Spaces:
No application file
No application file
_Noxty
commited on
Upload 14 files
Browse files- .env +9 -0
- .gitignore +28 -0
- __init__.py +0 -0
- config.json +1 -0
- config.py +254 -0
- download_models.py +79 -0
- infer-web.py +1619 -0
- infer_batch_rvc.py +72 -0
- infer_cli.py +67 -0
- modules.py +304 -0
- pipeline.py +457 -0
- pyproject.toml +64 -0
- requirements.txt +34 -0
- utils.py +33 -0
.env
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OPENBLAS_NUM_THREADS = 1
|
| 2 |
+
no_proxy = localhost, 127.0.0.1, ::1
|
| 3 |
+
|
| 4 |
+
# You can change the location of the model, etc. by changing here
|
| 5 |
+
weight_root = assets/weights
|
| 6 |
+
weight_uvr5_root = assets/uvr5_weights
|
| 7 |
+
index_root = logs
|
| 8 |
+
outside_index_root = assets/indices
|
| 9 |
+
rmvpe_root = assets/rmvpe
|
.gitignore
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
__pycache__
|
| 3 |
+
/TEMP
|
| 4 |
+
*.pyd
|
| 5 |
+
.venv
|
| 6 |
+
/opt
|
| 7 |
+
tools/aria2c/
|
| 8 |
+
tools/flag.txt
|
| 9 |
+
|
| 10 |
+
# Imported from huggingface.co/lj1995/VoiceConversionWebUI
|
| 11 |
+
/pretrained
|
| 12 |
+
/pretrained_v2
|
| 13 |
+
/uvr5_weights
|
| 14 |
+
hubert_base.pt
|
| 15 |
+
rmvpe.onnx
|
| 16 |
+
rmvpe.pt
|
| 17 |
+
|
| 18 |
+
# Generated by RVC
|
| 19 |
+
/logs
|
| 20 |
+
/weights
|
| 21 |
+
|
| 22 |
+
# To set a Python version for the project
|
| 23 |
+
.tool-versions
|
| 24 |
+
|
| 25 |
+
/runtime
|
| 26 |
+
/assets/weights/*
|
| 27 |
+
ffmpeg.*
|
| 28 |
+
ffprobe.*
|
__init__.py
ADDED
|
File without changes
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "formant": 0.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}
|
config.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import json
|
| 5 |
+
import shutil
|
| 6 |
+
from multiprocessing import cpu_count
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
| 12 |
+
|
| 13 |
+
if torch.xpu.is_available():
|
| 14 |
+
from infer.modules.ipex import ipex_init
|
| 15 |
+
|
| 16 |
+
ipex_init()
|
| 17 |
+
except Exception: # pylint: disable=broad-exception-caught
|
| 18 |
+
pass
|
| 19 |
+
import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
version_config_list = [
|
| 25 |
+
"v1/32k.json",
|
| 26 |
+
"v1/40k.json",
|
| 27 |
+
"v1/48k.json",
|
| 28 |
+
"v2/48k.json",
|
| 29 |
+
"v2/32k.json",
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def singleton_variable(func):
|
| 34 |
+
def wrapper(*args, **kwargs):
|
| 35 |
+
if not wrapper.instance:
|
| 36 |
+
wrapper.instance = func(*args, **kwargs)
|
| 37 |
+
return wrapper.instance
|
| 38 |
+
|
| 39 |
+
wrapper.instance = None
|
| 40 |
+
return wrapper
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@singleton_variable
|
| 44 |
+
class Config:
|
| 45 |
+
def __init__(self):
|
| 46 |
+
self.device = "cuda:0"
|
| 47 |
+
self.is_half = True
|
| 48 |
+
self.use_jit = False
|
| 49 |
+
self.n_cpu = 0
|
| 50 |
+
self.gpu_name = None
|
| 51 |
+
self.json_config = self.load_config_json()
|
| 52 |
+
self.gpu_mem = None
|
| 53 |
+
(
|
| 54 |
+
self.python_cmd,
|
| 55 |
+
self.listen_port,
|
| 56 |
+
self.iscolab,
|
| 57 |
+
self.noparallel,
|
| 58 |
+
self.noautoopen,
|
| 59 |
+
self.dml,
|
| 60 |
+
) = self.arg_parse()
|
| 61 |
+
self.instead = ""
|
| 62 |
+
self.preprocess_per = 3.7
|
| 63 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def load_config_json() -> dict:
|
| 67 |
+
d = {}
|
| 68 |
+
for config_file in version_config_list:
|
| 69 |
+
p = f"configs/inuse/{config_file}"
|
| 70 |
+
if not os.path.exists(p):
|
| 71 |
+
shutil.copy(f"configs/{config_file}", p)
|
| 72 |
+
with open(f"configs/inuse/{config_file}", "r") as f:
|
| 73 |
+
d[config_file] = json.load(f)
|
| 74 |
+
return d
|
| 75 |
+
|
| 76 |
+
@staticmethod
|
| 77 |
+
def arg_parse() -> tuple:
|
| 78 |
+
exe = sys.executable or "python"
|
| 79 |
+
parser = argparse.ArgumentParser()
|
| 80 |
+
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
| 81 |
+
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
| 82 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"--noparallel", action="store_true", help="Disable parallel processing"
|
| 85 |
+
)
|
| 86 |
+
parser.add_argument(
|
| 87 |
+
"--noautoopen",
|
| 88 |
+
action="store_true",
|
| 89 |
+
help="Do not open in browser automatically",
|
| 90 |
+
)
|
| 91 |
+
parser.add_argument(
|
| 92 |
+
"--dml",
|
| 93 |
+
action="store_true",
|
| 94 |
+
help="torch_dml",
|
| 95 |
+
)
|
| 96 |
+
cmd_opts = parser.parse_args()
|
| 97 |
+
|
| 98 |
+
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
| 99 |
+
|
| 100 |
+
return (
|
| 101 |
+
cmd_opts.pycmd,
|
| 102 |
+
cmd_opts.port,
|
| 103 |
+
cmd_opts.colab,
|
| 104 |
+
cmd_opts.noparallel,
|
| 105 |
+
cmd_opts.noautoopen,
|
| 106 |
+
cmd_opts.dml,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
| 110 |
+
# check `getattr` and try it for compatibility
|
| 111 |
+
@staticmethod
|
| 112 |
+
def has_mps() -> bool:
|
| 113 |
+
if not torch.backends.mps.is_available():
|
| 114 |
+
return False
|
| 115 |
+
try:
|
| 116 |
+
torch.zeros(1).to(torch.device("mps"))
|
| 117 |
+
return True
|
| 118 |
+
except Exception:
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
@staticmethod
|
| 122 |
+
def has_xpu() -> bool:
|
| 123 |
+
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
| 124 |
+
return True
|
| 125 |
+
else:
|
| 126 |
+
return False
|
| 127 |
+
|
| 128 |
+
def use_fp32_config(self):
|
| 129 |
+
for config_file in version_config_list:
|
| 130 |
+
self.json_config[config_file]["train"]["fp16_run"] = False
|
| 131 |
+
with open(f"configs/inuse/{config_file}", "r") as f:
|
| 132 |
+
strr = f.read().replace("true", "false")
|
| 133 |
+
with open(f"configs/inuse/{config_file}", "w") as f:
|
| 134 |
+
f.write(strr)
|
| 135 |
+
logger.info("overwrite " + config_file)
|
| 136 |
+
self.preprocess_per = 3.0
|
| 137 |
+
logger.info("overwrite preprocess_per to %d" % (self.preprocess_per))
|
| 138 |
+
|
| 139 |
+
def device_config(self) -> tuple:
|
| 140 |
+
if torch.cuda.is_available():
|
| 141 |
+
if self.has_xpu():
|
| 142 |
+
self.device = self.instead = "xpu:0"
|
| 143 |
+
self.is_half = True
|
| 144 |
+
i_device = int(self.device.split(":")[-1])
|
| 145 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
| 146 |
+
if (
|
| 147 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
| 148 |
+
or "P40" in self.gpu_name.upper()
|
| 149 |
+
or "P10" in self.gpu_name.upper()
|
| 150 |
+
or "1060" in self.gpu_name
|
| 151 |
+
or "1070" in self.gpu_name
|
| 152 |
+
or "1080" in self.gpu_name
|
| 153 |
+
):
|
| 154 |
+
logger.info("Found GPU %s, force to fp32", self.gpu_name)
|
| 155 |
+
self.is_half = False
|
| 156 |
+
self.use_fp32_config()
|
| 157 |
+
else:
|
| 158 |
+
logger.info("Found GPU %s", self.gpu_name)
|
| 159 |
+
self.gpu_mem = int(
|
| 160 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
| 161 |
+
/ 1024
|
| 162 |
+
/ 1024
|
| 163 |
+
/ 1024
|
| 164 |
+
+ 0.4
|
| 165 |
+
)
|
| 166 |
+
if self.gpu_mem <= 4:
|
| 167 |
+
self.preprocess_per = 3.0
|
| 168 |
+
elif self.has_mps():
|
| 169 |
+
logger.info("No supported Nvidia GPU found")
|
| 170 |
+
self.device = self.instead = "mps"
|
| 171 |
+
self.is_half = False
|
| 172 |
+
self.use_fp32_config()
|
| 173 |
+
else:
|
| 174 |
+
logger.info("No supported Nvidia GPU found")
|
| 175 |
+
self.device = self.instead = "cpu"
|
| 176 |
+
self.is_half = False
|
| 177 |
+
self.use_fp32_config()
|
| 178 |
+
|
| 179 |
+
if self.n_cpu == 0:
|
| 180 |
+
self.n_cpu = cpu_count()
|
| 181 |
+
|
| 182 |
+
if self.is_half:
|
| 183 |
+
# 6G显存配置
|
| 184 |
+
x_pad = 3
|
| 185 |
+
x_query = 10
|
| 186 |
+
x_center = 60
|
| 187 |
+
x_max = 65
|
| 188 |
+
else:
|
| 189 |
+
# 5G显存配置
|
| 190 |
+
x_pad = 1
|
| 191 |
+
x_query = 6
|
| 192 |
+
x_center = 38
|
| 193 |
+
x_max = 41
|
| 194 |
+
|
| 195 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
| 196 |
+
x_pad = 1
|
| 197 |
+
x_query = 5
|
| 198 |
+
x_center = 30
|
| 199 |
+
x_max = 32
|
| 200 |
+
if self.dml:
|
| 201 |
+
logger.info("Use DirectML instead")
|
| 202 |
+
if (
|
| 203 |
+
os.path.exists(
|
| 204 |
+
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
| 205 |
+
)
|
| 206 |
+
== False
|
| 207 |
+
):
|
| 208 |
+
try:
|
| 209 |
+
os.rename(
|
| 210 |
+
"runtime\Lib\site-packages\onnxruntime",
|
| 211 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
| 212 |
+
)
|
| 213 |
+
except:
|
| 214 |
+
pass
|
| 215 |
+
try:
|
| 216 |
+
os.rename(
|
| 217 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
| 218 |
+
"runtime\Lib\site-packages\onnxruntime",
|
| 219 |
+
)
|
| 220 |
+
except:
|
| 221 |
+
pass
|
| 222 |
+
# if self.device != "cpu":
|
| 223 |
+
import torch_directml
|
| 224 |
+
|
| 225 |
+
self.device = torch_directml.device(torch_directml.default_device())
|
| 226 |
+
self.is_half = False
|
| 227 |
+
else:
|
| 228 |
+
if self.instead:
|
| 229 |
+
logger.info(f"Use {self.instead} instead")
|
| 230 |
+
if (
|
| 231 |
+
os.path.exists(
|
| 232 |
+
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
| 233 |
+
)
|
| 234 |
+
== False
|
| 235 |
+
):
|
| 236 |
+
try:
|
| 237 |
+
os.rename(
|
| 238 |
+
"runtime\Lib\site-packages\onnxruntime",
|
| 239 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
| 240 |
+
)
|
| 241 |
+
except:
|
| 242 |
+
pass
|
| 243 |
+
try:
|
| 244 |
+
os.rename(
|
| 245 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
| 246 |
+
"runtime\Lib\site-packages\onnxruntime",
|
| 247 |
+
)
|
| 248 |
+
except:
|
| 249 |
+
pass
|
| 250 |
+
logger.info(
|
| 251 |
+
"Half-precision floating-point: %s, device: %s"
|
| 252 |
+
% (self.is_half, self.device)
|
| 253 |
+
)
|
| 254 |
+
return x_pad, x_query, x_center, x_max
|
download_models.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
RVC_DOWNLOAD_LINK = "https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/"
|
| 6 |
+
|
| 7 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def dl_model(link, model_name, dir_name):
|
| 11 |
+
with requests.get(f"{link}{model_name}") as r:
|
| 12 |
+
r.raise_for_status()
|
| 13 |
+
os.makedirs(os.path.dirname(dir_name / model_name), exist_ok=True)
|
| 14 |
+
with open(dir_name / model_name, "wb") as f:
|
| 15 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 16 |
+
f.write(chunk)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
if __name__ == "__main__":
|
| 20 |
+
print("Downloading hubert_base.pt...")
|
| 21 |
+
dl_model(RVC_DOWNLOAD_LINK, "hubert_base.pt", BASE_DIR / "assets/hubert")
|
| 22 |
+
print("Downloading rmvpe.pt...")
|
| 23 |
+
dl_model(RVC_DOWNLOAD_LINK, "rmvpe.pt", BASE_DIR / "assets/rmvpe")
|
| 24 |
+
print("Downloading vocals.onnx...")
|
| 25 |
+
dl_model(
|
| 26 |
+
RVC_DOWNLOAD_LINK + "uvr5_weights/onnx_dereverb_By_FoxJoy/",
|
| 27 |
+
"vocals.onnx",
|
| 28 |
+
BASE_DIR / "assets/uvr5_weights/onnx_dereverb_By_FoxJoy",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
rvc_models_dir = BASE_DIR / "assets/pretrained"
|
| 32 |
+
|
| 33 |
+
print("Downloading pretrained models:")
|
| 34 |
+
|
| 35 |
+
model_names = [
|
| 36 |
+
"D32k.pth",
|
| 37 |
+
"D40k.pth",
|
| 38 |
+
"D48k.pth",
|
| 39 |
+
"G32k.pth",
|
| 40 |
+
"G40k.pth",
|
| 41 |
+
"G48k.pth",
|
| 42 |
+
"f0D32k.pth",
|
| 43 |
+
"f0D40k.pth",
|
| 44 |
+
"f0D48k.pth",
|
| 45 |
+
"f0G32k.pth",
|
| 46 |
+
"f0G40k.pth",
|
| 47 |
+
"f0G48k.pth",
|
| 48 |
+
]
|
| 49 |
+
for model in model_names:
|
| 50 |
+
print(f"Downloading {model}...")
|
| 51 |
+
dl_model(RVC_DOWNLOAD_LINK + "pretrained/", model, rvc_models_dir)
|
| 52 |
+
|
| 53 |
+
rvc_models_dir = BASE_DIR / "assets/pretrained_v2"
|
| 54 |
+
|
| 55 |
+
print("Downloading pretrained models v2:")
|
| 56 |
+
|
| 57 |
+
for model in model_names:
|
| 58 |
+
print(f"Downloading {model}...")
