gr.Textbox(label="Status", interactive=False)
                            
                            with gr.Group(visible=False) as hf_inputs:
                                with gr.Row():
                                    dataset_name = gr.Textbox(
                                        label="Dataset Name",
                                        placeholder="Enter dataset name (e.g., conll2003)",
                                        scale=4
                                    )
                                with gr.Row():
                                    gr.Column(scale=1)
                                    load_dataset_btn = gr.Button("πŸ“₯ Load Dataset", variant="primary")
                                    gr.Column(scale=1)
                                with gr.Row():
                                    gr.Markdown(
                                        "πŸ’‘ Tip: Enter a valid Hugging Face dataset name",
                                        elem_classes=["text-sm", "text-gray-500"]
                                    )
                        
                        gr.Markdown("### Navigation")
                        with gr.Group():
                            bar = gr.Slider(
                                minimum=0,
                                maximum=1,
                                step=1,
                                label="Progress",
                                interactive=True,
                                info="Use slider to navigate through examples"
                            )
                            
                            with gr.Row():
                                previous_btn = gr.Button("← Previous", variant="secondary")
                                next_btn = gr.Button("Next β†’", variant="secondary")
                        
                        gr.Markdown("### Actions")
                        with gr.Group():
                            with gr.Row():
                                apply_btn = gr.Button("Apply Changes", variant="primary")
                                validate_btn = gr.Button("Validate", variant="secondary")
                            save_btn = gr.Button("Save Dataset", variant="primary")
                        
                        gr.Markdown("### Hugging Face Upload")
                        with gr.Group():
                            with gr.Row():
                                show_hf_upload_btn = gr.Button("πŸ“€ Show Upload Options", variant="secondary", scale=1)
                                hide_hf_upload_btn = gr.Button("πŸ“₯ Hide Upload Options", visible=False, variant="secondary", scale=1)
                            
                            with gr.Group(visible=False) as hf_upload_group:
                                with gr.Row():
                                    hf_repo_name = gr.Textbox(
                                        label="Repository Name",
                                        placeholder="Enter repository name (e.g., my-ner-dataset)",
                                        scale=2
                                    )
                                    hf_repo_type = gr.Dropdown(
                                        choices=["dataset", "model", "space"],
                                        value="dataset",
                                        label="Repository Type",
                                        scale=1
                                    )
                                with gr.Row():
                                    hf_is_private = gr.Checkbox(
                                        label="Private Repository",
                                        value=False,
                                        scale=1
                                    )
                                    upload_to_hf_btn = gr.Button("Upload to Hugging Face", variant="primary", scale=2)
                                hf_upload_status = gr.Textbox(
                                    label="Upload Status",
                                    interactive=False,
                                    show_label=True
                                )
                        
                        def toggle_upload_options(show: bool):
                            return {
                                hf_upload_group: gr.update(visible=show),
                                show_hf_upload_btn: gr.update(visible=not show),
                                hide_hf_upload_btn: gr.update(visible=show)
                            }
                        
                        show_hf_upload_btn.click(
                            fn=lambda: toggle_upload_options(True),
                            inputs=None,
                            outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn]
                        )
                        
                        hide_hf_upload_btn.click(
                            fn=lambda: toggle_upload_options(False),
                            inputs=None,
                            outputs=[hf_upload_group, show_hf_upload_btn, hide_hf_upload_btn]
                        )
        
                    with gr.Column(scale=2):
                        gr.Markdown("### Current Example")
                        inp_box = gr.HighlightedText(value=None, interactive=True)
                        
                        def toggle_local_inputs():
                            return {
                                local_inputs: gr.update(visible=True),
                                hf_inputs: gr.update(visible=False)
                            }
                        
                        def toggle_hf_inputs():
                            return {
                                local_inputs: gr.update(visible=False),
                                hf_inputs: gr.update(visible=True)
                            }
                        
                        load_local_btn.click(
                            fn=toggle_local_inputs,
                            inputs=None,
                            outputs=[local_inputs, hf_inputs]
                        )
                        
                        load_hf_btn.click(
                            fn=toggle_hf_inputs,
                            inputs=None,
                            outputs=[local_inputs, hf_inputs]
                        )
                        
                        def process_and_load_local(file_obj, format):
                            status = process_local_file(file_obj, format)
                            if "Successfully" in status:
                                result = load_dataset()
                                return result[0], result[1], status
                            return [("Error loading dataset: " + status, None)], gr.update(value=0, maximum=1), status
                        
                        local_file.change(
                            fn=process_and_load_local,
                            inputs=[local_file, file_format],
                            outputs=[inp_box, bar, local_status]
                        )
                        
                        def load_hf_dataset(name):
                            status = load_from_huggingface(name)
                            if "Successfully" in status:
                                return load_dataset()
                            return [("Error loading dataset: " + status, None)], gr.update(value=0, maximum=1)
                        
                        load_dataset_btn.click(
                            fn=load_hf_dataset,
                            inputs=[dataset_name],
                            outputs=[inp_box, bar]
                        )
                        
                        apply_btn.click(fn=update_example, inputs=inp_box, outputs=inp_box)
                        save_btn.click(fn=save_dataset, inputs=inp_box, outputs=inp_box)
                        validate_btn.click(fn=validate_example, inputs=None, outputs=inp_box)
                        next_btn.click(fn=next_example, inputs=None, outputs=[inp_box, bar])
                        previous_btn.click(fn=previous_example, inputs=None, outputs=[inp_box, bar])
                        bar.change(
                            fn=example_by_id,
                            inputs=[bar],
                            outputs=[inp_box, bar],
                            api_name="example_by_id"
                        )
                        
                        upload_to_hf_btn.click(
                            fn=update_hf_dataset,
                            inputs=[hf_repo_name, hf_repo_type, hf_is_private],
                            outputs=[hf_upload_status]
                        )
        
        return demo

def main():
    """Run the application."""
    demo = create_interface()
    demo.launch()

if __name__ == "__main__":
    main()