_Noxty commited on
Commit
4c766ee
·
verified ·
1 Parent(s): 8a42f74

Update libs/rtrvc.py

Browse files
Files changed (1) hide show
  1. libs/rtrvc.py +461 -461
libs/rtrvc.py CHANGED
@@ -1,461 +1,461 @@
1
- from io import BytesIO
2
- import os
3
- import sys
4
- import traceback
5
- from infer.lib import jit
6
- from infer.lib.jit.get_synthesizer import get_synthesizer
7
- from time import time as ttime
8
- import fairseq
9
- import faiss
10
- import numpy as np
11
- import parselmouth
12
- import pyworld
13
- import scipy.signal as signal
14
- import torch
15
- import torch.nn as nn
16
- import torch.nn.functional as F
17
- import torchcrepe
18
- from torchaudio.transforms import Resample
19
-
20
- now_dir = os.getcwd()
21
- sys.path.append(now_dir)
22
- from multiprocessing import Manager as M
23
-
24
- from configs.config import Config
25
-
26
- # config = Config()
27
-
28
- mm = M()
29
-
30
-
31
- def printt(strr, *args):
32
- if len(args) == 0:
33
- print(strr)
34
- else:
35
- print(strr % args)
36
-
37
-
38
- # config.device=torch.device("cpu")########强制cpu测试
39
- # config.is_half=False########强制cpu测试
40
- class RVC:
41
- def __init__(
42
- self,
43
- key,
44
- formant,
45
- pth_path,
46
- index_path,
47
- index_rate,
48
- n_cpu,
49
- inp_q,
50
- opt_q,
51
- config: Config,
52
- last_rvc=None,
53
- ) -> None:
54
- """
55
- 初始化
56
- """
57
- try:
58
- if config.dml == True:
59
-
60
- def forward_dml(ctx, x, scale):
61
- ctx.scale = scale
62
- res = x.clone().detach()
63
- return res
64
-
65
- fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
66
- # global config
67
- self.config = config
68
- self.inp_q = inp_q
69
- self.opt_q = opt_q
70
- # device="cpu"########强制cpu测试
71
- self.device = config.device
72
- self.f0_up_key = key
73
- self.formant_shift = formant
74
- self.f0_min = 50
75
- self.f0_max = 1100
76
- self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
77
- self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
78
- self.n_cpu = n_cpu
79
- self.use_jit = self.config.use_jit
80
- self.is_half = config.is_half
81
-
82
- if index_rate != 0:
83
- self.index = faiss.read_index(index_path)
84
- self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
85
- printt("Index search enabled")
86
- self.pth_path: str = pth_path
87
- self.index_path = index_path
88
- self.index_rate = index_rate
89
- self.cache_pitch: torch.Tensor = torch.zeros(
90
- 1024, device=self.device, dtype=torch.long
91
- )
92
- self.cache_pitchf = torch.zeros(
93
- 1024, device=self.device, dtype=torch.float32
94
- )
95
-
96
- self.resample_kernel = {}
97
-
98
- if last_rvc is None:
99
- models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
100
- ["assets/hubert/hubert_base.pt"],
101
- suffix="",
102
- )
103
- hubert_model = models[0]
104
- hubert_model = hubert_model.to(self.device)
105
- if self.is_half:
106
- hubert_model = hubert_model.half()
107
- else:
108
- hubert_model = hubert_model.float()
109
- hubert_model.eval()
110
- self.model = hubert_model
111
- else:
112
- self.model = last_rvc.model
113
-
114
- self.net_g: nn.Module = None
115
-
116
- def set_default_model():
117
- self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
118
- self.tgt_sr = cpt["config"][-1]
119
- cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
120
- self.if_f0 = cpt.get("f0", 1)
121
- self.version = cpt.get("version", "v1")
122
- if self.is_half:
123
- self.net_g = self.net_g.half()
124
- else:
125
- self.net_g = self.net_g.float()
126
-
127
- def set_jit_model():
128
- jit_pth_path = self.pth_path.rstrip(".pth")