|
| 59 |
+
dl_model(RVC_DOWNLOAD_LINK + "pretrained_v2/", model, rvc_models_dir)
|
| 60 |
+
|
| 61 |
+
print("Downloading uvr5_weights:")
|
| 62 |
+
|
| 63 |
+
rvc_models_dir = BASE_DIR / "assets/uvr5_weights"
|
| 64 |
+
|
| 65 |
+
model_names = [
|
| 66 |
+
"HP2-%E4%BA%BA%E5%A3%B0vocals%2B%E9%9D%9E%E4%BA%BA%E5%A3%B0instrumentals.pth",
|
| 67 |
+
"HP2_all_vocals.pth",
|
| 68 |
+
"HP3_all_vocals.pth",
|
| 69 |
+
"HP5-%E4%B8%BB%E6%97%8B%E5%BE%8B%E4%BA%BA%E5%A3%B0vocals%2B%E5%85%B6%E4%BB%96instrumentals.pth",
|
| 70 |
+
"HP5_only_main_vocal.pth",
|
| 71 |
+
"VR-DeEchoAggressive.pth",
|
| 72 |
+
"VR-DeEchoDeReverb.pth",
|
| 73 |
+
"VR-DeEchoNormal.pth",
|
| 74 |
+
]
|
| 75 |
+
for model in model_names:
|
| 76 |
+
print(f"Downloading {model}...")
|
| 77 |
+
dl_model(RVC_DOWNLOAD_LINK + "uvr5_weights/", model, rvc_models_dir)
|
| 78 |
+
|
| 79 |
+
print("All models downloaded!")
|
infer-web.py
ADDED
|
@@ -0,0 +1,1619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
now_dir = os.getcwd()
|
| 6 |
+
sys.path.append(now_dir)
|
| 7 |
+
load_dotenv()
|
| 8 |
+
from infer.modules.vc.modules import VC
|
| 9 |
+
from infer.modules.uvr5.modules import uvr
|
| 10 |
+
from infer.lib.train.process_ckpt import (
|
| 11 |
+
change_info,
|
| 12 |
+
extract_small_model,
|
| 13 |
+
merge,
|
| 14 |
+
show_info,
|
| 15 |
+
)
|
| 16 |
+
from i18n.i18n import I18nAuto
|
| 17 |
+
from configs.config import Config
|
| 18 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 19 |
+
import torch, platform
|
| 20 |
+
import numpy as np
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import faiss
|
| 23 |
+
import fairseq
|
| 24 |
+
import pathlib
|
| 25 |
+
import json
|
| 26 |
+
from time import sleep
|
| 27 |
+
from subprocess import Popen
|
| 28 |
+
from random import shuffle
|
| 29 |
+
import warnings
|
| 30 |
+
import traceback
|
| 31 |
+
import threading
|
| 32 |
+
import shutil
|
| 33 |
+
import logging
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 37 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 38 |
+
|
| 39 |
+
logger = logging.getLogger(__name__)
|
| 40 |
+
|
| 41 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 42 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 43 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
| 44 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
| 45 |
+
os.makedirs(tmp, exist_ok=True)
|
| 46 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
| 47 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
| 48 |
+
os.environ["TEMP"] = tmp
|
| 49 |
+
warnings.filterwarnings("ignore")
|
| 50 |
+
torch.manual_seed(114514)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
config = Config()
|
| 54 |
+
vc = VC(config)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if config.dml == True:
|
| 58 |
+
|
| 59 |
+
def forward_dml(ctx, x, scale):
|
| 60 |
+
ctx.scale = scale
|
| 61 |
+
res = x.clone().detach()
|
| 62 |
+
return res
|
| 63 |
+
|
| 64 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
| 65 |
+
i18n = I18nAuto()
|
| 66 |
+
logger.info(i18n)
|
| 67 |
+
# 判断是否有能用来训练和加速推理的N卡
|
| 68 |
+
ngpu = torch.cuda.device_count()
|
| 69 |
+
gpu_infos = []
|
| 70 |
+
mem = []
|
| 71 |
+
if_gpu_ok = False
|
| 72 |
+
|
| 73 |
+
if torch.cuda.is_available() or ngpu != 0:
|
| 74 |
+
for i in range(ngpu):
|
| 75 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 76 |
+
if any(
|
| 77 |
+
value in gpu_name.upper()
|
| 78 |
+
for value in [
|
| 79 |
+
"10",
|
| 80 |
+
"16",
|
| 81 |
+
"20",
|
| 82 |
+
"30",
|
| 83 |
+
"40",
|
| 84 |
+
"A2",
|
| 85 |
+
"A3",
|
| 86 |
+
"A4",
|
| 87 |
+
"P4",
|
| 88 |
+
"A50",
|
| 89 |
+
"500",
|
| 90 |
+
"A60",
|
| 91 |
+
"70",
|
| 92 |
+
"80",
|
| 93 |
+
"90",
|
| 94 |
+
"M4",
|
| 95 |
+
"T4",
|
| 96 |
+
"TITAN",
|
| 97 |
+
"4060",
|
| 98 |
+
"L",
|
| 99 |
+
"6000",
|
| 100 |
+
]
|
| 101 |
+
):
|
| 102 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
| 103 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
| 104 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
| 105 |
+
mem.append(
|
| 106 |
+
int(
|
| 107 |
+
torch.cuda.get_device_properties(i).total_memory
|
| 108 |
+
/ 1024
|
| 109 |
+
/ 1024
|
| 110 |
+
/ 1024
|
| 111 |
+
+ 0.4
|
| 112 |
+
)
|
| 113 |
+
)
|
| 114 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
| 115 |
+
gpu_info = "\n".join(gpu_infos)
|
| 116 |
+
default_batch_size = min(mem) // 2
|
| 117 |
+
else:
|
| 118 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
| 119 |
+
default_batch_size = 1
|
| 120 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
| 124 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
| 125 |
+
|
| 126 |
+
def __init__(self, **kwargs):
|
| 127 |
+
super().__init__(variant="tool", **kwargs)
|
| 128 |
+
|
| 129 |
+
def get_block_name(self):
|
| 130 |
+
return "button"
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
weight_root = os.getenv("weight_root")
|
| 134 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
| 135 |
+
index_root = os.getenv("index_root")
|
| 136 |
+
outside_index_root = os.getenv("outside_index_root")
|
| 137 |
+
|
| 138 |
+
names = []
|
| 139 |
+
for name in os.listdir(weight_root):
|
| 140 |
+
if name.endswith(".pth"):
|
| 141 |
+
names.append(name)
|
| 142 |
+
index_paths = []
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def lookup_indices(index_root):
|
| 146 |
+
global index_paths
|
| 147 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 148 |
+
for name in files:
|
| 149 |
+
if name.endswith(".index") and "trained" not in name:
|
| 150 |
+
index_paths.append("%s/%s" % (root, name))
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
lookup_indices(index_root)
|
| 154 |
+
lookup_indices(outside_index_root)
|
| 155 |
+
uvr5_names = []
|
| 156 |
+
for name in os.listdir(weight_uvr5_root):
|
| 157 |
+
if name.endswith(".pth") or "onnx" in name:
|
| 158 |
+
uvr5_names.append(name.replace(".pth", ""))
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def change_choices():
|
| 162 |
+
names = []
|
| 163 |
+
for name in os.listdir(weight_root):
|
| 164 |
+
if name.endswith(".pth"):
|
| 165 |
+
names.append(name)
|
| 166 |
+
index_paths = []
|
| 167 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 168 |
+
for name in files:
|
| 169 |
+
if name.endswith(".index") and "trained" not in name:
|
| 170 |
+
index_paths.append("%s/%s" % (root, name))
|
| 171 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
| 172 |
+
"choices": sorted(index_paths),
|
| 173 |
+
"__type__": "update",
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def clean():
|
| 178 |
+
return {"value": "", "__type__": "update"}
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def export_onnx(ModelPath, ExportedPath):
|
| 182 |
+
from infer.modules.onnx.export import export_onnx as eo
|
| 183 |
+
|
| 184 |
+
eo(ModelPath, ExportedPath)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
sr_dict = {
|
| 188 |
+
"32k": 32000,
|
| 189 |
+
"40k": 40000,
|
| 190 |
+
"48k": 48000,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def if_done(done, p):
|
| 195 |
+
while 1:
|
| 196 |
+
if p.poll() is None:
|
| 197 |
+
sleep(0.5)
|
| 198 |
+
else:
|
| 199 |
+
break
|
| 200 |
+
done[0] = True
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def if_done_multi(done, ps):
|
| 204 |
+
while 1:
|
| 205 |
+
# poll==None代表进程未结束
|
| 206 |
+
# 只要有一个进程未结束都不停
|
| 207 |
+
flag = 1
|
| 208 |
+
for p in ps:
|
| 209 |
+
if p.poll() is None:
|
| 210 |
+
flag = 0
|
| 211 |
+
sleep(0.5)
|
| 212 |
+
break
|
| 213 |
+
if flag == 1:
|
| 214 |
+
break
|
| 215 |
+
done[0] = True
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
| 219 |
+
sr = sr_dict[sr]
|
| 220 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 221 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
| 222 |
+
f.close()
|
| 223 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
| 224 |
+
config.python_cmd,
|
| 225 |
+
trainset_dir,
|
| 226 |
+
sr,
|
| 227 |
+
n_p,
|
| 228 |
+
now_dir,
|
| 229 |
+
exp_dir,
|
| 230 |
+
config.noparallel,
|
| 231 |
+
config.preprocess_per,
|
| 232 |
+
)
|
| 233 |
+
logger.info("Execute: " + cmd)
|
| 234 |
+
# , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
| 235 |
+
p = Popen(cmd, shell=True)
|
| 236 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 237 |
+
done = [False]
|
| 238 |
+
threading.Thread(
|
| 239 |
+
target=if_done,
|
| 240 |
+
args=(
|
| 241 |
+
done,
|
| 242 |
+
p,
|
| 243 |
+
),
|
| 244 |
+
).start()
|
| 245 |
+
while 1:
|
| 246 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 247 |
+
yield (f.read())
|
| 248 |
+
sleep(1)
|
| 249 |
+
if done[0]:
|
| 250 |
+
break
|
| 251 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 252 |
+
log = f.read()
|
| 253 |
+
logger.info(log)
|
| 254 |
+
yield log
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
| 258 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
| 259 |
+
gpus = gpus.split("-")
|
| 260 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 261 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
| 262 |
+
f.close()
|
| 263 |
+
if if_f0:
|
| 264 |
+
if f0method != "rmvpe_gpu":
|
| 265 |
+
cmd = (
|
| 266 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
| 267 |
+
% (
|
| 268 |
+
config.python_cmd,
|
| 269 |
+
now_dir,
|
| 270 |
+
exp_dir,
|
| 271 |
+
n_p,
|
| 272 |
+
f0method,
|
| 273 |
+
)
|
| 274 |
+
)
|
| 275 |
+
logger.info("Execute: " + cmd)
|
| 276 |
+
p = Popen(
|
| 277 |
+
cmd, shell=True, cwd=now_dir
|
| 278 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
| 279 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 280 |
+
done = [False]
|
| 281 |
+
threading.Thread(
|
| 282 |
+
target=if_done,
|
| 283 |
+
args=(
|
| 284 |
+
done,
|
| 285 |
+
p,
|
| 286 |
+
),
|
| 287 |
+
).start()
|
| 288 |
+
else:
|
| 289 |
+
if gpus_rmvpe != "-":
|
| 290 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
| 291 |
+
leng = len(gpus_rmvpe)
|
| 292 |
+
ps = []
|
| 293 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
| 294 |
+
cmd = (
|
| 295 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
| 296 |
+
% (
|
| 297 |
+
config.python_cmd,
|
| 298 |
+
leng,
|
| 299 |
+
idx,
|
| 300 |
+
n_g,
|
| 301 |
+
now_dir,
|
| 302 |
+
exp_dir,
|
| 303 |
+
config.is_half,
|
| 304 |
+
)
|
| 305 |
+
)
|
| 306 |
+
logger.info("Execute: " + cmd)
|
| 307 |
+
p = Popen(
|
| 308 |
+
cmd, shell=True, cwd=now_dir
|
| 309 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 310 |
+
ps.append(p)
|
| 311 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 312 |
+
done = [False]
|
| 313 |
+
threading.Thread(
|
| 314 |
+
target=if_done_multi, #
|
| 315 |
+
args=(
|
| 316 |
+
done,
|
| 317 |
+
ps,
|
| 318 |
+
),
|
| 319 |
+
).start()
|
| 320 |
+
else:
|
| 321 |
+
cmd = (
|
| 322 |
+
config.python_cmd
|
| 323 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
| 324 |
+
% (
|
| 325 |
+
now_dir,
|
| 326 |
+
exp_dir,
|
| 327 |
+
)
|
| 328 |
+
)
|
| 329 |
+
logger.info("Execute: " + cmd)
|
| 330 |
+
p = Popen(
|
| 331 |
+
cmd, shell=True, cwd=now_dir
|
| 332 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 333 |
+
p.wait()
|
| 334 |
+
done = [True]
|
| 335 |
+
while 1:
|
| 336 |
+
with open(
|
| 337 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
| 338 |
+
) as f:
|
| 339 |
+
yield (f.read())
|
| 340 |
+
sleep(1)
|
| 341 |
+
if done[0]:
|
| 342 |
+
break
|
| 343 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 344 |
+
log = f.read()
|
| 345 |
+
logger.info(log)
|
| 346 |
+
yield log
|
| 347 |
+
# 对不同part分别开多进程
|
| 348 |
+
"""
|
| 349 |
+
n_part=int(sys.argv[1])
|
| 350 |
+
i_part=int(sys.argv[2])
|
| 351 |
+
i_gpu=sys.argv[3]
|
| 352 |
+
exp_dir=sys.argv[4]
|
| 353 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
| 354 |
+
"""
|
| 355 |
+
leng = len(gpus)
|
| 356 |
+
ps = []
|
| 357 |
+
for idx, n_g in enumerate(gpus):
|
| 358 |
+
cmd = (
|
| 359 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s'
|
| 360 |
+
% (
|
| 361 |
+
config.python_cmd,
|
| 362 |
+
config.device,
|
| 363 |
+
leng,
|
| 364 |
+
idx,
|
| 365 |
+
n_g,
|
| 366 |
+
now_dir,
|
| 367 |
+
exp_dir,
|
| 368 |
+
version19,
|
| 369 |
+
config.is_half,
|
| 370 |
+
)
|
| 371 |
+
)
|
| 372 |
+
logger.info("Execute: " + cmd)
|
| 373 |
+
p = Popen(
|
| 374 |
+
cmd, shell=True, cwd=now_dir
|
| 375 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 376 |
+
ps.append(p)
|
| 377 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 378 |
+
done = [False]
|
| 379 |
+
threading.Thread(
|
| 380 |
+
target=if_done_multi,
|
| 381 |
+
args=(
|
| 382 |
+
done,
|
| 383 |
+
ps,
|
| 384 |
+
),
|
| 385 |
+
).start()
|
| 386 |
+
while 1:
|
| 387 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 388 |
+
yield (f.read())
|
| 389 |
+
sleep(1)
|
| 390 |
+
if done[0]:
|
| 391 |
+
break
|
| 392 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 393 |
+
log = f.read()
|
| 394 |
+
logger.info(log)
|
| 395 |
