denoising / train.py
BorisovMaksim's picture
refactored code to work with hydra and wandb
9ff4511
raw
history blame
3.55 kB
import os
import torch
from torch.utils.data import DataLoader
from pathlib import Path
from omegaconf import DictConfig
import wandb
import torchaudio
from checkpoing_saver import CheckpointSaver
from denoisers import get_model
from optimizers import get_optimizer
from losses import get_loss
from datasets import get_datasets
from testing.metrics import Metrics
import omegaconf
os.environ['CUDA_VISIBLE_DEVICES'] = "1"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(cfg: DictConfig):
wandb.login(key=cfg['wandb']['api_key'], host=cfg['wandb']['host'])
wandb.init(project=cfg['wandb']['project'],
notes=cfg['wandb']['notes'],
tags=cfg['wandb']['tags'],
config=omegaconf.OmegaConf.to_container(
cfg, resolve=True, throw_on_missing=True))
checkpoint_saver = CheckpointSaver(dirpath=cfg['training']['model_save_path'])
metrics = Metrics(rate=cfg['dataloader']['sample_rate'])
model = get_model(cfg['model']).to(device)
optimizer = get_optimizer(model.parameters(), cfg['optimizer'])
loss_fn = get_loss(cfg['loss'])
train_dataset, valid_dataset = get_datasets(cfg)
training_loader = DataLoader(train_dataset, batch_size=cfg['dataloader']['train_batch_size'], shuffle=True)
validation_loader = DataLoader(valid_dataset, batch_size=cfg['dataloader']['valid_batch_size'], shuffle=True)
wandb.watch(model, log_freq=100)
for epoch in range(cfg['training']['num_epochs']):
model.train(True)
for i, data in enumerate(training_loader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
if i % cfg['wandb']['log_interval'] == 0:
wandb.log({"loss": loss})
model.train(False)
running_vloss, running_pesq, running_stoi = 0.0, 0.0, 0.0
with torch.no_grad():
for i, vdata in enumerate(validation_loader):
vinputs, vlabels = vdata
vinputs, vlabels = vinputs.to(device), vlabels.to(device)
voutputs = model(vinputs)
vloss = loss_fn(voutputs, vlabels)
running_vloss += vloss
running_metrics = metrics.calculate(denoised=voutputs, clean=vlabels)
running_pesq += running_metrics['PESQ']
running_stoi += running_metrics['STOI']
avg_vloss = running_vloss / len(validation_loader)
avg_pesq = running_pesq / len(validation_loader)
avg_stoi = running_stoi / len(validation_loader)
wandb.log({"valid_loss": avg_vloss,
"valid_pesq": avg_pesq,
"valid_stoi": avg_stoi})
for tag, wav_path in cfg['validation']['wavs'].items():
wav, rate = torchaudio.load(Path(cfg['validation']['path']) / wav_path)
wav = torch.reshape(wav, (1, 1, -1)).to(device)
prediction = model(wav)
wandb.log({
f"{tag}_epoch_{epoch}": wandb.Audio(
prediction.cpu()[0][0],
sample_rate=rate)})
checkpoint_saver(model, epoch, metric_val=avg_pesq)
if __name__ == '__main__':
train()