129
- jit_pth_path += ".half.jit" if self.is_half else ".jit"
130
- reload = False
131
- if str(self.device) == "cuda":
132
- self.device = torch.device("cuda:0")
133
- if os.path.exists(jit_pth_path):
134
- cpt = jit.load(jit_pth_path)
135
- model_device = cpt["device"]
136
- if model_device != str(self.device):
137
- reload = True
138
- else:
139
- reload = True
140
-
141
- if reload:
142
- cpt = jit.synthesizer_jit_export(
143
- self.pth_path,
144
- "script",
145
- None,
146
- device=self.device,
147
- is_half=self.is_half,
148
- )
149
-
150
- self.tgt_sr = cpt["config"][-1]
151
- self.if_f0 = cpt.get("f0", 1)
152
- self.version = cpt.get("version", "v1")
153
- self.net_g = torch.jit.load(
154
- BytesIO(cpt["model"]), map_location=self.device
155
- )
156
- self.net_g.infer = self.net_g.forward
157
- self.net_g.eval().to(self.device)
158
-
159
- def set_synthesizer():
160
- if self.use_jit and not config.dml:
161
- if self.is_half and "cpu" in str(self.device):
162
- printt(
163
- "Use default Synthesizer model. \
164
- Jit is not supported on the CPU for half floating point"
165
- )
166
- set_default_model()
167
- else:
168
- set_jit_model()
169
- else:
170
- set_default_model()
171
-
172
- if last_rvc is None or last_rvc.pth_path != self.pth_path:
173
- set_synthesizer()
174
- else:
175
- self.tgt_sr = last_rvc.tgt_sr
176
- self.if_f0 = last_rvc.if_f0
177
- self.version = last_rvc.version
178
- self.is_half = last_rvc.is_half
179
- if last_rvc.use_jit != self.use_jit:
180
- set_synthesizer()
181
- else:
182
- self.net_g = last_rvc.net_g
183
-
184
- if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
185
- self.model_rmvpe = last_rvc.model_rmvpe
186
- if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
187
- self.device_fcpe = last_rvc.device_fcpe
188
- self.model_fcpe = last_rvc.model_fcpe
189
- except:
190
- printt(traceback.format_exc())
191
-
192
- def change_key(self, new_key):
193
- self.f0_up_key = new_key
194
-
195
- def change_formant(self, new_formant):
196
- self.formant_shift = new_formant
197
-
198
- def change_index_rate(self, new_index_rate):
199
- if new_index_rate != 0 and self.index_rate == 0:
200
- self.index = faiss.read_index(self.index_path)
201
- self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
202
- printt("Index search enabled")
203
- self.index_rate = new_index_rate
204
-
205
- def get_f0_post(self, f0):
206
- if not torch.is_tensor(f0):
207
- f0 = torch.from_numpy(f0)
208
- f0 = f0.float().to(self.device).squeeze()
209
- f0_mel = 1127 * torch.log(1 + f0 / 700)
210
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
211
- self.f0_mel_max - self.f0_mel_min
212
- ) + 1
213
- f0_mel[f0_mel <= 1] = 1
214
- f0_mel[f0_mel > 255] = 255
215
- f0_coarse = torch.round(f0_mel).long()
216
- return f0_coarse, f0
217
-
218
- def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
219
- n_cpu = int(n_cpu)
220
- if method == "crepe":
221
- return self.get_f0_crepe(x, f0_up_key)
222
- if method == "rmvpe":
223
- return self.get_f0_rmvpe(x, f0_up_key)
224
- if method == "fcpe":
225
- return self.get_f0_fcpe(x, f0_up_key)
226
- x = x.cpu().numpy()
227
- if method == "pm":
228
- p_len = x.shape[0] // 160 + 1
229
- f0_min = 65
230
- l_pad = int(np.ceil(1.5 / f0_min * 16000))
231
- r_pad = l_pad + 1
232
- s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
233
- time_step=0.01,
234
- voicing_threshold=0.6,
235
- pitch_floor=f0_min,
236
- pitch_ceiling=1100,
237
- )
238
- assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
239