+
yield log
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
| 399 |
+
if_pretrained_generator_exist = os.access(
|
| 400 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 401 |
+
)
|
| 402 |
+
if_pretrained_discriminator_exist = os.access(
|
| 403 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 404 |
+
)
|
| 405 |
+
if not if_pretrained_generator_exist:
|
| 406 |
+
logger.warning(
|
| 407 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
| 408 |
+
path_str,
|
| 409 |
+
f0_str,
|
| 410 |
+
sr2,
|
| 411 |
+
)
|
| 412 |
+
if not if_pretrained_discriminator_exist:
|
| 413 |
+
logger.warning(
|
| 414 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
| 415 |
+
path_str,
|
| 416 |
+
f0_str,
|
| 417 |
+
sr2,
|
| 418 |
+
)
|
| 419 |
+
return (
|
| 420 |
+
(
|
| 421 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
| 422 |
+
if if_pretrained_generator_exist
|
| 423 |
+
else ""
|
| 424 |
+
),
|
| 425 |
+
(
|
| 426 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
| 427 |
+
if if_pretrained_discriminator_exist
|
| 428 |
+
else ""
|
| 429 |
+
),
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def change_sr2(sr2, if_f0_3, version19):
|
| 434 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 435 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 436 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def change_version19(sr2, if_f0_3, version19):
|
| 440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 441 |
+
if sr2 == "32k" and version19 == "v1":
|
| 442 |
+
sr2 = "40k"
|
| 443 |
+
to_return_sr2 = (
|
| 444 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
| 445 |
+
if version19 == "v1"
|
| 446 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
| 447 |
+
)
|
| 448 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 449 |
+
return (
|
| 450 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
| 451 |
+
to_return_sr2,
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
| 456 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 457 |
+
return (
|
| 458 |
+
{"visible": if_f0_3, "__type__": "update"},
|
| 459 |
+
{"visible": if_f0_3, "__type__": "update"},
|
| 460 |
+
*get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
| 465 |
+
def click_train(
|
| 466 |
+
exp_dir1,
|
| 467 |
+
sr2,
|
| 468 |
+
if_f0_3,
|
| 469 |
+
spk_id5,
|
| 470 |
+
save_epoch10,
|
| 471 |
+
total_epoch11,
|
| 472 |
+
batch_size12,
|
| 473 |
+
if_save_latest13,
|
| 474 |
+
pretrained_G14,
|
| 475 |
+
pretrained_D15,
|
| 476 |
+
gpus16,
|
| 477 |
+
if_cache_gpu17,
|
| 478 |
+
if_save_every_weights18,
|
| 479 |
+
version19,
|
| 480 |
+
):
|
| 481 |
+
# 生成filelist
|
| 482 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 483 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 484 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
| 485 |
+
feature_dir = (
|
| 486 |
+
"%s/3_feature256" % (exp_dir)
|
| 487 |
+
if version19 == "v1"
|
| 488 |
+
else "%s/3_feature768" % (exp_dir)
|
| 489 |
+
)
|
| 490 |
+
if if_f0_3:
|
| 491 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
| 492 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
| 493 |
+
names = (
|
| 494 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 495 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 496 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 497 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 498 |
+
)
|
| 499 |
+
else:
|
| 500 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 501 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 502 |
+
)
|
| 503 |
+
opt = []
|
| 504 |
+
for name in names:
|
| 505 |
+
if if_f0_3:
|
| 506 |
+
opt.append(
|
| 507 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 508 |
+
% (
|
| 509 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 510 |
+
name,
|
| 511 |
+
feature_dir.replace("\\", "\\\\"),
|
| 512 |
+
name,
|
| 513 |
+
f0_dir.replace("\\", "\\\\"),
|
| 514 |
+
name,
|
| 515 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 516 |
+
name,
|
| 517 |
+
spk_id5,
|
| 518 |
+
)
|
| 519 |
+
)
|
| 520 |
+
else:
|
| 521 |
+
opt.append(
|
| 522 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 523 |
+
% (
|
| 524 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 525 |
+
name,
|
| 526 |
+
feature_dir.replace("\\", "\\\\"),
|
| 527 |
+
name,
|
| 528 |
+
spk_id5,
|
| 529 |
+
)
|
| 530 |
+
)
|
| 531 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 532 |
+
if if_f0_3:
|
| 533 |
+
for _ in range(2):
|
| 534 |
+
opt.append(
|
| 535 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 536 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 537 |
+
)
|
| 538 |
+
else:
|
| 539 |
+
for _ in range(2):
|
| 540 |
+
opt.append(
|
| 541 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 542 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 543 |
+
)
|
| 544 |
+
shuffle(opt)
|
| 545 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
| 546 |
+
f.write("\n".join(opt))
|
| 547 |
+
logger.debug("Write filelist done")
|
| 548 |
+
# 生成config#无需生成config
|
| 549 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
| 550 |
+
logger.info("Use gpus: %s", str(gpus16))
|
| 551 |
+
if pretrained_G14 == "":
|
| 552 |
+
logger.info("No pretrained Generator")
|
| 553 |
+
if pretrained_D15 == "":
|
| 554 |
+
logger.info("No pretrained Discriminator")
|
| 555 |
+
if version19 == "v1" or sr2 == "40k":
|
| 556 |
+
config_path = "v1/%s.json" % sr2
|
| 557 |
+
else:
|
| 558 |
+
config_path = "v2/%s.json" % sr2
|
| 559 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
| 560 |
+
if not pathlib.Path(config_save_path).exists():
|
| 561 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
| 562 |
+
json.dump(
|
| 563 |
+
config.json_config[config_path],
|
| 564 |
+
f,
|
| 565 |
+
ensure_ascii=False,
|
| 566 |
+
indent=4,
|
| 567 |
+
sort_keys=True,
|
| 568 |
+
)
|
| 569 |
+
f.write("\n")
|
| 570 |
+
if gpus16:
|
| 571 |
+
cmd = (
|
| 572 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 573 |
+
% (
|
| 574 |
+
config.python_cmd,
|
| 575 |
+
exp_dir1,
|
| 576 |
+
sr2,
|
| 577 |
+
1 if if_f0_3 else 0,
|
| 578 |
+
batch_size12,
|
| 579 |
+
gpus16,
|
| 580 |
+
total_epoch11,
|
| 581 |
+
save_epoch10,
|
| 582 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 583 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 584 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 585 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 586 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 587 |
+
version19,
|
| 588 |
+
)
|
| 589 |
+
)
|
| 590 |
+
else:
|
| 591 |
+
cmd = (
|
| 592 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 593 |
+
% (
|
| 594 |
+
config.python_cmd,
|
| 595 |
+
exp_dir1,
|
| 596 |
+
sr2,
|
| 597 |
+
1 if if_f0_3 else 0,
|
| 598 |
+
batch_size12,
|
| 599 |
+
total_epoch11,
|
| 600 |
+
save_epoch10,
|
| 601 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 602 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 603 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 604 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 605 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 606 |
+
version19,
|
| 607 |
+
)
|
| 608 |
+
)
|
| 609 |
+
logger.info("Execute: " + cmd)
|
| 610 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 611 |
+
p.wait()
|
| 612 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
# but4.click(train_index, [exp_dir1], info3)
|
| 616 |
+
def train_index(exp_dir1, version19):
|
| 617 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 618 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
| 619 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 620 |
+
feature_dir = (
|
| 621 |
+
"%s/3_feature256" % (exp_dir)
|
| 622 |
+
if version19 == "v1"
|
| 623 |
+
else "%s/3_feature768" % (exp_dir)
|
| 624 |
+
)
|
| 625 |
+
if not os.path.exists(feature_dir):
|
| 626 |
+
return "请先进行特征提取!"
|
| 627 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 628 |
+
if len(listdir_res) == 0:
|
| 629 |
+
return "请先进行特征提取!"
|
| 630 |
+
infos = []
|
| 631 |
+
npys = []
|
| 632 |
+
for name in sorted(listdir_res):
|
| 633 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 634 |
+
npys.append(phone)
|
| 635 |
+
big_npy = np.concatenate(npys, 0)
|
| 636 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 637 |
+
np.random.shuffle(big_npy_idx)
|
| 638 |
+
big_npy = big_npy[big_npy_idx]
|
| 639 |
+
if big_npy.shape[0] > 2e5:
|
| 640 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
| 641 |
+
yield "\n".join(infos)
|
| 642 |
+
try:
|
| 643 |
+
big_npy = (
|
| 644 |
+
MiniBatchKMeans(
|
| 645 |
+
n_clusters=10000,
|
| 646 |
+
verbose=True,
|
| 647 |
+
batch_size=256 * config.n_cpu,
|
| 648 |
+
compute_labels=False,
|
| 649 |
+
init="random",
|
| 650 |
+
)
|
| 651 |
+
.fit(big_npy)
|
| 652 |
+
.cluster_centers_
|
| 653 |
+
)
|
| 654 |
+
except:
|
| 655 |
+
info = traceback.format_exc()
|
| 656 |
+
logger.info(info)
|
| 657 |
+
infos.append(info)
|
| 658 |
+
yield "\n".join(infos)
|
| 659 |
+
|
| 660 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
| 661 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 662 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
| 663 |
+
yield "\n".join(infos)
|
| 664 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 665 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
| 666 |
+
infos.append("training")
|
| 667 |
+
yield "\n".join(infos)
|
| 668 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 669 |
+
index_ivf.nprobe = 1
|
| 670 |
+
index.train(big_npy)
|
| 671 |
+
faiss.write_index(
|
| 672 |
+
index,
|
| 673 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 674 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 675 |
+
)
|
| 676 |
+
infos.append("adding")
|
| 677 |
+
yield "\n".join(infos)
|
| 678 |
+
batch_size_add = 8192
|
| 679 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 680 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 681 |
+
faiss.write_index(
|
| 682 |
+
index,
|
| 683 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 684 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 685 |
+
)
|
| 686 |
+
infos.append(
|
| 687 |
+
"成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 688 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 689 |
+
)
|
| 690 |
+
try:
|
| 691 |
+
link = os.link if platform.system() == "Windows" else os.symlink
|
| 692 |
+
link(
|
| 693 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 694 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 695 |
+
"%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 696 |
+
% (
|
| 697 |
+
outside_index_root,
|
| 698 |
+
exp_dir1,
|
| 699 |
+
n_ivf,
|
| 700 |
+
index_ivf.nprobe,
|
| 701 |
+
exp_dir1,
|
| 702 |
+
version19,
|
| 703 |
+
),
|
| 704 |
+
)
|
| 705 |
+
infos.append("链接索引到外部-%s" % (outside_index_root))
|
| 706 |
+
except:
|
| 707 |
+
infos.append("链接索引到外部-%s失败" % (outside_index_root))
|
| 708 |
+
|
| 709 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 710 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
| 711 |
+
yield "\n".join(infos)
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
| 715 |
+
def train1key(
|
| 716 |
+
exp_dir1,
|
| 717 |
+
sr2,
|
| 718 |
+
if_f0_3,
|
| 719 |
+
trainset_dir4,
|
| 720 |
+
spk_id5,
|
| 721 |
+
np7,
|
| 722 |
+
f0method8,
|
| 723 |
+
save_epoch10,
|
| 724 |
+
total_epoch11,
|
| 725 |
+
batch_size12,
|
| 726 |
+
if_save_latest13,
|
| 727 |
+
pretrained_G14,
|
| 728 |
+
pretrained_D15,
|
| 729 |
+
gpus16,
|
| 730 |
+
if_cache_gpu17,
|
| 731 |
+
if_save_every_weights18,
|
| 732 |
+
version19,
|
| 733 |
+
gpus_rmvpe,
|
| 734 |
+
):
|
| 735 |
+
infos = []
|
| 736 |
+
|
| 737 |
+
def get_info_str(strr):
|
| 738 |
+
infos.append(strr)
|
| 739 |
+
return "\n".join(infos)
|
| 740 |
+
|
| 741 |
+
# step1:处理数据
|
| 742 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
| 743 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
| 744 |
+
|
| 745 |
+
# step2a:提取音高
|
| 746 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
| 747 |
+
[
|
| 748 |
+
get_info_str(_)
|
| 749 |
+
for _ in extract_f0_feature(
|
| 750 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
| 751 |
+
)
|
| 752 |
+
]
|
| 753 |
+
|
| 754 |
+
# step3a:训练模型
|
| 755 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
| 756 |
+
click_train(
|
| 757 |
+
exp_dir1,
|
| 758 |
+
sr2,
|
| 759 |
+
if_f0_3,
|
| 760 |
+
spk_id5,
|
| 761 |
+
save_epoch10,
|
| 762 |
+
total_epoch11,
|
| 763 |
+
batch_size12,
|
| 764 |
+
if_save_latest13,
|
| 765 |
+
pretrained_G14,
|
| 766 |
+
pretrained_D15,
|
| 767 |
+
gpus16,
|
| 768 |
+
if_cache_gpu17,
|
| 769 |
+
if_save_every_weights18,
|
| 770 |
+
version19,
|
| 771 |
+
)
|
| 772 |
+
yield get_info_str(
|
| 773 |
+
i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
# step3b:训练索引
|
| 777 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
| 778 |
+
yield get_info_str(i18n("全流程结束!"))
