_Noxty
commited on
Upload 14 files
Browse files- .env +9 -0
- .gitignore +28 -0
- __init__.py +0 -0
- config.json +1 -0
- config.py +254 -0
- download_models.py +79 -0
- infer-web.py +1619 -0
- infer_batch_rvc.py +72 -0
- infer_cli.py +67 -0
- modules.py +304 -0
- pipeline.py +457 -0
- pyproject.toml +64 -0
- requirements.txt +34 -0
- utils.py +33 -0
.env
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OPENBLAS_NUM_THREADS = 1
|
2 |
+
no_proxy = localhost, 127.0.0.1, ::1
|
3 |
+
|
4 |
+
# You can change the location of the model, etc. by changing here
|
5 |
+
weight_root = assets/weights
|
6 |
+
weight_uvr5_root = assets/uvr5_weights
|
7 |
+
index_root = logs
|
8 |
+
outside_index_root = assets/indices
|
9 |
+
rmvpe_root = assets/rmvpe
|
.gitignore
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
__pycache__
|
3 |
+
/TEMP
|
4 |
+
*.pyd
|
5 |
+
.venv
|
6 |
+
/opt
|
7 |
+
tools/aria2c/
|
8 |
+
tools/flag.txt
|
9 |
+
|
10 |
+
# Imported from huggingface.co/lj1995/VoiceConversionWebUI
|
11 |
+
/pretrained
|
12 |
+
/pretrained_v2
|
13 |
+
/uvr5_weights
|
14 |
+
hubert_base.pt
|
15 |
+
rmvpe.onnx
|
16 |
+
rmvpe.pt
|
17 |
+
|
18 |
+
# Generated by RVC
|
19 |
+
/logs
|
20 |
+
/weights
|
21 |
+
|
22 |
+
# To set a Python version for the project
|
23 |
+
.tool-versions
|
24 |
+
|
25 |
+
/runtime
|
26 |
+
/assets/weights/*
|
27 |
+
ffmpeg.*
|
28 |
+
ffprobe.*
|
__init__.py
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "formant": 0.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}
|
config.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import shutil
|
6 |
+
from multiprocessing import cpu_count
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
try:
|
11 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
12 |
+
|
13 |
+
if torch.xpu.is_available():
|
14 |
+
from infer.modules.ipex import ipex_init
|
15 |
+
|
16 |
+
ipex_init()
|
17 |
+
except Exception: # pylint: disable=broad-exception-caught
|
18 |
+
pass
|
19 |
+
import logging
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
version_config_list = [
|
25 |
+
"v1/32k.json",
|
26 |
+
"v1/40k.json",
|
27 |
+
"v1/48k.json",
|
28 |
+
"v2/48k.json",
|
29 |
+
"v2/32k.json",
|
30 |
+
]
|
31 |
+
|
32 |
+
|
33 |
+
def singleton_variable(func):
|
34 |
+
def wrapper(*args, **kwargs):
|
35 |
+
if not wrapper.instance:
|
36 |
+
wrapper.instance = func(*args, **kwargs)
|
37 |
+
return wrapper.instance
|
38 |
+
|
39 |
+
wrapper.instance = None
|
40 |
+
return wrapper
|
41 |
+
|
42 |
+
|
43 |
+
@singleton_variable
|
44 |
+
class Config:
|
45 |
+
def __init__(self):
|
46 |
+
self.device = "cuda:0"
|
47 |
+
self.is_half = True
|
48 |
+
self.use_jit = False
|
49 |
+
self.n_cpu = 0
|
50 |
+
self.gpu_name = None
|
51 |
+
self.json_config = self.load_config_json()
|
52 |
+
self.gpu_mem = None
|
53 |
+
(
|
54 |
+
self.python_cmd,
|
55 |
+
self.listen_port,
|
56 |
+
self.iscolab,
|
57 |
+
self.noparallel,
|
58 |
+
self.noautoopen,
|
59 |
+
self.dml,
|
60 |
+
) = self.arg_parse()
|
61 |
+
self.instead = ""
|
62 |
+
self.preprocess_per = 3.7
|
63 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def load_config_json() -> dict:
|
67 |
+
d = {}
|
68 |
+
for config_file in version_config_list:
|
69 |
+
p = f"configs/inuse/{config_file}"
|
70 |
+
if not os.path.exists(p):