- f0 = s.selected_array["frequency"]
240
- if len(f0) < p_len:
241
- f0 = np.pad(f0, (0, p_len - len(f0)))
242
- f0 = f0[:p_len]
243
- f0 *= pow(2, f0_up_key / 12)
244
- return self.get_f0_post(f0)
245
- if n_cpu == 1:
246
- f0, t = pyworld.harvest(
247
- x.astype(np.double),
248
- fs=16000,
249
- f0_ceil=1100,
250
- f0_floor=50,
251
- frame_period=10,
252
- )
253
- f0 = signal.medfilt(f0, 3)
254
- f0 *= pow(2, f0_up_key / 12)
255
- return self.get_f0_post(f0)
256
- f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
257
- length = len(x)
258
- part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
259
- n_cpu = (length // 160 - 1) // (part_length // 160) + 1
260
- ts = ttime()
261
- res_f0 = mm.dict()
262
- for idx in range(n_cpu):
263
- tail = part_length * (idx + 1) + 320
264
- if idx == 0:
265
- self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
266
- else:
267
- self.inp_q.put(
268
- (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
269
- )
270
- while 1:
271
- res_ts = self.opt_q.get()
272
- if res_ts == ts:
273
- break
274
- f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
275
- for idx, f0 in enumerate(f0s):
276
- if idx == 0:
277
- f0 = f0[:-3]
278
- elif idx != n_cpu - 1:
279
- f0 = f0[2:-3]
280
- else:
281
- f0 = f0[2:]
282
- f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
283
- f0
284
- )
285
- f0bak = signal.medfilt(f0bak, 3)
286
- f0bak *= pow(2, f0_up_key / 12)
287
- return self.get_f0_post(f0bak)
288
-
289
- def get_f0_crepe(self, x, f0_up_key):
290
- if "privateuseone" in str(
291
- self.device
292
- ): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
293
- return self.get_f0(x, f0_up_key, 1, "fcpe")
294
- # printt("using crepe,device:%s"%self.device)
295
- f0, pd = torchcrepe.predict(
296
- x.unsqueeze(0).float(),
297
- 16000,
298
- 160,
299
- self.f0_min,
300
- self.f0_max,
301
- "full",
302
- batch_size=512,
303
- # device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
304
- device=self.device,
305
- return_periodicity=True,
306
- )
307
- pd = torchcrepe.filter.median(pd, 3)
308
- f0 = torchcrepe.filter.mean(f0, 3)
309
- f0[pd < 0.1] = 0
310
- f0 *= pow(2, f0_up_key / 12)
311
- return self.get_f0_post(f0)
312
-
313
- def get_f0_rmvpe(self, x, f0_up_key):
314
- if hasattr(self, "model_rmvpe") == False:
315
- from infer.lib.rmvpe import RMVPE
316
-
317
- printt("Loading rmvpe model")
318
- self.model_rmvpe = RMVPE(
319
- "assets/rmvpe/rmvpe.pt",
320
- is_half=self.is_half,
321
- device=self.device,
322
- use_jit=self.config.use_jit,
323
- )
324
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
325
- f0 *= pow(2, f0_up_key / 12)
326
- return self.get_f0_post(f0)
327
-
328
- def get_f0_fcpe(self, x, f0_up_key):
329
- if hasattr(self, "model_fcpe") == False:
330
- from torchfcpe import spawn_bundled_infer_model
331
-
332
- printt("Loading fcpe model")
333
- if "privateuseone" in str(self.device):
334
- self.device_fcpe = "cpu"
335
- else:
336
- self.device_fcpe = self.device
337
- self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
338
- f0 = self.model_fcpe.infer(
339
- x.to(self.device_fcpe).unsqueeze(0).float(),
340
- sr=16000,
341
- decoder_mode="local_argmax",
342
- threshold=0.006,
343
- )
344
- f0 *= pow(2, f0_up_key / 12)
345
- return self.get_f0_post(f0)
346
-
347
- def infer(
348
- self,
349
- input_wav: torch.Tensor,
350
- block_frame_16k,
351
- skip_head,
352
- return_length,
353
- f0method,
354
- ) -> np.ndarray:
355
- t1 = ttime()
356
- with torch.no_grad():
357
- if self.config.is_half:
358
- feats = input_wav.half().view(1, -1)