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
| 782 |
+
def change_info_(ckpt_path):
|
| 783 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
| 784 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 785 |
+
try:
|
| 786 |
+
with open(
|
| 787 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
| 788 |
+
) as f:
|
| 789 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
| 790 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
| 791 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
| 792 |
+
return sr, str(f0), version
|
| 793 |
+
except:
|
| 794 |
+
traceback.print_exc()
|
| 795 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
F0GPUVisible = config.dml == False
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
def change_f0_method(f0method8):
|
| 802 |
+
if f0method8 == "rmvpe_gpu":
|
| 803 |
+
visible = F0GPUVisible
|
| 804 |
+
else:
|
| 805 |
+
visible = False
|
| 806 |
+
return {"visible": visible, "__type__": "update"}
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
with gr.Blocks(title="RVC WebUI") as app:
|
| 810 |
+
gr.Markdown("## RVC WebUI")
|
| 811 |
+
gr.Markdown(
|
| 812 |
+
value=i18n(
|
| 813 |
+
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
| 814 |
+
)
|
| 815 |
+
)
|
| 816 |
+
with gr.Tabs():
|
| 817 |
+
with gr.TabItem(i18n("模型推理")):
|
| 818 |
+
with gr.Row():
|
| 819 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
| 820 |
+
with gr.Column():
|
| 821 |
+
refresh_button = gr.Button(
|
| 822 |
+
i18n("刷新音色列表和索引路径"), variant="primary"
|
| 823 |
+
)
|
| 824 |
+
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 825 |
+
spk_item = gr.Slider(
|
| 826 |
+
minimum=0,
|
| 827 |
+
maximum=2333,
|
| 828 |
+
step=1,
|
| 829 |
+
label=i18n("请选择说话人id"),
|
| 830 |
+
value=0,
|
| 831 |
+
visible=False,
|
| 832 |
+
interactive=True,
|
| 833 |
+
)
|
| 834 |
+
clean_button.click(
|
| 835 |
+
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
| 836 |
+
)
|
| 837 |
+
with gr.TabItem(i18n("单次推理")):
|
| 838 |
+
with gr.Group():
|
| 839 |
+
with gr.Row():
|
| 840 |
+
with gr.Column():
|
| 841 |
+
vc_transform0 = gr.Number(
|
| 842 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
| 843 |
+
value=0,
|
| 844 |
+
)
|
| 845 |
+
input_audio0 = gr.Textbox(
|
| 846 |
+
label=i18n(
|
| 847 |
+
"输入待处理音频文件路径(默认是正确格式示例)"
|
| 848 |
+
),
|
| 849 |
+
placeholder="C:\\Users\\Desktop\\audio_example.wav",
|
| 850 |
+
)
|
| 851 |
+
file_index1 = gr.Textbox(
|
| 852 |
+
label=i18n(
|
| 853 |
+
"特征检索库文件路径,为空则使用下拉的选择结果"
|
| 854 |
+
),
|
| 855 |
+
placeholder="C:\\Users\\Desktop\\model_example.index",
|
| 856 |
+
interactive=True,
|
| 857 |
+
)
|
| 858 |
+
file_index2 = gr.Dropdown(
|
| 859 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 860 |
+
choices=sorted(index_paths),
|
| 861 |
+
interactive=True,
|
| 862 |
+
)
|
| 863 |
+
f0method0 = gr.Radio(
|
| 864 |
+
label=i18n(
|
| 865 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 866 |
+
),
|
| 867 |
+
choices=(
|
| 868 |
+
["pm", "harvest", "crepe", "rmvpe"]
|
| 869 |
+
if config.dml == False
|
| 870 |
+
else ["pm", "harvest", "rmvpe"]
|
| 871 |
+
),
|
| 872 |
+
value="rmvpe",
|
| 873 |
+
interactive=True,
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
with gr.Column():
|
| 877 |
+
resample_sr0 = gr.Slider(
|
| 878 |
+
minimum=0,
|
| 879 |
+
maximum=48000,
|
| 880 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 881 |
+
value=0,
|
| 882 |
+
step=1,
|
| 883 |
+
interactive=True,
|
| 884 |
+
)
|
| 885 |
+
rms_mix_rate0 = gr.Slider(
|
| 886 |
+
minimum=0,
|
| 887 |
+
maximum=1,
|
| 888 |
+
label=i18n(
|
| 889 |
+
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
| 890 |
+
),
|
| 891 |
+
value=0.25,
|
| 892 |
+
interactive=True,
|
| 893 |
+
)
|
| 894 |
+
protect0 = gr.Slider(
|
| 895 |
+
minimum=0,
|
| 896 |
+
maximum=0.5,
|
| 897 |
+
label=i18n(
|
| 898 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 899 |
+
),
|
| 900 |
+
value=0.33,
|
| 901 |
+
step=0.01,
|
| 902 |
+
interactive=True,
|
| 903 |
+
)
|
| 904 |
+
filter_radius0 = gr.Slider(
|
| 905 |
+
minimum=0,
|
| 906 |
+
maximum=7,
|
| 907 |
+
label=i18n(
|
| 908 |
+
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
| 909 |
+
),
|
| 910 |
+
value=3,
|
| 911 |
+
step=1,
|
| 912 |
+
interactive=True,
|
| 913 |
+
)
|
| 914 |
+
index_rate1 = gr.Slider(
|
| 915 |
+
minimum=0,
|
| 916 |
+
maximum=1,
|
| 917 |
+
label=i18n("检索特征占比"),
|
| 918 |
+
value=0.75,
|
| 919 |
+
interactive=True,
|
| 920 |
+
)
|
| 921 |
+
f0_file = gr.File(
|
| 922 |
+
label=i18n(
|
| 923 |
+
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"
|
| 924 |
+
),
|
| 925 |
+
visible=False,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
refresh_button.click(
|
| 929 |
+
fn=change_choices,
|
| 930 |
+
inputs=[],
|
| 931 |
+
outputs=[sid0, file_index2],
|
| 932 |
+
api_name="infer_refresh",
|
| 933 |
+
)
|
| 934 |
+
# file_big_npy1 = gr.Textbox(
|
| 935 |
+
# label=i18n("特征文件路径"),
|
| 936 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 937 |
+
# interactive=True,
|
| 938 |
+
# )
|
| 939 |
+
with gr.Group():
|
| 940 |
+
with gr.Column():
|
| 941 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
| 942 |
+
with gr.Row():
|
| 943 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
| 944 |
+
vc_output2 = gr.Audio(
|
| 945 |
+
label=i18n("输出音频(右下角三个点,点了可以下载)")
|
| 946 |
+
)
|
| 947 |
+
|
| 948 |
+
but0.click(
|
| 949 |
+
vc.vc_single,
|
| 950 |
+
[
|
| 951 |
+
spk_item,
|
| 952 |
+
input_audio0,
|
| 953 |
+
vc_transform0,
|
| 954 |
+
f0_file,
|
| 955 |
+
f0method0,
|
| 956 |
+
file_index1,
|
| 957 |
+
file_index2,
|
| 958 |
+
# file_big_npy1,
|
| 959 |
+
index_rate1,
|
| 960 |
+
filter_radius0,
|
| 961 |
+
resample_sr0,
|
| 962 |
+
rms_mix_rate0,
|
| 963 |
+
protect0,
|
| 964 |
+
],
|
| 965 |
+
[vc_output1, vc_output2],
|
| 966 |
+
api_name="infer_convert",
|
| 967 |
+
)
|
| 968 |
+
with gr.TabItem(i18n("批量推理")):
|
| 969 |
+
gr.Markdown(
|
| 970 |
+
value=i18n(
|
| 971 |
+
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. "
|
| 972 |
+
)
|
| 973 |
+
)
|
| 974 |
+
with gr.Row():
|
| 975 |
+
with gr.Column():
|
| 976 |
+
vc_transform1 = gr.Number(
|
| 977 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
| 978 |
+
value=0,
|
| 979 |
+
)
|
| 980 |
+
opt_input = gr.Textbox(
|
| 981 |
+
label=i18n("指定输出文件夹"), value="opt"
|
| 982 |
+
)
|
| 983 |
+
file_index3 = gr.Textbox(
|
| 984 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 985 |
+
value="",
|
| 986 |
+
interactive=True,
|
| 987 |
+
)
|
| 988 |
+
file_index4 = gr.Dropdown(
|
| 989 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 990 |
+
choices=sorted(index_paths),
|
| 991 |
+
interactive=True,
|
| 992 |
+
)
|
| 993 |
+
f0method1 = gr.Radio(
|
| 994 |
+
label=i18n(
|
| 995 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 996 |
+
),
|
| 997 |
+
choices=(
|
| 998 |
+
["pm", "harvest", "crepe", "rmvpe"]
|
| 999 |
+
if config.dml == False
|
| 1000 |
+
else ["pm", "harvest", "rmvpe"]
|
| 1001 |
+
),
|
| 1002 |
+
value="rmvpe",
|
| 1003 |
+
interactive=True,
|
| 1004 |
+
)
|
| 1005 |
+
format1 = gr.Radio(
|
| 1006 |
+
label=i18n("导出文件格式"),
|
| 1007 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1008 |
+
value="wav",
|
| 1009 |
+
interactive=True,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
refresh_button.click(
|
| 1013 |
+
fn=lambda: change_choices()[1],
|
| 1014 |
+
inputs=[],
|
| 1015 |
+
outputs=file_index4,
|
| 1016 |
+
api_name="infer_refresh_batch",
|
| 1017 |
+
)
|
| 1018 |
+
# file_big_npy2 = gr.Textbox(
|
| 1019 |
+
# label=i18n("特征文件路径"),
|
| 1020 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1021 |
+
# interactive=True,
|
| 1022 |
+
# )
|
| 1023 |
+
|
| 1024 |
+
with gr.Column():
|
| 1025 |
+
resample_sr1 = gr.Slider(
|
| 1026 |
+
minimum=0,
|
| 1027 |
+
maximum=48000,
|
| 1028 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1029 |
+
value=0,
|
| 1030 |
+
step=1,
|
| 1031 |
+
interactive=True,
|
| 1032 |
+
)
|
| 1033 |
+
rms_mix_rate1 = gr.Slider(
|
| 1034 |
+
minimum=0,
|
| 1035 |
+
maximum=1,
|
| 1036 |
+
label=i18n(
|
| 1037 |
+
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
| 1038 |
+
),
|
| 1039 |
+
value=1,
|
| 1040 |
+
interactive=True,
|
| 1041 |
+
)
|
| 1042 |
+
protect1 = gr.Slider(
|
| 1043 |
+
minimum=0,
|
| 1044 |
+
maximum=0.5,
|
| 1045 |
+
label=i18n(
|
| 1046 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1047 |
+
),
|
| 1048 |
+
value=0.33,
|
| 1049 |
+
step=0.01,
|
| 1050 |
+
interactive=True,
|
| 1051 |
+
)
|
| 1052 |
+
filter_radius1 = gr.Slider(
|
| 1053 |
+
minimum=0,
|
| 1054 |
+
maximum=7,
|
| 1055 |
+
label=i18n(
|
| 1056 |
+
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
| 1057 |
+
),
|
| 1058 |
+
value=3,
|
| 1059 |
+
step=1,
|
| 1060 |
+
interactive=True,
|
| 1061 |
+
)
|
| 1062 |
+
index_rate2 = gr.Slider(
|
| 1063 |
+
minimum=0,
|
| 1064 |
+
maximum=1,
|
| 1065 |
+
label=i18n("检索特征占比"),
|
| 1066 |
+
value=1,
|
| 1067 |
+
interactive=True,
|
| 1068 |
+
)
|
| 1069 |
+
with gr.Row():
|
| 1070 |
+
dir_input = gr.Textbox(
|
| 1071 |
+
label=i18n(
|
| 1072 |
+
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"
|
| 1073 |
+
),
|
| 1074 |
+
placeholder="C:\\Users\\Desktop\\input_vocal_dir",
|
| 1075 |
+
)
|
| 1076 |
+
inputs = gr.File(
|
| 1077 |
+
file_count="multiple",
|
| 1078 |
+
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
| 1079 |
+
)
|
| 1080 |
+
|
| 1081 |
+
with gr.Row():
|
| 1082 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 1083 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 1084 |
+
|
| 1085 |
+
but1.click(
|
| 1086 |
+
vc.vc_multi,
|
| 1087 |
+
[
|
| 1088 |
+
spk_item,
|
| 1089 |
+
dir_input,
|
| 1090 |
+
opt_input,
|
| 1091 |
+
inputs,
|
| 1092 |
+
vc_transform1,
|
| 1093 |
+
f0method1,
|
| 1094 |
+
file_index3,
|
| 1095 |
+
file_index4,
|
| 1096 |
+
# file_big_npy2,
|
| 1097 |
+
index_rate2,
|
| 1098 |
+
filter_radius1,
|
| 1099 |
+
resample_sr1,
|
| 1100 |
+
rms_mix_rate1,
|
| 1101 |
+
protect1,
|
| 1102 |
+
format1,
|
| 1103 |
+
],
|
| 1104 |
+
[vc_output3],
|
| 1105 |
+
api_name="infer_convert_batch",
|
| 1106 |
+
)
|
| 1107 |
+
sid0.change(
|
| 1108 |
+
fn=vc.get_vc,
|
| 1109 |
+
inputs=[sid0, protect0, protect1],
|
| 1110 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
| 1111 |
+
api_name="infer_change_voice",
|
| 1112 |
+
)
|
| 1113 |
+
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
| 1114 |
+
with gr.Group():
|
| 1115 |
+
gr.Markdown(
|
| 1116 |
+
value=i18n(
|
| 1117 |
+
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
| 1118 |
+
)
|
| 1119 |
+
)
|
| 1120 |
+
with gr.Row():
|
| 1121 |
+
with gr.Column():
|
| 1122 |
+
dir_wav_input = gr.Textbox(
|
| 1123 |
+
label=i18n("输入待处理音频文件夹路径"),
|
| 1124 |
+
placeholder="C:\\Users\\Desktop\\todo-songs",
|
| 1125 |
+
)
|
| 1126 |
+
wav_inputs = gr.File(
|
| 1127 |
+
file_count="multiple",
|
| 1128 |
+
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
| 1129 |
+
)
|
| 1130 |
+
with gr.Column():
|
| 1131 |
+
model_choose = gr.Dropdown(
|
| 1132 |
+
label=i18n("模型"), choices=uvr5_names
|
| 1133 |
+
)
|
| 1134 |
+
agg = gr.Slider(
|
| 1135 |
+
minimum=0,
|
| 1136 |
+
maximum=20,
|
| 1137 |
+
step=1,
|
| 1138 |
+
label="人声提取激进程度",
|
| 1139 |
+
value=10,
|
| 1140 |
+
interactive=True,
|
| 1141 |
+
visible=False, # 先不开放调整
|
| 1142 |
+
)
|
| 1143 |
+
opt_vocal_root = gr.Textbox(
|
| 1144 |
+
label=i18n("指定输出主人声文件夹"), value="opt"
|
| 1145 |
+
)
|
| 1146 |
+
opt_ins_root = gr.Textbox(
|
| 1147 |
+
label=i18n("指定输出非主人声文件夹"), value="opt"
|
| 1148 |
+
)
|
| 1149 |
+
format0 = gr.Radio(
|
| 1150 |
+
label=i18n("导出文件格式"),
|
| 1151 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1152 |
+
value="flac",
|
| 1153 |
+
interactive=True,
|
| 1154 |
+
)
|
| 1155 |
+
but2 = gr.Button(i18n("转换"), variant="primary")
|
| 1156 |
+
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
| 1157 |
+
but2.click(
|
| 1158 |
+
uvr,
|
| 1159 |
+
[
|
| 1160 |
+
model_choose,
|
| 1161 |
+
dir_wav_input,
|
| 1162 |
+
opt_vocal_root,
|
| 1163 |
+
wav_inputs,
|
| 1164 |
+
opt_ins_root,
|
| 1165 |
+
agg,
|
| 1166 |
+
format0,
|
| 1167 |
+
],
|
| 1168 |
+
[vc_output4],
|
| 1169 |
+
api_name="uvr_convert",
|
| 1170 |
+
)
|
| 1171 |
+
with gr.TabItem(i18n("训练")):
|
| 1172 |
+
gr.Markdown(
|
| 1173 |
+
value=i18n(
|
| 1174 |
+
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
| 1175 |
+
)
|
| 1176 |
+
)
|
| 1177 |
+
with gr.Row():
|
| 1178 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
| 1179 |
+
sr2 = gr.Radio(
|
| 1180 |
+
label=i18n("目标采样率"),
|
| 1181 |
+
choices=["40k", "48k"],
|
| 1182 |
+
value="40k",
|
| 1183 |
+
interactive=True,
|
| 1184 |
+
)
|
| 1185 |
+
if_f0_3 = gr.Radio(
|
| 1186 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
| 1187 |
+
choices=[True, False],
|
| 1188 |
+
value=True,
|
| 1189 |
+
interactive=True,
|
| 1190 |
+
)
|
| 1191 |
+
version19 = gr.Radio(
|
| 1192 |
+
label=i18n("版本"),
|
| 1193 |
+
choices=["v1", "v2"],
|
| 1194 |
+
value="v2",
|
| 1195 |
+
interactive=True,