|
71 |
+
shutil.copy(f"configs/{config_file}", p)
|
72 |
+
with open(f"configs/inuse/{config_file}", "r") as f:
|
73 |
+
d[config_file] = json.load(f)
|
74 |
+
return d
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def arg_parse() -> tuple:
|
78 |
+
exe = sys.executable or "python"
|
79 |
+
parser = argparse.ArgumentParser()
|
80 |
+
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
81 |
+
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
82 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
83 |
+
parser.add_argument(
|
84 |
+
"--noparallel", action="store_true", help="Disable parallel processing"
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--noautoopen",
|
88 |
+
action="store_true",
|
89 |
+
help="Do not open in browser automatically",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--dml",
|
93 |
+
action="store_true",
|
94 |
+
help="torch_dml",
|
95 |
+
)
|
96 |
+
cmd_opts = parser.parse_args()
|
97 |
+
|
98 |
+
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
99 |
+
|
100 |
+
return (
|
101 |
+
cmd_opts.pycmd,
|
102 |
+
cmd_opts.port,
|
103 |
+
cmd_opts.colab,
|
104 |
+
cmd_opts.noparallel,
|
105 |
+
cmd_opts.noautoopen,
|
106 |
+
cmd_opts.dml,
|
107 |
+
)
|
108 |
+
|
109 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
110 |
+
# check `getattr` and try it for compatibility
|
111 |
+
@staticmethod
|
112 |
+
def has_mps() -> bool:
|
113 |
+
if not torch.backends.mps.is_available():
|
114 |
+
return False
|
115 |
+
try:
|
116 |
+
torch.zeros(1).to(torch.device("mps"))
|
117 |
+
return True
|
118 |
+
except Exception:
|
119 |
+
return False
|
120 |
+
|
121 |
+
@staticmethod
|
122 |
+
def has_xpu() -> bool:
|
123 |
+
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
124 |
+
return True
|
125 |
+
else:
|
126 |
+
return False
|
127 |
+
|
128 |
+
def use_fp32_config(self):
|
129 |
+
for config_file in version_config_list:
|
130 |
+
self.json_config[config_file]["train"]["fp16_run"] = False
|
131 |
+
with open(f"configs/inuse/{config_file}", "r") as f:
|
132 |
+
strr = f.read().replace("true", "false")
|
133 |
+
with open(f"configs/inuse/{config_file}", "w") as f:
|
134 |
+
f.write(strr)
|
135 |
+
logger.info("overwrite " + config_file)
|
136 |
+
self.preprocess_per = 3.0
|
137 |
+
logger.info("overwrite preprocess_per to %d" % (self.preprocess_per))
|
138 |
+
|
139 |
+
def device_config(self) -> tuple:
|
140 |
+
if torch.cuda.is_available():
|
141 |
+
if self.has_xpu():
|
142 |
+
self.device = self.instead = "xpu:0"
|
143 |
+
self.is_half = True
|
144 |
+
i_device = int(self.device.split(":")[-1])
|
145 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
146 |
+
if (
|
147 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
148 |
+
or "P40" in self.gpu_name.upper()
|
149 |
+
or "P10" in self.gpu_name.upper()
|
150 |
+
or "1060" in self.gpu_name
|
151 |
+
or "1070" in self.gpu_name
|
152 |
+
or "1080" in self.gpu_name
|
153 |
+
):
|
154 |
+
logger.info("Found GPU %s, force to fp32", self.gpu_name)
|
155 |
+
self.is_half = False
|
156 |
+
self.use_fp32_config()
|
157 |
+
else:
|
158 |
+
logger.info("Found GPU %s", self.gpu_name)
|
159 |
+
self.gpu_mem = int(
|
160 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
161 |
+
/ 1024
|
162 |
+
/ 1024
|
163 |
+