359
- else:
360
- feats = input_wav.float().view(1, -1)
361
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
362
- inputs = {
363
- "source": feats,
364
- "padding_mask": padding_mask,
365
- "output_layer": 9 if self.version == "v1" else 12,
366
- }
367
- logits = self.model.extract_features(**inputs)
368
- feats = (
369
- self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
370
- )
371
- feats = torch.cat((feats, feats[:, -1:, :]), 1)
372
- t2 = ttime()
373
- try:
374
- if hasattr(self, "index") and self.index_rate != 0:
375
- npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
376
- score, ix = self.index.search(npy, k=8)
377
- if (ix >= 0).all():
378
- weight = np.square(1 / score)
379
- weight /= weight.sum(axis=1, keepdims=True)
380
- npy = np.sum(
381
- self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
382
- )
383
- if self.config.is_half:
384
- npy = npy.astype("float16")
385
- feats[0][skip_head // 2 :] = (
386
- torch.from_numpy(npy).unsqueeze(0).to(self.device)
387
- * self.index_rate
388
- + (1 - self.index_rate) * feats[0][skip_head // 2 :]
389
- )
390
- else:
391
- printt(
392
- "Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
393
- )
394
- else:
395
- printt("Index search FAILED or disabled")
396
- except:
397
- traceback.print_exc()
398
- printt("Index search FAILED")
399
- t3 = ttime()
400
- p_len = input_wav.shape[0] // 160
401
- factor = pow(2, self.formant_shift / 12)
402
- return_length2 = int(np.ceil(return_length * factor))
403
- if self.if_f0 == 1:
404
- f0_extractor_frame = block_frame_16k + 800
405
- if f0method == "rmvpe":
406
- f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
407
- pitch, pitchf = self.get_f0(
408
- input_wav[-f0_extractor_frame:], self.f0_up_key - self.formant_shift, self.n_cpu, f0method
409
- )
410
- shift = block_frame_16k // 160
411
- self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
412
- self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
413
- self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
414
- self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
415
- cache_pitch = self.cache_pitch[None, -p_len:]
416
- cache_pitchf = self.cache_pitchf[None, -p_len:] * return_length2 / return_length
417
- t4 = ttime()
418
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
419
- feats = feats[:, :p_len, :]
420
- p_len = torch.LongTensor([p_len]).to(self.device)
421
- sid = torch.LongTensor([0]).to(self.device)
422
- skip_head = torch.LongTensor([skip_head])
423
- return_length2 = torch.LongTensor([return_length2])
424
- return_length = torch.LongTensor([return_length])
425
- with torch.no_grad():
426
- if self.if_f0 == 1:
427
- infered_audio, _, _ = self.net_g.infer(
428
- feats,
429
- p_len,
430
- cache_pitch,
431
- cache_pitchf,
432
- sid,
433
- skip_head,
434
- return_length,
435
- return_length2,
436
- )
437
- else:
438
- infered_audio, _, _ = self.net_g.infer(
439
- feats, p_len, sid, skip_head, return_length, return_length2
440
- )
441
- infered_audio = infered_audio.squeeze(1).float()
442
- upp_res = int(np.floor(factor * self.tgt_sr // 100))
443
- if upp_res != self.tgt_sr // 100:
444
- if upp_res not in self.resample_kernel:
445
- self.resample_kernel[upp_res] = Resample(
446
- orig_freq=upp_res,
447
- new_freq=self.tgt_sr // 100,
448
- dtype=torch.float32,
449
- ).to(self.device)
450
- infered_audio = self.resample_kernel[upp_res](
451
- infered_audio[:, : return_length * upp_res]
452
- )
453
- t5 = ttime()
454
- printt(
455
- "Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