|
| 1196 |
+
visible=True,
|
| 1197 |
+
)
|
| 1198 |
+
np7 = gr.Slider(
|
| 1199 |
+
minimum=0,
|
| 1200 |
+
maximum=config.n_cpu,
|
| 1201 |
+
step=1,
|
| 1202 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
| 1203 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
| 1204 |
+
interactive=True,
|
| 1205 |
+
)
|
| 1206 |
+
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
| 1207 |
+
gr.Markdown(
|
| 1208 |
+
value=i18n(
|
| 1209 |
+
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
| 1210 |
+
)
|
| 1211 |
+
)
|
| 1212 |
+
with gr.Row():
|
| 1213 |
+
trainset_dir4 = gr.Textbox(
|
| 1214 |
+
label=i18n("输入训练文件夹路径"),
|
| 1215 |
+
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
|
| 1216 |
+
)
|
| 1217 |
+
spk_id5 = gr.Slider(
|
| 1218 |
+
minimum=0,
|
| 1219 |
+
maximum=4,
|
| 1220 |
+
step=1,
|
| 1221 |
+
label=i18n("请指定说话人id"),
|
| 1222 |
+
value=0,
|
| 1223 |
+
interactive=True,
|
| 1224 |
+
)
|
| 1225 |
+
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
| 1226 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
| 1227 |
+
but1.click(
|
| 1228 |
+
preprocess_dataset,
|
| 1229 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
| 1230 |
+
[info1],
|
| 1231 |
+
api_name="train_preprocess",
|
| 1232 |
+
)
|
| 1233 |
+
with gr.Group():
|
| 1234 |
+
gr.Markdown(
|
| 1235 |
+
value=i18n(
|
| 1236 |
+
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
|
| 1237 |
+
)
|
| 1238 |
+
)
|
| 1239 |
+
with gr.Row():
|
| 1240 |
+
with gr.Column():
|
| 1241 |
+
gpus6 = gr.Textbox(
|
| 1242 |
+
label=i18n(
|
| 1243 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
| 1244 |
+
),
|
| 1245 |
+
value=gpus,
|
| 1246 |
+
interactive=True,
|
| 1247 |
+
visible=F0GPUVisible,
|
| 1248 |
+
)
|
| 1249 |
+
gpu_info9 = gr.Textbox(
|
| 1250 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
| 1251 |
+
)
|
| 1252 |
+
with gr.Column():
|
| 1253 |
+
f0method8 = gr.Radio(
|
| 1254 |
+
label=i18n(
|
| 1255 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
| 1256 |
+
),
|
| 1257 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
| 1258 |
+
value="rmvpe_gpu",
|
| 1259 |
+
interactive=True,
|
| 1260 |
+
)
|
| 1261 |
+
gpus_rmvpe = gr.Textbox(
|
| 1262 |
+
label=i18n(
|
| 1263 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
| 1264 |
+
),
|
| 1265 |
+
value="%s-%s" % (gpus, gpus),
|
| 1266 |
+
interactive=True,
|
| 1267 |
+
visible=F0GPUVisible,
|
| 1268 |
+
)
|
| 1269 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
| 1270 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1271 |
+
f0method8.change(
|
| 1272 |
+
fn=change_f0_method,
|
| 1273 |
+
inputs=[f0method8],
|
| 1274 |
+
outputs=[gpus_rmvpe],
|
| 1275 |
+
)
|
| 1276 |
+
but2.click(
|
| 1277 |
+
extract_f0_feature,
|
| 1278 |
+
[
|
| 1279 |
+
gpus6,
|
| 1280 |
+
np7,
|
| 1281 |
+
f0method8,
|
| 1282 |
+
if_f0_3,
|
| 1283 |
+
exp_dir1,
|
| 1284 |
+
version19,
|
| 1285 |
+
gpus_rmvpe,
|
| 1286 |
+
],
|
| 1287 |
+
[info2],
|
| 1288 |
+
api_name="train_extract_f0_feature",
|
| 1289 |
+
)
|
| 1290 |
+
with gr.Group():
|
| 1291 |
+
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
| 1292 |
+
with gr.Row():
|
| 1293 |
+
save_epoch10 = gr.Slider(
|
| 1294 |
+
minimum=1,
|
| 1295 |
+
maximum=50,
|
| 1296 |
+
step=1,
|
| 1297 |
+
label=i18n("保存频率save_every_epoch"),
|
| 1298 |
+
value=5,
|
| 1299 |
+
interactive=True,
|
| 1300 |
+
)
|
| 1301 |
+
total_epoch11 = gr.Slider(
|
| 1302 |
+
minimum=2,
|
| 1303 |
+
maximum=1000,
|
| 1304 |
+
step=1,
|
| 1305 |
+
label=i18n("总训练轮数total_epoch"),
|
| 1306 |
+
value=20,
|
| 1307 |
+
interactive=True,
|
| 1308 |
+
)
|
| 1309 |
+
batch_size12 = gr.Slider(
|
| 1310 |
+
minimum=1,
|
| 1311 |
+
maximum=40,
|
| 1312 |
+
step=1,
|
| 1313 |
+
label=i18n("每张显卡的batch_size"),
|
| 1314 |
+
value=default_batch_size,
|
| 1315 |
+
interactive=True,
|
| 1316 |
+
)
|
| 1317 |
+
if_save_latest13 = gr.Radio(
|
| 1318 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
| 1319 |
+
choices=[i18n("是"), i18n("否")],
|
| 1320 |
+
value=i18n("否"),
|
| 1321 |
+
interactive=True,
|
| 1322 |
+
)
|
| 1323 |
+
if_cache_gpu17 = gr.Radio(
|
| 1324 |
+
label=i18n(
|
| 1325 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
| 1326 |
+
),
|
| 1327 |
+
choices=[i18n("是"), i18n("否")],
|
| 1328 |
+
value=i18n("否"),
|
| 1329 |
+
interactive=True,
|
| 1330 |
+
)
|
| 1331 |
+
if_save_every_weights18 = gr.Radio(
|
| 1332 |
+
label=i18n(
|
| 1333 |
+
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
| 1334 |
+
),
|
| 1335 |
+
choices=[i18n("是"), i18n("否")],
|
| 1336 |
+
value=i18n("否"),
|
| 1337 |
+
interactive=True,
|
| 1338 |
+
)
|
| 1339 |
+
with gr.Row():
|
| 1340 |
+
pretrained_G14 = gr.Textbox(
|
| 1341 |
+
label=i18n("加载预训练底模G路径"),
|
| 1342 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
| 1343 |
+
interactive=True,
|
| 1344 |
+
)
|
| 1345 |
+
pretrained_D15 = gr.Textbox(
|
| 1346 |
+
label=i18n("加载预训练底模D路径"),
|
| 1347 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
| 1348 |
+
interactive=True,
|
| 1349 |
+
)
|
| 1350 |
+
sr2.change(
|
| 1351 |
+
change_sr2,
|
| 1352 |
+
[sr2, if_f0_3, version19],
|
| 1353 |
+
[pretrained_G14, pretrained_D15],
|
| 1354 |
+
)
|
| 1355 |
+
version19.change(
|
| 1356 |
+
change_version19,
|
| 1357 |
+
[sr2, if_f0_3, version19],
|
| 1358 |
+
[pretrained_G14, pretrained_D15, sr2],
|
| 1359 |
+
)
|
| 1360 |
+
if_f0_3.change(
|
| 1361 |
+
change_f0,
|
| 1362 |
+
[if_f0_3, sr2, version19],
|
| 1363 |
+
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
|
| 1364 |
+
)
|
| 1365 |
+
gpus16 = gr.Textbox(
|
| 1366 |
+
label=i18n(
|
| 1367 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
| 1368 |
+
),
|
| 1369 |
+
value=gpus,
|
| 1370 |
+
interactive=True,
|
| 1371 |
+
)
|
| 1372 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
| 1373 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
| 1374 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
| 1375 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
| 1376 |
+
but3.click(
|
| 1377 |
+
click_train,
|
| 1378 |
+
[
|
| 1379 |
+
exp_dir1,
|
| 1380 |
+
sr2,
|
| 1381 |
+
if_f0_3,
|
| 1382 |
+
spk_id5,
|
| 1383 |
+
save_epoch10,
|
| 1384 |
+
total_epoch11,
|
| 1385 |
+
batch_size12,
|
| 1386 |
+
if_save_latest13,
|
| 1387 |
+
pretrained_G14,
|
| 1388 |
+
pretrained_D15,
|
| 1389 |
+
gpus16,
|
| 1390 |
+
if_cache_gpu17,
|
| 1391 |
+
if_save_every_weights18,
|
| 1392 |
+
version19,
|
| 1393 |
+
],
|
| 1394 |
+
info3,
|
| 1395 |
+
api_name="train_start",
|
| 1396 |
+
)
|
| 1397 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
| 1398 |
+
but5.click(
|
| 1399 |
+
train1key,
|
| 1400 |
+
[
|
| 1401 |
+
exp_dir1,
|
| 1402 |
+
sr2,
|
| 1403 |
+
if_f0_3,
|
| 1404 |
+
trainset_dir4,
|
| 1405 |
+
spk_id5,
|
| 1406 |
+
np7,
|
| 1407 |
+
f0method8,
|
| 1408 |
+
save_epoch10,
|
| 1409 |
+
total_epoch11,
|
| 1410 |
+
batch_size12,
|
| 1411 |
+
if_save_latest13,
|
| 1412 |
+
pretrained_G14,
|
| 1413 |
+
pretrained_D15,
|
| 1414 |
+
gpus16,
|
| 1415 |
+
if_cache_gpu17,
|
| 1416 |
+
if_save_every_weights18,
|
| 1417 |
+
version19,
|
| 1418 |
+
gpus_rmvpe,
|
| 1419 |
+
],
|
| 1420 |
+
info3,
|
| 1421 |
+
api_name="train_start_all",
|
| 1422 |
+
)
|
| 1423 |
+
|
| 1424 |
+
with gr.TabItem(i18n("ckpt处理")):
|
| 1425 |
+
with gr.Group():
|
| 1426 |
+
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
| 1427 |
+
with gr.Row():
|
| 1428 |
+
ckpt_a = gr.Textbox(
|
| 1429 |
+
label=i18n("A模型路径"), value="", interactive=True
|
| 1430 |
+
)
|
| 1431 |
+
ckpt_b = gr.Textbox(
|
| 1432 |
+
label=i18n("B模型路径"), value="", interactive=True
|
| 1433 |
+
)
|
| 1434 |
+
alpha_a = gr.Slider(
|
| 1435 |
+
minimum=0,
|
| 1436 |
+
maximum=1,
|
| 1437 |
+
label=i18n("A模型权重"),
|
| 1438 |
+
value=0.5,
|
| 1439 |
+
interactive=True,
|
| 1440 |
+
)
|
| 1441 |
+
with gr.Row():
|
| 1442 |
+
sr_ = gr.Radio(
|
| 1443 |
+
label=i18n("目标采样率"),
|
| 1444 |
+
choices=["40k", "48k"],
|
| 1445 |
+
value="40k",
|
| 1446 |
+
interactive=True,
|
| 1447 |
+
)
|
| 1448 |
+
if_f0_ = gr.Radio(
|
| 1449 |
+
label=i18n("模型是否带音高指导"),
|
| 1450 |
+
choices=[i18n("是"), i18n("否")],
|
| 1451 |
+
value=i18n("是"),
|
| 1452 |
+
interactive=True,
|
| 1453 |
+
)
|
| 1454 |
+
info__ = gr.Textbox(
|
| 1455 |
+
label=i18n("要置入的模型信息"),
|
| 1456 |
+
value="",
|
| 1457 |
+
max_lines=8,
|
| 1458 |
+
interactive=True,
|
| 1459 |
+
)
|
| 1460 |
+
name_to_save0 = gr.Textbox(
|
| 1461 |
+
label=i18n("保存的模型名不带后缀"),
|
| 1462 |
+
value="",
|
| 1463 |
+
max_lines=1,
|
| 1464 |
+
interactive=True,
|
| 1465 |
+
)
|
| 1466 |
+
version_2 = gr.Radio(
|
| 1467 |
+
label=i18n("模型版本型号"),
|
| 1468 |
+
choices=["v1", "v2"],
|
| 1469 |
+
value="v1",
|
| 1470 |
+
interactive=True,
|
| 1471 |
+
)
|
| 1472 |
+
with gr.Row():
|
| 1473 |
+
but6 = gr.Button(i18n("融合"), variant="primary")
|
| 1474 |
+
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1475 |
+
but6.click(
|
| 1476 |
+
merge,
|
| 1477 |
+
[
|
| 1478 |
+
ckpt_a,
|
| 1479 |
+
ckpt_b,
|
| 1480 |
+
alpha_a,
|
| 1481 |
+
sr_,
|
| 1482 |
+
if_f0_,
|
| 1483 |
+
info__,
|
| 1484 |
+
name_to_save0,
|
| 1485 |
+
version_2,
|
| 1486 |
+
],
|
| 1487 |
+
info4,
|
| 1488 |
+
api_name="ckpt_merge",
|
| 1489 |
+
) # def merge(path1,path2,alpha1,sr,f0,info):
|
| 1490 |
+
with gr.Group():
|
| 1491 |
+
gr.Markdown(
|
| 1492 |
+
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
|
| 1493 |
+
)
|
| 1494 |
+
with gr.Row():
|
| 1495 |
+
ckpt_path0 = gr.Textbox(
|
| 1496 |
+
label=i18n("模型路径"), value="", interactive=True
|
| 1497 |
+
)
|
| 1498 |
+
info_ = gr.Textbox(
|
| 1499 |
+
label=i18n("要改的模型信息"),
|
| 1500 |
+
value="",
|
| 1501 |
+
max_lines=8,
|
| 1502 |
+
interactive=True,
|
| 1503 |
+
)
|
| 1504 |
+
name_to_save1 = gr.Textbox(
|
| 1505 |
+
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
| 1506 |
+
value="",
|
| 1507 |
+
max_lines=8,
|
| 1508 |
+
interactive=True,
|
| 1509 |
+
)
|
| 1510 |
+
with gr.Row():
|
| 1511 |
+
but7 = gr.Button(i18n("修改"), variant="primary")
|
| 1512 |
+
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1513 |
+
but7.click(
|
| 1514 |
+
change_info,
|
| 1515 |
+
[ckpt_path0, info_, name_to_save1],
|
| 1516 |
+
info5,
|
| 1517 |
+
api_name="ckpt_modify",
|
| 1518 |
+
)
|
| 1519 |
+
with gr.Group():
|
| 1520 |
+
gr.Markdown(
|
| 1521 |
+
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
|
| 1522 |
+
)
|
| 1523 |
+
with gr.Row():
|
| 1524 |
+
ckpt_path1 = gr.Textbox(
|
| 1525 |
+
label=i18n("模型路径"), value="", interactive=True
|
| 1526 |
+
)
|
| 1527 |
+
but8 = gr.Button(i18n("查看"), variant="primary")
|
| 1528 |
+
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1529 |
+
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
|
| 1530 |
+
with gr.Group():
|
| 1531 |
+
gr.Markdown(
|
| 1532 |
+
value=i18n(
|
| 1533 |
+
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
| 1534 |
+
)
|
| 1535 |
+
)
|
| 1536 |
+
with gr.Row():
|
| 1537 |
+
ckpt_path2 = gr.Textbox(
|
| 1538 |
+
label=i18n("模型路径"),
|
| 1539 |
+
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
| 1540 |
+
interactive=True,
|
| 1541 |
+
)
|
| 1542 |
+
save_name = gr.Textbox(
|
| 1543 |
+
label=i18n("保存名"), value="", interactive=True
|
| 1544 |
+
)
|
| 1545 |
+
sr__ = gr.Radio(
|
| 1546 |
+
label=i18n("目标采样率"),
|
| 1547 |
+
choices=["32k", "40k", "48k"],
|
| 1548 |
+
value="40k",
|
| 1549 |
+
interactive=True,
|
| 1550 |
+
)
|
| 1551 |
+
if_f0__ = gr.Radio(
|
| 1552 |
+
label=i18n("模型是否带音高指导,1是0否"),
|
| 1553 |
+
choices=["1", "0"],
|
| 1554 |
+
value="1",
|
| 1555 |
+
interactive=True,
|
| 1556 |
+
)
|
| 1557 |
+
version_1 = gr.Radio(
|
| 1558 |
+
label=i18n("模型版本型号"),
|
| 1559 |
+
choices=["v1", "v2"],
|
| 1560 |
+
value="v2",
|
| 1561 |
+
interactive=True,
|
| 1562 |
+
)
|
| 1563 |
+
info___ = gr.Textbox(
|
| 1564 |
+
label=i18n("要置入的模型信息"),
|
| 1565 |
+
value="",
|
| 1566 |
+
max_lines=8,
|
| 1567 |
+
interactive=True,
|
| 1568 |
+
)
|
| 1569 |
+
but9 = gr.Button(i18n("提取"), variant="primary")
|
| 1570 |
+
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1571 |
+
ckpt_path2.change(
|
| 1572 |
+
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
| 1573 |
+
)
|
| 1574 |
+
but9.click(
|
| 1575 |
+
extract_small_model,
|
| 1576 |
+
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
| 1577 |
+
info7,
|
| 1578 |
+
api_name="ckpt_extract",
|
| 1579 |
+
)
|
| 1580 |
+
|
| 1581 |
+
with gr.TabItem(i18n("Onnx导出")):
|
| 1582 |
+
with gr.Row():
|
| 1583 |
+
ckpt_dir = gr.Textbox(
|
| 1584 |
+
label=i18n("RVC模型路径"), value="", interactive=True
|
| 1585 |
+
)
|
| 1586 |
+
with gr.Row():
|
| 1587 |
+
onnx_dir = gr.Textbox(
|
| 1588 |
+
label=i18n("Onnx输出路径"), value="", interactive=True
|
| 1589 |
+
)
|
| 1590 |
+
with gr.Row():
|
| 1591 |
+
infoOnnx = gr.Label(label="info")
|
| 1592 |
+
with gr.Row():
|
| 1593 |
+
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
| 1594 |
+
butOnnx.click(
|
| 1595 |
+
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
|
| 1596 |
+
)
|
| 1597 |
+
|
| 1598 |
+
tab_faq = i18n("常见问题解答")
|
| 1599 |
+
