import gradio as gr from huggingface_hub import InferenceClient from fastapi import FastAPI from pydantic import BaseModel import uvicorn # Hugging Face model client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # FastAPI app app = FastAPI() # Request format class Request(BaseModel): message: str history: list[tuple[str, str]] = [] system_message: str = "You are a friendly chatbot." max_tokens: int = 512 temperature: float = 0.7 top_p: float = 0.95 @app.post("/chat") # ✅ This makes the API work with Roblox! def chat(req: Request): messages = [{"role": "system", "content": req.system_message}] for user_msg, bot_reply in req.history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_reply: messages.append({"role": "assistant", "content": bot_reply}) messages.append({"role": "user", "content": req.message}) response_text = "" for message in client.chat_completion( messages, max_tokens=req.max_tokens, stream=True, temperature=req.temperature, top_p=req.top_p ): token = message.choices[0].delta.content response_text += token return {"response": response_text} # ✅ Returns plain text response # ✅ Gradio Interface (optional, can be removed if using FastAPI only) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) # Run both Gradio and FastAPI if __name__ == "__main__": import threading def run_gradio(): demo.launch(share=True) # ✅ Keep Gradio running def run_fastapi(): uvicorn.run(app, host="0.0.0.0", port=7860) threading.Thread(target=run_gradio).start() run_fastapi()