456
- t2 - t1,
457
- t3 - t2,
458
- t4 - t3,
459
- t5 - t4,
460
- )
461
- return infered_audio.squeeze()
 
1
+ from io import BytesIO
2
+ import os
3
+ import sys
4
+ import traceback
5
+ from infer.lib import jit
6
+ from infer.lib.jit.get_synthesizer import get_synthesizer
7
+ from time import time as ttime
8
+ import fairseq
9
+ import faiss
10
+ import numpy as np
11
+ import parselmouth
12
+ import pyworld
13
+ import scipy.signal as signal
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ import torchcrepe
18
+ from torchaudio.transforms import Resample
19
+
20
+ now_dir = os.getcwd()
21
+ sys.path.append(now_dir)
22
+ from multiprocessing import Manager as M
23
+
24
+ from config import Config
25
+
26
+ # config = Config()
27
+
28
+ mm = M()
29
+
30
+
31
+ def printt(strr, *args):
32
+ if len(args) == 0:
33
+ print(strr)
34
+ else:
35
+ print(strr % args)
36
+
37
+
38
+ # config.device=torch.device("cpu")########强制cpu测试
39
+ # config.is_half=False########强制cpu测试
40
+ class RVC:
41
+ def __init__(
42
+ self,
43
+ key,
44
+ formant,
45
+ pth_path,
46
+ index_path,
47
+ index_rate,
48
+ n_cpu,
49
+ inp_q,
50
+ opt_q,
51
+ config: Config,
52
+ last_rvc=None,
53
+ ) -> None:
54
+ """
55
+ 初始化
56
+ """
57
+ try:
58
+ if config.dml == True:
59
+
60
+ def forward_dml(ctx, x, scale):
61
+ ctx.scale = scale
62
+ res = x.clone().detach()
63
+ return res
64
+
65
+ fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
66
+ # global config
67
+ self.config = config
68
+ self.inp_q = inp_q
69
+ self.opt_q = opt_q
70
+ # device="cpu"########强制cpu测试
71
+ self.device = config.device
72
+ self.f0_up_key = key
73
+ self.formant_shift = formant
74
+ self.f0_min = 50
75
+ self.f0_max = 1100
76
+ self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
77
+ self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
78
+ self.n_cpu = n_cpu
79
+ self.use_jit = self.config.use_jit
80
+ self.is_half = config.is_half
81
+
82
+ if index_rate != 0:
83
+ self.index = faiss.read_index(index_path)
84
+ self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
85
+ printt("Index search enabled")
86
+ self.pth_path: str = pth_path
87
+ self.index_path = index_path
88
+ self.index_rate = index_rate
89
+ self.cache_pitch: torch.Tensor = torch.zeros(
90
+ 1024, device=self.device, dtype=torch.long
91
+ )
92
+ self.cache_pitchf = torch.zeros(
93
+ 1024, device=self.device, dtype=torch.float32
94
+ )
95
+
96
+ self.resample_kernel = {}
97
+
98
+ if last_rvc is None:
99
+ models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
100
+ ["assets/hubert/hubert_base.pt"],
101
+ suffix="",
102
+ )
103
+ hubert_model = models[0]
104
+ hubert_model = hubert_model.to(self.device)
105
+ if self.is_half:
106
+ hubert_model = hubert_model.half()
107
+ else:
108
+ hubert_model = hubert_model.float()
109
+ hubert_model.eval()
110
+ self.model = hubert_model
111
+ else:
112
+ self.model = last_rvc.model
113
+
114
+ self.net_g: nn.Module = None
115
+
116
+ def set_default_model():
117
+ self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
118
+ self.tgt_sr = cpt["config"][-1]
119
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
120
+ self.if_f0 = cpt.get("f0", 1)
121
+ self.version = cpt.get("version", "v1")
122
+ if self.is_half:
123
+ self.net_g = self.net_g.half()
124
+ else:
125
+ self.net_g = self.net_g.float()
126
+
127
+ def set_jit_model():
128
+ jit_pth_path = self.pth_path.rstrip(".pth")
129
+ jit_pth_path += ".half.jit" if self.is_half else ".jit"
130
+ reload = False
131