with gr.TabItem(tab_faq):
|
| 1600 |
+
try:
|
| 1601 |
+
if tab_faq == "常见问题解答":
|
| 1602 |
+
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
|
| 1603 |
+
info = f.read()
|
| 1604 |
+
else:
|
| 1605 |
+
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
|
| 1606 |
+
info = f.read()
|
| 1607 |
+
gr.Markdown(value=info)
|
| 1608 |
+
except:
|
| 1609 |
+
gr.Markdown(traceback.format_exc())
|
| 1610 |
+
|
| 1611 |
+
if config.iscolab:
|
| 1612 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
| 1613 |
+
else:
|
| 1614 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
| 1615 |
+
server_name="0.0.0.0",
|
| 1616 |
+
inbrowser=not config.noautoopen,
|
| 1617 |
+
server_port=config.listen_port,
|
| 1618 |
+
quiet=True,
|
| 1619 |
+
)
|
infer_batch_rvc.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
print("Command-line arguments:", sys.argv)
|
| 6 |
+
|
| 7 |
+
now_dir = os.getcwd()
|
| 8 |
+
sys.path.append(now_dir)
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
import tqdm as tq
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
from scipy.io import wavfile
|
| 14 |
+
|
| 15 |
+
from config import Config
|
| 16 |
+
from modules import VC
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def arg_parse() -> tuple:
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument("--f0up_key", type=int, default=0)
|
| 22 |
+
parser.add_argument("--input_path", type=str, help="input path")
|
| 23 |
+
parser.add_argument("--index_path", type=str, help="index path")
|
| 24 |
+
parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
|
| 25 |
+
parser.add_argument("--opt_path", type=str, help="opt path")
|
| 26 |
+
parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
|
| 27 |
+
parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
|
| 28 |
+
parser.add_argument("--device", type=str, help="device")
|
| 29 |
+
parser.add_argument("--is_half", type=bool, help="use half -> True")
|
| 30 |
+
parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
|
| 31 |
+
parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
|
| 32 |
+
parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
|
| 33 |
+
parser.add_argument("--protect", type=float, default=0.33, help="protect")
|
| 34 |
+
|
| 35 |
+
args = parser.parse_args()
|
| 36 |
+
sys.argv = sys.argv[:1]
|
| 37 |
+
|
| 38 |
+
return args
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def main():
|
| 42 |
+
load_dotenv()
|
| 43 |
+
args = arg_parse()
|
| 44 |
+
config = Config()
|
| 45 |
+
config.device = args.device if args.device else config.device
|
| 46 |
+
config.is_half = args.is_half if args.is_half else config.is_half
|
| 47 |
+
vc = VC(config)
|
| 48 |
+
vc.get_vc(args.model_name)
|
| 49 |
+
audios = os.listdir(args.input_path)
|
| 50 |
+
for file in tq.tqdm(audios):
|
| 51 |
+
if file.endswith(".wav"):
|
| 52 |
+
file_path = os.path.join(args.input_path, file)
|
| 53 |
+
_, wav_opt = vc.vc_single(
|
| 54 |
+
0,
|
| 55 |
+
file_path,
|
| 56 |
+
args.f0up_key,
|
| 57 |
+
None,
|
| 58 |
+
args.f0method,
|
| 59 |
+
args.index_path,
|
| 60 |
+
None,
|
| 61 |
+
args.index_rate,
|
| 62 |
+
args.filter_radius,
|
| 63 |
+
args.resample_sr,
|
| 64 |
+
args.rms_mix_rate,
|
| 65 |
+
args.protect,
|
| 66 |
+
)
|
| 67 |
+
out_path = os.path.join(args.opt_path, file)
|
| 68 |
+
wavfile.write(out_path, wav_opt[0], wav_opt[1])
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
main()
|
infer_cli.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
now_dir = os.getcwd()
|
| 6 |
+
sys.path.append(now_dir)
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from scipy.io import wavfile
|
| 9 |
+
|
| 10 |
+
from configs.config import Config
|
| 11 |
+
from infer.modules.vc.modules import VC
|
| 12 |
+
|
| 13 |
+
####
|
| 14 |
+
# USAGE
|
| 15 |
+
#
|
| 16 |
+
# In your Terminal or CMD or whatever
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def arg_parse() -> tuple:
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument("--f0up_key", type=int, default=0)
|
| 22 |
+
parser.add_argument("--input_path", type=str, help="input path")
|
| 23 |
+
parser.add_argument("--index_path", type=str, help="index path")
|
| 24 |
+
parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
|
| 25 |
+
parser.add_argument("--opt_path", type=str, help="opt path")
|
| 26 |
+
parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
|
| 27 |
+
parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
|
| 28 |
+
parser.add_argument("--device", type=str, help="device")
|
| 29 |
+
parser.add_argument("--is_half", type=bool, help="use half -> True")
|
| 30 |
+
parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
|
| 31 |
+
parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
|
| 32 |
+
parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
|
| 33 |
+
parser.add_argument("--protect", type=float, default=0.33, help="protect")
|
| 34 |
+
|
| 35 |
+
args = parser.parse_args()
|
| 36 |
+
sys.argv = sys.argv[:1]
|
| 37 |
+
|
| 38 |
+
return args
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def main():
|
| 42 |
+
load_dotenv()
|
| 43 |
+
args = arg_parse()
|
| 44 |
+
config = Config()
|
| 45 |
+
config.device = args.device if args.device else config.device
|
| 46 |
+
config.is_half = args.is_half if args.is_half else config.is_half
|
| 47 |
+
vc = VC(config)
|
| 48 |
+
vc.get_vc(args.model_name)
|
| 49 |
+
_, wav_opt = vc.vc_single(
|
| 50 |
+
0,
|
| 51 |
+
args.input_path,
|
| 52 |
+
args.f0up_key,
|
| 53 |
+
None,
|
| 54 |
+
args.f0method,
|
| 55 |
+
args.index_path,
|
| 56 |
+
None,
|
| 57 |
+
args.index_rate,
|
| 58 |
+
args.filter_radius,
|
| 59 |
+
args.resample_sr,
|
| 60 |
+
args.rms_mix_rate,
|
| 61 |
+
args.protect,
|
| 62 |
+
)
|
| 63 |
+
wavfile.write(args.opt_path, wav_opt[0], wav_opt[1])
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
main()
|
modules.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import traceback
|
| 2 |
+
import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.getLogger(__name__)
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
import torch
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
|
| 11 |
+
from infer.lib.audio import load_audio, wav2
|
| 12 |
+
from infer.lib.infer_pack.models import (
|
| 13 |
+
SynthesizerTrnMs256NSFsid,
|
| 14 |
+
SynthesizerTrnMs256NSFsid_nono,
|
| 15 |
+
SynthesizerTrnMs768NSFsid,
|
| 16 |
+
SynthesizerTrnMs768NSFsid_nono,
|
| 17 |
+
)
|
| 18 |
+
from infer.modules.vc.pipeline import Pipeline
|
| 19 |
+
from infer.modules.vc.utils import *
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class VC:
|
| 23 |
+
def __init__(self, config):
|
| 24 |
+
self.n_spk = None
|
| 25 |
+
self.tgt_sr = None
|
| 26 |
+
self.net_g = None
|
| 27 |
+
self.pipeline = None
|
| 28 |
+
self.cpt = None
|
| 29 |
+
self.version = None
|
| 30 |
+
self.if_f0 = None
|
| 31 |
+
self.version = None
|
| 32 |
+
self.hubert_model = None
|
| 33 |
+
|
| 34 |
+
self.config = config
|
| 35 |
+
|
| 36 |
+
def get_vc(self, sid, *to_return_protect):
|
| 37 |
+
logger.info("Get sid: " + sid)
|
| 38 |
+
|
| 39 |
+
to_return_protect0 = {
|
| 40 |
+
"visible": self.if_f0 != 0,
|
| 41 |
+
"value": (
|
| 42 |
+
to_return_protect[0] if self.if_f0 != 0 and to_return_protect else 0.5
|
| 43 |
+
),
|
| 44 |
+
"__type__": "update",
|
| 45 |
+
}
|
| 46 |
+
to_return_protect1 = {
|
| 47 |
+
"visible": self.if_f0 != 0,
|
| 48 |
+
"value": (
|
| 49 |
+
to_return_protect[1] if self.if_f0 != 0 and to_return_protect else 0.33
|
| 50 |
+
),
|
| 51 |
+
"__type__": "update",
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
if sid == "" or sid == []:
|
| 55 |
+
if (
|
| 56 |
+
self.hubert_model is not None
|
| 57 |
+
): # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
| 58 |
+
logger.info("Clean model cache")
|
| 59 |
+
del (self.net_g, self.n_spk, self.hubert_model, self.tgt_sr) # ,cpt
|
| 60 |
+
self.hubert_model = self.net_g = self.n_spk = self.hubert_model = (
|
| 61 |
+
self.tgt_sr
|
| 62 |
+
) = None
|
| 63 |
+
if torch.cuda.is_available():
|
| 64 |
+
torch.cuda.empty_cache()
|
| 65 |
+
###楼下不这么折腾清理不干净
|
| 66 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
| 67 |
+
self.version = self.cpt.get("version", "v1")
|
| 68 |
+
if self.version == "v1":
|
| 69 |
+
if self.if_f0 == 1:
|
| 70 |
+
self.net_g = SynthesizerTrnMs256NSFsid(
|
| 71 |
+
*self.cpt["config"], is_half=self.config.is_half
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
|
| 75 |
+
elif self.version == "v2":
|
| 76 |
+
if self.if_f0 == 1:
|
| 77 |
+
self.net_g = SynthesizerTrnMs768NSFsid(
|
| 78 |
+
*self.cpt["config"], is_half=self.config.is_half
|
| 79 |
+
)
|
| 80 |
+
else:
|
| 81 |
+
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
|
| 82 |
+
del self.net_g, self.cpt
|
| 83 |
+
if torch.cuda.is_available():
|
| 84 |
+
torch.cuda.empty_cache()
|
| 85 |
+
return (
|
| 86 |
+
{"visible": False, "__type__": "update"},
|
| 87 |
+
{
|
| 88 |
+
"visible": True,
|
| 89 |
+
"value": to_return_protect0,
|
| 90 |
+
"__type__": "update",
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"visible": True,
|
| 94 |
+
"value": to_return_protect1,
|
| 95 |
+
"__type__": "update",
|
| 96 |
+
},
|
| 97 |
+
"",
|
| 98 |
+
"",
|
| 99 |
+
)
|
| 100 |
+
person = f'{os.getenv("weight_root")}/{sid}'
|
| 101 |
+
logger.info(f"Loading: {person}")
|
| 102 |
+
|
| 103 |
+
self.cpt = torch.load(person, map_location="cpu")
|
| 104 |
+
self.tgt_sr = self.cpt["config"][-1]
|
| 105 |
+
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
| 106 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
| 107 |
+
self.version = self.cpt.get("version", "v1")
|
| 108 |
+
|
| 109 |
+
synthesizer_class = {
|
| 110 |
+
("v1", 1): SynthesizerTrnMs256NSFsid,
|
| 111 |
+
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
|
| 112 |
+
("v2", 1): SynthesizerTrnMs768NSFsid,
|
| 113 |
+
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
self.net_g = synthesizer_class.get(
|
| 117 |
+
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid
|
| 118 |
+
)(*self.cpt["config"], is_half=self.config.is_half)
|
| 119 |
+
|
| 120 |
+
del self.net_g.enc_q
|
| 121 |
+
|
| 122 |
+
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
|
| 123 |
+
self.net_g.eval().to(self.config.device)
|
| 124 |
+
if self.config.is_half:
|
| 125 |
+
self.net_g = self.net_g.half()
|
| 126 |
+
else:
|
| 127 |
+
self.net_g = self.net_g.float()
|
| 128 |
+
|
| 129 |
+
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
| 130 |
+
n_spk = self.cpt["config"][-3]
|
| 131 |
+
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
| 132 |
+
logger.info("Select index: " + index["value"])
|
| 133 |
+
|
| 134 |
+
return (
|
| 135 |
+
(
|
| 136 |
+
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
| 137 |
+
to_return_protect0,
|
| 138 |
+
to_return_protect1,
|
| 139 |
+
index,
|
| 140 |
+
index,
|
| 141 |
+
)
|
| 142 |
+
if to_return_protect
|
| 143 |
+
else {"visible": True, "maximum": n_spk, "__type__": "update"}
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def vc_single(
|
| 147 |
+
self,
|
| 148 |
+
sid,
|
| 149 |
+
input_audio_path,
|
| 150 |
+
f0_up_key,
|
| 151 |
+
f0_file,
|
| 152 |
+
f0_method,
|
| 153 |
+
file_index,
|
| 154 |
+
file_index2,
|
| 155 |
+
index_rate,
|
| 156 |
+
filter_radius,
|
| 157 |
+
resample_sr,
|
| 158 |
+
rms_mix_rate,
|
| 159 |
+
protect,
|
| 160 |
+
):
|
| 161 |
+
if input_audio_path is None:
|
| 162 |
+
return "You need to upload an audio", None
|
| 163 |
+
f0_up_key = int(f0_up_key)
|
| 164 |
+
try:
|
| 165 |
+
audio = load_audio(input_audio_path, 16000)
|
| 166 |
+
audio_max = np.abs(audio).max() / 0.95
|
| 167 |
+
if audio_max > 1:
|
| 168 |
+
audio /= audio_max
|
| 169 |
+
times = [0, 0, 0]
|
| 170 |
+
|
| 171 |
+
if self.hubert_model is None:
|
| 172 |
+
self.hubert_model = load_hubert(self.config)
|
| 173 |
+
|
| 174 |
+
if file_index:
|
| 175 |
+
file_index = (
|
| 176 |
+
file_index.strip(" ")
|
| 177 |
+
.strip('"')
|
| 178 |
+
.strip("\n")
|
| 179 |
+
.strip('"')
|
| 180 |
+
.strip(" ")
|
| 181 |
+
.replace("trained", "added")
|
| 182 |
+
)
|
| 183 |
+
elif file_index2:
|
| 184 |
+
file_index = file_index2
|
| 185 |
+
else:
|
| 186 |
+
file_index = "" # 防止小白写错,自动帮他替换掉
|
| 187 |
+
|
| 188 |
+
audio_opt = self.pipeline.pipeline(
|
| 189 |
+
self.hubert_model,
|
| 190 |
+
self.net_g,
|
| 191 |
+
sid,
|
| 192 |
+
audio,
|
| 193 |
+
input_audio_path,
|
| 194 |
+
times,
|
| 195 |
+
f0_up_key,
|
| 196 |
+
f0_method,
|
| 197 |
+
file_index,
|
| 198 |
+
index_rate,
|
| 199 |
+
self.if_f0,
|
| 200 |
+
filter_radius,
|
| 201 |
+
self.tgt_sr,
|
| 202 |
+
resample_sr,
|
| 203 |
+
rms_mix_rate,
|
| 204 |
+
self.version,
|
| 205 |
+
protect,
|
| 206 |
+
f0_file,
|
| 207 |
+
)
|
| 208 |
+
if self.tgt_sr != resample_sr >= 16000:
|
| 209 |
+
tgt_sr = resample_sr
|
| 210 |
+
else:
|
| 211 |
+
tgt_sr = self.tgt_sr
|
| 212 |
+
index_info = (
|
| 213 |
+
"Index:\n%s." % file_index
|
| 214 |
+
if os.path.exists(file_index)
|
| 215 |
+
else "Index not used."
