Spaces:
Runtime error
Runtime error
| from datetime import datetime | |
| import numpy as np | |
| import pandas as pd | |
| pd.set_option('chained_assignment',None) | |
| pd.set_option('display.max_columns',None) | |
| import os | |
| import pickle as pkl | |
| from Source.Predict.predict import predict | |
| # get team abbreviations | |
| with open('Source/Pickles/team_abbreviation_to_name.pkl', 'rb') as f: | |
| team_abbreviation_to_name = pkl.load(f) | |
| # get this year's odds and results | |
| gbg_and_odds_this_year = pd.read_csv('Source/Data/gbg_and_odds_this_year.csv') | |
| results = pd.read_csv('Source/Data/results.csv') | |
| # make predictions | |
| from tqdm import tqdm | |
| print("Predicting games and getting record") | |
| predictions = {} | |
| for game_id,home,away,season,week,total in tqdm(gbg_and_odds_this_year[['game_id','home_team','away_team','Season','GP','Total Score Close']].values): | |
| if week!=1: | |
| predictions[game_id] = predict(home,away,season,week,total) | |
| # merge data | |
| predictions_df = pd.DataFrame(predictions).T | |
| predictions_df['predicted_winner'] = [i['Winner'][0] if type(i['Winner'])==list else None for i in predictions_df[1]] | |
| predictions_df['predicted_winner'] = predictions_df['predicted_winner'].map(team_abbreviation_to_name) | |
| predictions_df['predicted_winner_probability'] = [i['Probabilities'][0] if type(i['Probabilities'])==list else None for i in predictions_df[1]] | |
| predictions_df['predicted_over_under'] = [i['Over/Under'][0] if type(i['Over/Under'])==list else None for i in predictions_df[2]] | |
| predictions_df['predicted_over_under_probability'] = [i['Probability'][0] if type(i['Probability'])==list else None for i in predictions_df[2]] | |
| predictions_df = predictions_df.merge(results, left_index=True, right_on='game_id').merge(gbg_and_odds_this_year[['game_id','Total Score Close','home_team','away_team','game_date','Home Odds Close','Away Odds Close']]).dropna(subset=['predicted_winner']) | |
| predictions_df['over_under'] = ['Over' if t>tsc else 'Under' if t<tsc else 'Push' for t,tsc in predictions_df[['total','Total Score Close']].values] | |
| predictions_df['game_date'] = pd.to_datetime(predictions_df['game_date']) | |
| # get returns | |
| predictions_df['home'] = predictions_df['home_team'].map(team_abbreviation_to_name) | |
| predictions_df['away'] = predictions_df['away_team'].map(team_abbreviation_to_name) | |
| predictions_df['picked_home'] = (predictions_df['home']==predictions_df['predicted_winner']) | |
| predictions_df['picked_away'] = (predictions_df['away']==predictions_df['predicted_winner']) | |
| predictions_df['winner_correct'] = (predictions_df['predicted_winner']==predictions_df['winner']) | |
| predictions_df['winner_incorrect'] = ((predictions_df['predicted_winner']!=predictions_df['winner']) & (predictions_df['winner']!='Tie')) | |
| predictions_df['winner_tie'] = (predictions_df['winner']=='Tie') | |
| predictions_df['over_under_correct'] = (predictions_df['predicted_over_under']==predictions_df['over_under']) | |
| predictions_df['over_under_incorrect'] = ((predictions_df['predicted_over_under']!=predictions_df['over_under']) & (predictions_df['over_under']!='Push')) | |
| predictions_df['over_under_push'] = (predictions_df['over_under']=='Push') | |
| predictions_df['winner_return'] = [ao-1 if (pa and wc) else ho-1 if (ph and wc) else -1 for ao,ho,pa,ph,wc in predictions_df[['Away Odds Close','Home Odds Close','picked_away','picked_home','winner_correct']].values] | |
| predictions_df['over_under_return'] = [0.91 if ouc else -1 for ouc in predictions_df['over_under_correct']] | |
| threshold = 0.6 | |
| winners_correct = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold, 'winner_correct'].sum() | |
| winners_incorrect = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold,'winner_incorrect'].sum() | |
| winners_tie = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold,'winner_tie'].sum() | |
| winners_return = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold, 'winner_return'].sum() | |
| over_unders_correct = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_correct'].sum() | |
| over_unders_incorrect = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_incorrect'].sum() | |
| over_unders_push = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_push'].sum() | |
| over_unders_return = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_return'].sum() | |
| max_date = predictions_df['game_date'].max() | |
| latest_game = pd.Timestamp(max_date).strftime("%A, %m/%d") | |
| record = {"winners_correct":str(winners_correct), | |
| "winners_incorrect":str(winners_incorrect), | |
| "winners_tie":("-"+str(winners_tie) if winners_tie>0 else ''), | |
| "winners_return":str(round(winners_return,1))+"x return", | |
| "over_unders_correct":str(over_unders_correct), | |
| "over_unders_incorrect":str(over_unders_incorrect), | |
| "over_unders_push":("-"+str(over_unders_push) if over_unders_push>0 else ''), | |
| "over_unders_return":str(round(over_unders_return,1))+"x return", | |
| "latest_game":latest_game} | |
| import json | |
| with open('Source/Data/record.json', 'w') as f: | |
| json.dump(record,f) | |