+ if str(self.device) == "cuda":
132
+ self.device = torch.device("cuda:0")
133
+ if os.path.exists(jit_pth_path):
134
+ cpt = jit.load(jit_pth_path)
135
+ model_device = cpt["device"]
136
+ if model_device != str(self.device):
137
+ reload = True
138
+ else:
139
+ reload = True
140
+
141
+ if reload:
142
+ cpt = jit.synthesizer_jit_export(
143
+ self.pth_path,
144
+ "script",
145
+ None,
146
+ device=self.device,
147
+ is_half=self.is_half,
148
+ )
149
+
150
+ self.tgt_sr = cpt["config"][-1]
151
+ self.if_f0 = cpt.get("f0", 1)
152
+ self.version = cpt.get("version", "v1")
153
+ self.net_g = torch.jit.load(
154
+ BytesIO(cpt["model"]), map_location=self.device
155
+ )
156
+ self.net_g.infer = self.net_g.forward
157
+ self.net_g.eval().to(self.device)
158
+
159
+ def set_synthesizer():
160
+ if self.use_jit and not config.dml:
161
+ if self.is_half and "cpu" in str(self.device):
162
+ printt(
163
+ "Use default Synthesizer model. \
164
+ Jit is not supported on the CPU for half floating point"
165
+ )
166
+ set_default_model()
167
+ else:
168
+ set_jit_model()
169
+ else:
170
+ set_default_model()
171
+
172
+ if last_rvc is None or last_rvc.pth_path != self.pth_path:
173
+ set_synthesizer()
174
+ else:
175
+ self.tgt_sr = last_rvc.tgt_sr
176
+ self.if_f0 = last_rvc.if_f0
177
+ self.version = last_rvc.version
178
+ self.is_half = last_rvc.is_half
179
+ if last_rvc.use_jit != self.use_jit:
180
+ set_synthesizer()
181
+ else:
182
+ self.net_g = last_rvc.net_g
183
+
184
+ if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
185
+ self.model_rmvpe = last_rvc.model_rmvpe
186
+ if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
187
+ self.device_fcpe = last_rvc.device_fcpe
188
+ self.model_fcpe = last_rvc.model_fcpe
189
+ except:
190
+ printt(traceback.format_exc())
191
+
192
+ def change_key(self, new_key):
193
+ self.f0_up_key = new_key
194
+
195
+ def change_formant(self, new_formant):
196
+ self.formant_shift = new_formant
197
+
198
+ def change_index_rate(self, new_index_rate):
199
+ if new_index_rate != 0 and self.index_rate == 0:
200
+ self.index = faiss.read_index(self.index_path)
201
+ self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
202
+ printt("Index search enabled")
203
+ self.index_rate = new_index_rate
204
+
205
+ def get_f0_post(self, f0):
206
+ if not torch.is_tensor(f0):
207
+ f0 = torch.from_numpy(f0)
208
+ f0 = f0.float().to(self.device).squeeze()
209
+ f0_mel = 1127 * torch.log(1 + f0 / 700)
210
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
211
+ self.f0_mel_max - self.f0_mel_min
212
+ ) + 1
213
+ f0_mel[f0_mel <= 1] = 1
214
+ f0_mel[f0_mel > 255] = 255
215
+ f0_coarse = torch.round(f0_mel).long()
216
+ return f0_coarse, f0
217
+
218
+ def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
219
+ n_cpu = int(n_cpu)
220
+ if method == "crepe":
221
+ return self.get_f0_crepe(x, f0_up_key)
222
+ if method == "rmvpe":
223
+ return self.get_f0_rmvpe(x, f0_up_key)
224
+ if method == "fcpe":
225
+ return self.get_f0_fcpe(x, f0_up_key)
226
+ x = x.cpu().numpy()
227
+ if method == "pm":
228
+ p_len = x.shape[0] // 160 + 1
229
+ f0_min = 65
230
+ l_pad = int(np.ceil(1.5 / f0_min * 16000))
231
+ r_pad = l_pad + 1
232
+ s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
233
+ time_step=0.01,
234
+ voicing_threshold=0.6,
235
+ pitch_floor=f0_min,
236
+ pitch_ceiling=1100,
237
+ )
238
+ assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
239
+ f0 = s.selected_array["frequency"]
240
+ if len(f0) < p_len:
241
+ f0 = np.pad(f0, (0, p_len - len(f0)))
242
+ f0 = f0[:p_len]