|
| 216 |
+
)
|
| 217 |
+
return (
|
| 218 |
+
"Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
|
| 219 |
+
% (index_info, *times),
|
| 220 |
+
(tgt_sr, audio_opt),
|
| 221 |
+
)
|
| 222 |
+
except:
|
| 223 |
+
info = traceback.format_exc()
|
| 224 |
+
logger.warning(info)
|
| 225 |
+
return info, (None, None)
|
| 226 |
+
|
| 227 |
+
def vc_multi(
|
| 228 |
+
self,
|
| 229 |
+
sid,
|
| 230 |
+
dir_path,
|
| 231 |
+
opt_root,
|
| 232 |
+
paths,
|
| 233 |
+
f0_up_key,
|
| 234 |
+
f0_method,
|
| 235 |
+
file_index,
|
| 236 |
+
file_index2,
|
| 237 |
+
index_rate,
|
| 238 |
+
filter_radius,
|
| 239 |
+
resample_sr,
|
| 240 |
+
rms_mix_rate,
|
| 241 |
+
protect,
|
| 242 |
+
format1,
|
| 243 |
+
):
|
| 244 |
+
try:
|
| 245 |
+
dir_path = (
|
| 246 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 247 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
| 248 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 249 |
+
os.makedirs(opt_root, exist_ok=True)
|
| 250 |
+
try:
|
| 251 |
+
if dir_path != "":
|
| 252 |
+
paths = [
|
| 253 |
+
os.path.join(dir_path, name) for name in os.listdir(dir_path)
|
| 254 |
+
]
|
| 255 |
+
else:
|
| 256 |
+
paths = [path.name for path in paths]
|
| 257 |
+
except:
|
| 258 |
+
traceback.print_exc()
|
| 259 |
+
paths = [path.name for path in paths]
|
| 260 |
+
infos = []
|
| 261 |
+
for path in paths:
|
| 262 |
+
info, opt = self.vc_single(
|
| 263 |
+
sid,
|
| 264 |
+
path,
|
| 265 |
+
f0_up_key,
|
| 266 |
+
None,
|
| 267 |
+
f0_method,
|
| 268 |
+
file_index,
|
| 269 |
+
file_index2,
|
| 270 |
+
# file_big_npy,
|
| 271 |
+
index_rate,
|
| 272 |
+
filter_radius,
|
| 273 |
+
resample_sr,
|
| 274 |
+
rms_mix_rate,
|
| 275 |
+
protect,
|
| 276 |
+
)
|
| 277 |
+
if "Success" in info:
|
| 278 |
+
try:
|
| 279 |
+
tgt_sr, audio_opt = opt
|
| 280 |
+
if format1 in ["wav", "flac"]:
|
| 281 |
+
sf.write(
|
| 282 |
+
"%s/%s.%s"
|
| 283 |
+
% (opt_root, os.path.basename(path), format1),
|
| 284 |
+
audio_opt,
|
| 285 |
+
tgt_sr,
|
| 286 |
+
)
|
| 287 |
+
else:
|
| 288 |
+
path = "%s/%s.%s" % (
|
| 289 |
+
opt_root,
|
| 290 |
+
os.path.basename(path),
|
| 291 |
+
format1,
|
| 292 |
+
)
|
| 293 |
+
with BytesIO() as wavf:
|
| 294 |
+
sf.write(wavf, audio_opt, tgt_sr, format="wav")
|
| 295 |
+
wavf.seek(0, 0)
|
| 296 |
+
with open(path, "wb") as outf:
|
| 297 |
+
wav2(wavf, outf, format1)
|
| 298 |
+
except:
|
| 299 |
+
info += traceback.format_exc()
|
| 300 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
| 301 |
+
yield "\n".join(infos)
|
| 302 |
+
yield "\n".join(infos)
|
| 303 |
+
except:
|
| 304 |
+
yield traceback.format_exc()
|
pipeline.py
ADDED
|
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import traceback
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.getLogger(__name__)
|
| 7 |
+
|
| 8 |
+
from functools import lru_cache
|
| 9 |
+
from time import time as ttime
|
| 10 |
+
|
| 11 |
+
import faiss
|
| 12 |
+
import librosa
|
| 13 |
+
import numpy as np
|
| 14 |
+
import parselmouth
|
| 15 |
+
import pyworld
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
import torchcrepe
|
| 19 |
+
from scipy import signal
|
| 20 |
+
|
| 21 |
+
now_dir = os.getcwd()
|
| 22 |
+
sys.path.append(now_dir)
|
| 23 |
+
|
| 24 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 25 |
+
|
| 26 |
+
input_audio_path2wav = {}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@lru_cache
|
| 30 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
| 31 |
+
audio = input_audio_path2wav[input_audio_path]
|
| 32 |
+
f0, t = pyworld.harvest(
|
| 33 |
+
audio,
|
| 34 |
+
fs=fs,
|
| 35 |
+
f0_ceil=f0max,
|
| 36 |
+
f0_floor=f0min,
|
| 37 |
+
frame_period=frame_period,
|
| 38 |
+
)
|
| 39 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
| 40 |
+
return f0
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
| 44 |
+
# print(data1.max(),data2.max())
|
| 45 |
+
rms1 = librosa.feature.rms(
|
| 46 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
| 47 |
+
) # 每半秒一个点
|
| 48 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
| 49 |
+
rms1 = torch.from_numpy(rms1)
|
| 50 |
+
rms1 = F.interpolate(
|
| 51 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 52 |
+
).squeeze()
|
| 53 |
+
rms2 = torch.from_numpy(rms2)
|
| 54 |
+
rms2 = F.interpolate(
|
| 55 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 56 |
+
).squeeze()
|
| 57 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
| 58 |
+
data2 *= (
|
| 59 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
| 60 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
| 61 |
+
).numpy()
|
| 62 |
+
return data2
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Pipeline(object):
|
| 66 |
+
def __init__(self, tgt_sr, config):
|
| 67 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
| 68 |
+
config.x_pad,
|
| 69 |
+
config.x_query,
|
| 70 |
+
config.x_center,
|
| 71 |
+
config.x_max,
|
| 72 |
+
config.is_half,
|
| 73 |
+
)
|
| 74 |
+
self.sr = 16000 # hubert输入采样率
|
| 75 |
+
self.window = 160 # 每帧点数
|
| 76 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
| 77 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 78 |
+
self.t_pad2 = self.t_pad * 2
|
| 79 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
| 80 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
| 81 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 82 |
+
self.device = config.device
|
| 83 |
+
|
| 84 |
+
def get_f0(
|
| 85 |
+
self,
|
| 86 |
+
input_audio_path,
|
| 87 |
+
x,
|
| 88 |
+
p_len,
|
| 89 |
+
f0_up_key,
|
| 90 |
+
f0_method,
|
| 91 |
+
filter_radius,
|
| 92 |
+
inp_f0=None,
|
| 93 |
+
):
|
| 94 |
+
global input_audio_path2wav
|
| 95 |
+
time_step = self.window / self.sr * 1000
|
| 96 |
+
f0_min = 50
|
| 97 |
+
f0_max = 1100
|
| 98 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 99 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 100 |
+
if f0_method == "pm":
|
| 101 |
+
f0 = (
|
| 102 |
+
parselmouth.Sound(x, self.sr)
|
| 103 |
+
.to_pitch_ac(
|
| 104 |
+
time_step=time_step / 1000,
|
| 105 |
+
voicing_threshold=0.6,
|
| 106 |
+
pitch_floor=f0_min,
|
| 107 |
+
pitch_ceiling=f0_max,
|
| 108 |
+
)
|
| 109 |
+
.selected_array["frequency"]
|
| 110 |
+
)
|
| 111 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 112 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 113 |
+
f0 = np.pad(
|
| 114 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 115 |
+
)
|
| 116 |
+
elif f0_method == "harvest":
|
| 117 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
| 118 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 119 |
+
if filter_radius > 2:
|
| 120 |
+
f0 = signal.medfilt(f0, 3)
|
| 121 |
+
elif f0_method == "crepe":
|
| 122 |
+
model = "full"
|
| 123 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 124 |
+
batch_size = 512
|
| 125 |
+
# Compute pitch using first gpu
|
| 126 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 127 |
+
f0, pd = torchcrepe.predict(
|
| 128 |
+
audio,
|
| 129 |
+
self.sr,
|
| 130 |
+
self.window,
|
| 131 |
+
f0_min,
|
| 132 |
+
f0_max,
|
| 133 |
+
model,
|
| 134 |
+
batch_size=batch_size,
|
| 135 |
+
device=self.device,
|
| 136 |
+
return_periodicity=True,
|
| 137 |
+
)
|
| 138 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 139 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 140 |
+
f0[pd < 0.1] = 0
|
| 141 |
+
f0 = f0[0].cpu().numpy()
|
| 142 |
+
elif f0_method == "rmvpe":
|
| 143 |
+
if not hasattr(self, "model_rmvpe"):
|
| 144 |
+
from infer.lib.rmvpe import RMVPE
|
| 145 |
+
|
| 146 |
+
logger.info(
|
| 147 |
+
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
| 148 |
+
)
|
| 149 |
+
self.model_rmvpe = RMVPE(
|
| 150 |
+
"%s/rmvpe.pt" % os.environ["rmvpe_root"],
|
| 151 |
+
is_half=self.is_half,
|
| 152 |
+
device=self.device,
|
| 153 |
+
)
|
| 154 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
| 155 |
+
|
| 156 |
+
if "privateuseone" in str(self.device): # clean ortruntime memory
|
| 157 |
+
del self.model_rmvpe.model
|
| 158 |
+
del self.model_rmvpe
|
| 159 |
+
logger.info("Cleaning ortruntime memory")
|
| 160 |
+
|
| 161 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 162 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 163 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
| 164 |
+
if inp_f0 is not None:
|
| 165 |
+
delta_t = np.round(
|
| 166 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 167 |
+
).astype("int16")
|
| 168 |
+
replace_f0 = np.interp(
|
| 169 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 170 |
+
)
|
| 171 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 172 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 173 |
+
:shape
|
| 174 |
+
]
|
| 175 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 176 |
+
f0bak = f0.copy()
|
| 177 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 178 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 179 |
+
f0_mel_max - f0_mel_min
|
| 180 |
+
) + 1
|
| 181 |
+
f0_mel[f0_mel <= 1] = 1
|
| 182 |
+
f0_mel[f0_mel > 255] = 255
|
| 183 |
+
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
| 184 |
+
return f0_coarse, f0bak # 1-0
|
| 185 |
+
|
| 186 |
+
def vc(
|
| 187 |
+
self,
|
| 188 |
+
model,
|
| 189 |
+
net_g,
|
| 190 |
+
sid,
|
| 191 |
+
audio0,
|
| 192 |
+
pitch,
|
| 193 |
+
pitchf,
|
| 194 |
+
times,
|
| 195 |
+
index,
|
| 196 |
+
big_npy,
|
| 197 |
+
index_rate,
|
| 198 |
+
version,
|
| 199 |
+
protect,
|
| 200 |
+
): # ,file_index,file_big_npy
|
| 201 |
+
feats = torch.from_numpy(audio0)
|
| 202 |
+
if self.is_half:
|
| 203 |
+
feats = feats.half()
|
| 204 |
+
else:
|
| 205 |
+
feats = feats.float()
|
| 206 |
+
if feats.dim() == 2: # double channels
|
| 207 |
+
feats = feats.mean(-1)
|
| 208 |
+
assert feats.dim() == 1, feats.dim()
|
| 209 |
+
feats = feats.view(1, -1)
|
| 210 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 211 |
+
|
| 212 |
+
inputs = {
|
| 213 |
+
"source": feats.to(self.device),
|
| 214 |
+
"padding_mask": padding_mask,
|
| 215 |
+
"output_layer": 9 if version == "v1" else 12,
|
| 216 |
+
}
|
| 217 |
+
t0 = ttime()
|
| 218 |
+
with torch.no_grad():
|
| 219 |
+
logits = model.extract_features(**inputs)
|
| 220 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
| 221 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
| 222 |
+
feats0 = feats.clone()
|
| 223 |
+
if (
|
| 224 |
+
not isinstance(index, type(None))
|
| 225 |
+
and not isinstance(big_npy, type(None))
|
| 226 |
+
and index_rate != 0
|
| 227 |
+
):
|
| 228 |
+
npy = feats[0].cpu().numpy()
|
| 229 |
+
if self.is_half:
|
| 230 |
+
npy = npy.astype("float32")
|
| 231 |
+
|
| 232 |
+
# _, I = index.search(npy, 1)
|
| 233 |
+
# npy = big_npy[I.squeeze()]
|
| 234 |
+
|
| 235 |
+
score, ix = index.search(npy, k=8)
|
| 236 |
+
weight = np.square(1 / score)
|
| 237 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 238 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 239 |
+
|
| 240 |
+
if self.is_half:
|
| 241 |
+
npy = npy.astype("float16")
|
| 242 |
+