/ 1024
|
164 |
+
+ 0.4
|
165 |
+
)
|
166 |
+
if self.gpu_mem <= 4:
|
167 |
+
self.preprocess_per = 3.0
|
168 |
+
elif self.has_mps():
|
169 |
+
logger.info("No supported Nvidia GPU found")
|
170 |
+
self.device = self.instead = "mps"
|
171 |
+
self.is_half = False
|
172 |
+
self.use_fp32_config()
|
173 |
+
else:
|
174 |
+
logger.info("No supported Nvidia GPU found")
|
175 |
+
self.device = self.instead = "cpu"
|
176 |
+
self.is_half = False
|
177 |
+
self.use_fp32_config()
|
178 |
+
|
179 |
+
if self.n_cpu == 0:
|
180 |
+
self.n_cpu = cpu_count()
|
181 |
+
|
182 |
+
if self.is_half:
|
183 |
+
# 6G显存配置
|
184 |
+
x_pad = 3
|
185 |
+
x_query = 10
|
186 |
+
x_center = 60
|
187 |
+
x_max = 65
|
188 |
+
else:
|
189 |
+
# 5G显存配置
|
190 |
+
x_pad = 1
|
191 |
+
x_query = 6
|
192 |
+
x_center = 38
|
193 |
+
x_max = 41
|
194 |
+
|
195 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
196 |
+
x_pad = 1
|
197 |
+
x_query = 5
|
198 |
+
x_center = 30
|
199 |
+
x_max = 32
|
200 |
+
if self.dml:
|
201 |
+
logger.info("Use DirectML instead")
|
202 |
+
if (
|
203 |
+
os.path.exists(
|
204 |
+
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
205 |
+
)
|
206 |
+
== False
|
207 |
+
):
|
208 |
+
try:
|
209 |
+
os.rename(
|
210 |
+
"runtime\Lib\site-packages\onnxruntime",
|
211 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
212 |
+
)
|
213 |
+
except:
|
214 |
+
pass
|
215 |
+
try:
|
216 |
+
os.rename(
|
217 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
218 |
+
"runtime\Lib\site-packages\onnxruntime",
|
219 |
+
)
|
220 |
+
except:
|
221 |
+
pass
|
222 |
+
# if self.device != "cpu":
|
223 |
+
import torch_directml
|
224 |
+
|
225 |
+
self.device = torch_directml.device(torch_directml.default_device())
|
226 |
+
self.is_half = False
|
227 |
+
else:
|
228 |
+
if self.instead:
|
229 |
+
logger.info(f"Use {self.instead} instead")
|
230 |
+
if (
|
231 |
+
os.path.exists(
|
232 |
+
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
233 |
+
)
|
234 |
+
== False
|
235 |
+
):
|
236 |
+
try:
|
237 |
+
os.rename(
|
238 |
+
"runtime\Lib\site-packages\onnxruntime",
|
239 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
240 |
+
)
|
241 |
+
except:
|
242 |
+
pass
|
243 |
+
try:
|
244 |
+
os.rename(
|
245 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
246 |
+
"runtime\Lib\site-packages\onnxruntime",
|
247 |
+
)
|
248 |
+
except:
|
249 |
+
pass
|
250 |
+
logger.info(
|
251 |
+
"Half-precision floating-point: %s, device: %s"
|
252 |
+
% (self.is_half, self.device)
|
253 |
+
)
|
254 |
+
return x_pad, x_query, x_center, x_max
|
download_models.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
import requests
|
4 |
+
|
5 |
+
RVC_DOWNLOAD_LINK = "https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/"
|
6 |
+
|
7 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
8 |
+
|
9 |
+
|
10 |
+
def dl_model(link, model_name, dir_name):
|
11 |
+
with requests.get(f"{link}{model_name}") as r:
|
12 |
+
r.raise_for_status()
|
13 |
+
os.makedirs(os.path.dirname(dir_name / model_name), exist_ok=True)
|
14 |
+
with open(dir_name / model_name, "wb") as f:
|
15 |
+
for chunk in r.iter_content(chunk_size=8192):
|
16 |
+
f.write(chunk)
|
17 |
+
|
18 |
+
|
19 |
+
if __name__ == "__main__":
|
20 |
+
print("Downloading hubert_base.pt...")