243
+ f0 *= pow(2, f0_up_key / 12)
244
+ return self.get_f0_post(f0)
245
+ if n_cpu == 1:
246
+ f0, t = pyworld.harvest(
247
+ x.astype(np.double),
248
+ fs=16000,
249
+ f0_ceil=1100,
250
+ f0_floor=50,
251
+ frame_period=10,
252
+ )
253
+ f0 = signal.medfilt(f0, 3)
254
+ f0 *= pow(2, f0_up_key / 12)
255
+ return self.get_f0_post(f0)
256
+ f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
257
+ length = len(x)
258
+ part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
259
+ n_cpu = (length // 160 - 1) // (part_length // 160) + 1
260
+ ts = ttime()
261
+ res_f0 = mm.dict()
262
+ for idx in range(n_cpu):
263
+ tail = part_length * (idx + 1) + 320
264
+ if idx == 0:
265
+ self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
266
+ else:
267
+ self.inp_q.put(
268
+ (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
269
+ )
270
+ while 1:
271
+ res_ts = self.opt_q.get()
272
+ if res_ts == ts:
273
+ break
274
+ f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
275
+ for idx, f0 in enumerate(f0s):
276
+ if idx == 0:
277
+ f0 = f0[:-3]
278
+ elif idx != n_cpu - 1:
279
+ f0 = f0[2:-3]
280
+ else:
281
+ f0 = f0[2:]
282
+ f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
283
+ f0
284
+ )
285
+ f0bak = signal.medfilt(f0bak, 3)
286
+ f0bak *= pow(2, f0_up_key / 12)
287
+ return self.get_f0_post(f0bak)
288
+
289
+ def get_f0_crepe(self, x, f0_up_key):
290
+ if "privateuseone" in str(
291
+ self.device
292
+ ): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
293
+ return self.get_f0(x, f0_up_key, 1, "fcpe")
294
+ # printt("using crepe,device:%s"%self.device)
295
+ f0, pd = torchcrepe.predict(
296
+ x.unsqueeze(0).float(),
297
+ 16000,
298
+ 160,
299
+ self.f0_min,
300
+ self.f0_max,
301
+ "full",
302
+ batch_size=512,
303
+ # device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
304
+ device=self.device,
305
+ return_periodicity=True,
306
+ )
307
+ pd = torchcrepe.filter.median(pd, 3)
308
+ f0 = torchcrepe.filter.mean(f0, 3)
309
+ f0[pd < 0.1] = 0
310
+ f0 *= pow(2, f0_up_key / 12)
311
+ return self.get_f0_post(f0)
312
+
313
+ def get_f0_rmvpe(self, x, f0_up_key):
314
+ if hasattr(self, "model_rmvpe") == False:
315
+ from infer.lib.rmvpe import RMVPE
316
+
317
+ printt("Loading rmvpe model")
318
+ self.model_rmvpe = RMVPE(
319
+ "assets/rvc/rmvpe.pt",
320
+ is_half=self.is_half,
321
+ device=self.device,
322
+ use_jit=self.config.use_jit,
323
+ )
324
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
325
+ f0 *= pow(2, f0_up_key / 12)
326
+ return self.get_f0_post(f0)
327
+
328
+ def get_f0_fcpe(self, x, f0_up_key):
329
+ if hasattr(self, "model_fcpe") == False:
330
+ from torchfcpe import spawn_bundled_infer_model
331
+
332
+ printt("Loading fcpe model")
333
+ if "privateuseone" in str(self.device):
334
+ self.device_fcpe = "cpu"
335
+ else:
336
+ self.device_fcpe = self.device
337
+ self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
338
+ f0 = self.model_fcpe.infer(
339
+ x.to(self.device_fcpe).unsqueeze(0).float(),
340
+ sr=16000,
341
+ decoder_mode="local_argmax",
342
+ threshold=0.006,
343
+ )
344
+ f0 *= pow(2, f0_up_key / 12)
345
+ return self.get_f0_post(f0)
346
+
347
+ def infer(
348
+ self,
349
+ input_wav: torch.Tensor,
350
+ block_frame_16k,
351
+ skip_head,
352
+ return_length,
353
+ f0method,
354
+ ) -> np.ndarray:
355
+ t1 = ttime()
356
+ with torch.no_grad():
357
+ if self.config.is_half:
358
+ feats = input_wav.half().view(1, -1)
359
+ else:
360
+ feats = input_wav.float().view(1, -1)
361
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