feats = (
|
| 243 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 244 |
+
+ (1 - index_rate) * feats
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 248 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
| 249 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
| 250 |
+
0, 2, 1
|
| 251 |
+
)
|
| 252 |
+
t1 = ttime()
|
| 253 |
+
p_len = audio0.shape[0] // self.window
|
| 254 |
+
if feats.shape[1] < p_len:
|
| 255 |
+
p_len = feats.shape[1]
|
| 256 |
+
if pitch is not None and pitchf is not None:
|
| 257 |
+
pitch = pitch[:, :p_len]
|
| 258 |
+
pitchf = pitchf[:, :p_len]
|
| 259 |
+
|
| 260 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
| 261 |
+
pitchff = pitchf.clone()
|
| 262 |
+
pitchff[pitchf > 0] = 1
|
| 263 |
+
pitchff[pitchf < 1] = protect
|
| 264 |
+
pitchff = pitchff.unsqueeze(-1)
|
| 265 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
| 266 |
+
feats = feats.to(feats0.dtype)
|
| 267 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 268 |
+
with torch.no_grad():
|
| 269 |
+
hasp = pitch is not None and pitchf is not None
|
| 270 |
+
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
| 271 |
+
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
| 272 |
+
del hasp, arg
|
| 273 |
+
del feats, p_len, padding_mask
|
| 274 |
+
if torch.cuda.is_available():
|
| 275 |
+
torch.cuda.empty_cache()
|
| 276 |
+
t2 = ttime()
|
| 277 |
+
times[0] += t1 - t0
|
| 278 |
+
times[2] += t2 - t1
|
| 279 |
+
return audio1
|
| 280 |
+
|
| 281 |
+
def pipeline(
|
| 282 |
+
self,
|
| 283 |
+
model,
|
| 284 |
+
net_g,
|
| 285 |
+
sid,
|
| 286 |
+
audio,
|
| 287 |
+
input_audio_path,
|
| 288 |
+
times,
|
| 289 |
+
f0_up_key,
|
| 290 |
+
f0_method,
|
| 291 |
+
file_index,
|
| 292 |
+
index_rate,
|
| 293 |
+
if_f0,
|
| 294 |
+
filter_radius,
|
| 295 |
+
tgt_sr,
|
| 296 |
+
resample_sr,
|
| 297 |
+
rms_mix_rate,
|
| 298 |
+
version,
|
| 299 |
+
protect,
|
| 300 |
+
f0_file=None,
|
| 301 |
+
):
|
| 302 |
+
if (
|
| 303 |
+
file_index != ""
|
| 304 |
+
# and file_big_npy != ""
|
| 305 |
+
# and os.path.exists(file_big_npy) == True
|
| 306 |
+
and os.path.exists(file_index)
|
| 307 |
+
and index_rate != 0
|
| 308 |
+
):
|
| 309 |
+
try:
|
| 310 |
+
index = faiss.read_index(file_index)
|
| 311 |
+
# big_npy = np.load(file_big_npy)
|
| 312 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 313 |
+
except:
|
| 314 |
+
traceback.print_exc()
|
| 315 |
+
index = big_npy = None
|
| 316 |
+
else:
|
| 317 |
+
index = big_npy = None
|
| 318 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 319 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 320 |
+
opt_ts = []
|
| 321 |
+
if audio_pad.shape[0] > self.t_max:
|
| 322 |
+
audio_sum = np.zeros_like(audio)
|
| 323 |
+
for i in range(self.window):
|
| 324 |
+
audio_sum += np.abs(audio_pad[i : i - self.window])
|
| 325 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 326 |
+
opt_ts.append(
|
| 327 |
+
t
|
| 328 |
+
- self.t_query
|
| 329 |
+
+ np.where(
|
| 330 |
+
audio_sum[t - self.t_query : t + self.t_query]
|
| 331 |
+
== audio_sum[t - self.t_query : t + self.t_query].min()
|
| 332 |
+
)[0][0]
|
| 333 |
+
)
|
| 334 |
+
s = 0
|
| 335 |
+
audio_opt = []
|
| 336 |
+
t = None
|
| 337 |
+
t1 = ttime()
|
| 338 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 339 |
+
p_len = audio_pad.shape[0] // self.window
|
| 340 |
+
inp_f0 = None
|
| 341 |
+
if hasattr(f0_file, "name"):
|
| 342 |
+
try:
|
| 343 |
+
with open(f0_file.name, "r") as f:
|
| 344 |
+
lines = f.read().strip("\n").split("\n")
|
| 345 |
+
inp_f0 = []
|
| 346 |
+
for line in lines:
|
| 347 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 348 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 349 |
+
except:
|
| 350 |
+
traceback.print_exc()
|
| 351 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 352 |
+
pitch, pitchf = None, None
|
| 353 |
+
if if_f0 == 1:
|
| 354 |
+
pitch, pitchf = self.get_f0(
|
| 355 |
+
input_audio_path,
|
| 356 |
+
audio_pad,
|
| 357 |
+
p_len,
|
| 358 |
+
f0_up_key,
|
| 359 |
+
f0_method,
|
| 360 |
+
filter_radius,
|
| 361 |
+
inp_f0,
|
| 362 |
+
)
|
| 363 |
+
pitch = pitch[:p_len]
|
| 364 |
+
pitchf = pitchf[:p_len]
|
| 365 |
+
if "mps" not in str(self.device) or "xpu" not in str(self.device):
|
| 366 |
+
pitchf = pitchf.astype(np.float32)
|
| 367 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 368 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 369 |
+
t2 = ttime()
|
| 370 |
+
times[1] += t2 - t1
|
| 371 |
+
for t in opt_ts:
|
| 372 |
+
t = t // self.window * self.window
|
| 373 |
+
if if_f0 == 1:
|
| 374 |
+
audio_opt.append(
|
| 375 |
+
self.vc(
|
| 376 |
+
model,
|
| 377 |
+
net_g,
|
| 378 |
+
sid,
|
| 379 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 380 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 381 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 382 |
+
times,
|
| 383 |
+
index,
|
| 384 |
+
big_npy,
|
| 385 |
+
index_rate,
|
| 386 |
+
version,
|
| 387 |
+
protect,
|
| 388 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 389 |
+
)
|
| 390 |
+
else:
|
| 391 |
+
audio_opt.append(
|
| 392 |
+
self.vc(
|
| 393 |
+
model,
|
| 394 |
+
net_g,
|
| 395 |
+
sid,
|
| 396 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 397 |
+
None,
|
| 398 |
+
None,
|
| 399 |
+
times,
|
| 400 |
+
index,
|
| 401 |
+
big_npy,
|
| 402 |
+
index_rate,
|
| 403 |
+
version,
|
| 404 |
+
protect,
|
| 405 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 406 |
+
)
|
| 407 |
+
s = t
|
| 408 |
+
if if_f0 == 1:
|
| 409 |
+
audio_opt.append(
|
| 410 |
+
self.vc(
|
| 411 |
+
model,
|
| 412 |
+
net_g,
|
| 413 |
+
sid,
|
| 414 |
+
audio_pad[t:],
|
| 415 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 416 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 417 |
+
times,
|
| 418 |
+
index,
|
| 419 |
+
big_npy,
|
| 420 |
+
index_rate,
|
| 421 |
+
version,
|
| 422 |
+
protect,
|
| 423 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 424 |
+
)
|
| 425 |
+
else:
|
| 426 |
+
audio_opt.append(
|
| 427 |
+
self.vc(
|
| 428 |
+
model,
|
| 429 |
+
net_g,
|
| 430 |
+
sid,
|
| 431 |
+
audio_pad[t:],
|
| 432 |
+
None,
|
| 433 |
+
None,
|
| 434 |
+
times,
|
| 435 |
+
index,
|
| 436 |
+
big_npy,
|
| 437 |
+
index_rate,
|
| 438 |
+
version,
|
| 439 |
+
protect,
|
| 440 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 441 |
+
)
|
| 442 |
+
audio_opt = np.concatenate(audio_opt)
|
| 443 |
+
if rms_mix_rate != 1:
|
| 444 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
| 445 |
+
if tgt_sr != resample_sr >= 16000:
|
| 446 |
+
audio_opt = librosa.resample(
|
| 447 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 448 |
+
)
|
| 449 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
| 450 |
+
max_int16 = 32768
|
| 451 |
+
if audio_max > 1:
|
| 452 |
+
max_int16 /= audio_max
|
| 453 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
| 454 |
+
del pitch, pitchf, sid
|
| 455 |
+
if torch.cuda.is_available():
|
| 456 |
+
torch.cuda.empty_cache()
|
| 457 |
+
return audio_opt
|
pyproject.toml
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "rvc-beta"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = ""
|
| 5 |
+
authors = ["lj1995"]
|
| 6 |
+
license = "MIT"
|
| 7 |
+
|
| 8 |
+
[tool.poetry.dependencies]
|
| 9 |
+
python = "^3.9"
|
| 10 |
+
torch = "2.4.0"
|
| 11 |
+
torchaudio = "2.4.0"
|
| 12 |
+
Cython = "^3.0.11"
|
| 13 |
+
gradio = "3.34.0"
|
| 14 |
+
pydub = ">=0.25.1"
|
| 15 |
+
soundfile = ">=0.12.1"
|
| 16 |
+
ffmpeg-python = ">=0.2.0"
|
| 17 |
+
tensorboardX = "^2.6.2.2"
|
| 18 |
+
fairseq = "0.12.2"
|
| 19 |
+
faiss-cpu = "1.7.3"
|
| 20 |
+
Jinja2 = ">=3.1.2"
|
| 21 |
+
json5 = "^0.9.25"
|
| 22 |
+
librosa = "0.9.1"
|
| 23 |
+
llvmlite = "0.39.0"
|
| 24 |
+
Markdown = "^3.6"
|
| 25 |
+
matplotlib = ">=3.7.0"
|
| 26 |
+
matplotlib-inline = ">=0.1.3"
|
| 27 |
+
numba = "0.56.4"
|
| 28 |
+
numpy = "1.23.5"
|
| 29 |
+
scipy = "1.13.1"
|
| 30 |
+
praat-parselmouth = ">=0.4.2"
|
| 31 |
+
Pillow = ">=9.1.1"
|
| 32 |
+
pyworld = "0.3.2"
|
| 33 |
+
resampy = ">=0.4.2"
|
| 34 |
+
scikit-learn = "^1.5.1"
|
| 35 |
+
tensorboard = "^2.17.0"
|
| 36 |
+
tqdm = ">=4.63.1"
|
| 37 |
+
tornado = ">=6.1"
|
| 38 |
+
Werkzeug = ">=2.2.3"
|
| 39 |
+
uc-micro-py = ">=1.0.1"
|
| 40 |
+
sympy = ">=1.11.1"
|
| 41 |
+
tabulate = ">=0.8.10"
|
| 42 |
+
PyYAML = ">=6.0"
|
| 43 |
+
pyasn1 = ">=0.4.8"
|
| 44 |
+
pyasn1-modules = ">=0.2.8"
|
| 45 |
+
fsspec = ">=2022.11.0"
|
| 46 |
+
absl-py = ">=1.2.0"
|
| 47 |
+
audioread = "^3.0.1"
|
| 48 |
+
uvicorn = ">=0.21.1"
|
| 49 |
+
colorama = ">=0.4.5"
|
| 50 |
+
torchcrepe = "0.0.20"
|
| 51 |
+
python-dotenv = ">=1.0.0"
|
| 52 |
+
av = "^12.3.0"
|
| 53 |
+
joblib = ">=1.1.0"
|
| 54 |
+
httpx = "^0.27.0"
|
| 55 |
+
onnxruntime-gpu = "^1.18.1"
|
| 56 |
+
fastapi = "0.88"
|
| 57 |
+
torchfcpe = "^0.0.4"
|
| 58 |
+
ffmpy = "0.3.1"
|
| 59 |
+
torchvision = "0.19.0"
|
| 60 |
+
[tool.poetry.dev-dependencies]
|
| 61 |
+
|
| 62 |
+
[build-system]
|
| 63 |
+
requires = ["poetry-core>=1.0.0"]
|
| 64 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aria2
|
| 2 |
+
joblib>=1.1.0
|
| 3 |
+
numba==0.56.4
|
| 4 |
+
numpy==1.23.5
|
| 5 |
+
scipy
|
| 6 |
+
librosa==0.9.1
|
| 7 |
+
llvmlite==0.39.0
|
| 8 |
+
fairseq==0.12.2
|
| 9 |
+
faiss-cpu==1.7.3
|
| 10 |
+
gradio==3.34.0
|
| 11 |
+
Cython
|
| 12 |
+
pydub>=0.25.1
|
| 13 |
+
soundfile>=0.12.1
|
| 14 |
+
ffmpeg-python>=0.2.0
|
| 15 |
+
tensorboardX
|
| 16 |
+
Jinja2>=3.1.2
|
| 17 |
+
json5
|
| 18 |
+
Markdown
|
| 19 |
+
matplotlib>=3.7.0
|
| 20 |
+
matplotlib-inline>=0.1.3
|
| 21 |
+
praat-parselmouth>=0.4.2
|
| 22 |
+
|
| 23 |
+
tensorboard
|
| 24 |
+
tqdm>=4.63.1
|
| 25 |
+
tornado>=6.1
|
| 26 |
+
httpx
|
| 27 |
+
onnxruntime; sys_platform == 'darwin'
|
| 28 |
+
onnxruntime-gpu; sys_platform != 'darwin'
|
| 29 |
+
torchcrepe==0.0.20
|
| 30 |
+
fastapi==0.88
|
| 31 |
+
torchfcpe
|
| 32 |
+
ffmpy==0.3.1
|
| 33 |
+
python-dotenv>=1.0.0
|
| 34 |
+
av
|
utils.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from fairseq import checkpoint_utils
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def get_index_path_from_model(sid):
|
| 7 |
+
return next(
|
| 8 |
+
(
|
| 9 |
+
f
|
| 10 |
+
for f in [
|
| 11 |
+
os.path.join(root, name)
|
| 12 |
+
for root, _, files in os.walk(os.getenv("index_root"), topdown=False)
|
| 13 |
+
for name in files
|
| 14 |
+
if name.endswith(".index") and "trained" not in name
|
| 15 |
+
]
|
| 16 |
+
if sid.split(".")[0] in f
|
| 17 |
+
),
|
| 18 |
+
"",
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def load_hubert(config):
|
| 23 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 24 |
+
["assets/hubert/hubert_base.pt"],
|
| 25 |
+
suffix="",
|
| 26 |
+
)
|
| 27 |
+
hubert_model = models[0]
|
| 28 |
+
hubert_model = hubert_model.to(config.device)
|
| 29 |
+
if config.is_half:
|
| 30 |
+
hubert_model = hubert_model.half()
|
| 31 |
+
else:
|
| 32 |
+
hubert_model = hubert_model.float()
|
| 33 |
+
return hubert_model.eval()
|