362
+ inputs = {
363
+ "source": feats,
364
+ "padding_mask": padding_mask,
365
+ "output_layer": 9 if self.version == "v1" else 12,
366
+ }
367
+ logits = self.model.extract_features(**inputs)
368
+ feats = (
369
+ self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
370
+ )
371
+ feats = torch.cat((feats, feats[:, -1:, :]), 1)
372
+ t2 = ttime()
373
+ try:
374
+ if hasattr(self, "index") and self.index_rate != 0:
375
+ npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
376
+ score, ix = self.index.search(npy, k=8)
377
+ if (ix >= 0).all():
378
+ weight = np.square(1 / score)
379
+ weight /= weight.sum(axis=1, keepdims=True)
380
+ npy = np.sum(
381
+ self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
382
+ )
383
+ if self.config.is_half:
384
+ npy = npy.astype("float16")
385
+ feats[0][skip_head // 2 :] = (
386
+ torch.from_numpy(npy).unsqueeze(0).to(self.device)
387
+ * self.index_rate
388
+ + (1 - self.index_rate) * feats[0][skip_head // 2 :]
389
+ )
390
+ else:
391
+ printt(
392
+ "Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
393
+ )
394
+ else:
395
+ printt("Index search FAILED or disabled")
396
+ except:
397
+ traceback.print_exc()
398
+ printt("Index search FAILED")
399
+ t3 = ttime()
400
+ p_len = input_wav.shape[0] // 160
401
+ factor = pow(2, self.formant_shift / 12)
402
+ return_length2 = int(np.ceil(return_length * factor))
403
+ if self.if_f0 == 1:
404
+ f0_extractor_frame = block_frame_16k + 800
405
+ if f0method == "rmvpe":
406
+ f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
407
+ pitch, pitchf = self.get_f0(
408
+ input_wav[-f0_extractor_frame:], self.f0_up_key - self.formant_shift, self.n_cpu, f0method
409
+ )
410
+ shift = block_frame_16k // 160
411
+ self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
412
+ self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
413
+ self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
414
+ self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
415
+ cache_pitch = self.cache_pitch[None, -p_len:]
416
+ cache_pitchf = self.cache_pitchf[None, -p_len:] * return_length2 / return_length
417
+ t4 = ttime()
418
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
419
+ feats = feats[:, :p_len, :]
420
+ p_len = torch.LongTensor([p_len]).to(self.device)
421
+ sid = torch.LongTensor([0]).to(self.device)
422
+ skip_head = torch.LongTensor([skip_head])
423
+ return_length2 = torch.LongTensor([return_length2])
424
+ return_length = torch.LongTensor([return_length])
425
+ with torch.no_grad():
426
+ if self.if_f0 == 1:
427
+ infered_audio, _, _ = self.net_g.infer(
428
+ feats,
429
+ p_len,
430
+ cache_pitch,
431
+ cache_pitchf,
432
+ sid,
433
+ skip_head,
434
+ return_length,
435
+ return_length2,
436
+ )
437
+ else:
438
+ infered_audio, _, _ = self.net_g.infer(
439
+ feats, p_len, sid, skip_head, return_length, return_length2
440
+ )
441
+ infered_audio = infered_audio.squeeze(1).float()
442
+ upp_res = int(np.floor(factor * self.tgt_sr // 100))
443
+ if upp_res != self.tgt_sr // 100:
444
+ if upp_res not in self.resample_kernel:
445
+ self.resample_kernel[upp_res] = Resample(
446
+ orig_freq=upp_res,
447
+ new_freq=self.tgt_sr // 100,
448
+ dtype=torch.float32,
449
+ ).to(self.device)
450
+ infered_audio = self.resample_kernel[upp_res](
451
+ infered_audio[:, : return_length * upp_res]
452
+ )
453
+ t5 = ttime()
454
+ printt(
455
+ "Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
456
+ t2 - t1,
457
+ t3 - t2,
458
+ t4 - t3,
459
+ t5 - t4,
460
+ )
461
+ return infered_audio.squeeze()