|
21 |
+
dl_model(RVC_DOWNLOAD_LINK, "hubert_base.pt", BASE_DIR / "assets/hubert")
|
22 |
+
print("Downloading rmvpe.pt...")
|
23 |
+
dl_model(RVC_DOWNLOAD_LINK, "rmvpe.pt", BASE_DIR / "assets/rmvpe")
|
24 |
+
print("Downloading vocals.onnx...")
|
25 |
+
dl_model(
|
26 |
+
RVC_DOWNLOAD_LINK + "uvr5_weights/onnx_dereverb_By_FoxJoy/",
|
27 |
+
"vocals.onnx",
|
28 |
+
BASE_DIR / "assets/uvr5_weights/onnx_dereverb_By_FoxJoy",
|
29 |
+
)
|
30 |
+
|
31 |
+
rvc_models_dir = BASE_DIR / "assets/pretrained"
|
32 |
+
|
33 |
+
print("Downloading pretrained models:")
|
34 |
+
|
35 |
+
model_names = [
|
36 |
+
"D32k.pth",
|
37 |
+
"D40k.pth",
|
38 |
+
"D48k.pth",
|
39 |
+
"G32k.pth",
|
40 |
+
"G40k.pth",
|
41 |
+
"G48k.pth",
|
42 |
+
"f0D32k.pth",
|
43 |
+
"f0D40k.pth",
|
44 |
+
"f0D48k.pth",
|
45 |
+
"f0G32k.pth",
|
46 |
+
"f0G40k.pth",
|
47 |
+
"f0G48k.pth",
|
48 |
+
]
|
49 |
+
for model in model_names:
|
50 |
+
print(f"Downloading {model}...")
|
51 |
+
dl_model(RVC_DOWNLOAD_LINK + "pretrained/", model, rvc_models_dir)
|
52 |
+
|
53 |
+
rvc_models_dir = BASE_DIR / "assets/pretrained_v2"
|
54 |
+
|
55 |
+
print("Downloading pretrained models v2:")
|
56 |
+
|
57 |
+
for model in model_names:
|
58 |
+
print(f"Downloading {model}...")
|
59 |
+
dl_model(RVC_DOWNLOAD_LINK + "pretrained_v2/", model, rvc_models_dir)
|
60 |
+
|
61 |
+
print("Downloading uvr5_weights:")
|
62 |
+
|
63 |
+
rvc_models_dir = BASE_DIR / "assets/uvr5_weights"
|
64 |
+
|
65 |
+
model_names = [
|
66 |
+
"HP2-%E4%BA%BA%E5%A3%B0vocals%2B%E9%9D%9E%E4%BA%BA%E5%A3%B0instrumentals.pth",
|
67 |
+
"HP2_all_vocals.pth",
|
68 |
+
"HP3_all_vocals.pth",
|
69 |
+
"HP5-%E4%B8%BB%E6%97%8B%E5%BE%8B%E4%BA%BA%E5%A3%B0vocals%2B%E5%85%B6%E4%BB%96instrumentals.pth",
|
70 |
+
"HP5_only_main_vocal.pth",
|
71 |
+
"VR-DeEchoAggressive.pth",
|
72 |
+
"VR-DeEchoDeReverb.pth",
|
73 |
+
"VR-DeEchoNormal.pth",
|
74 |
+
]
|
75 |
+
for model in model_names:
|
76 |
+
print(f"Downloading {model}...")
|
77 |
+
dl_model(RVC_DOWNLOAD_LINK + "uvr5_weights/", model, rvc_models_dir)
|
78 |
+
|
79 |
+
print("All models downloaded!")
|
infer-web.py
ADDED
@@ -0,0 +1,1619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
now_dir = os.getcwd()
|
6 |
+
sys.path.append(now_dir)
|
7 |
+
load_dotenv()
|
8 |
+
from infer.modules.vc.modules import VC
|
9 |
+
from infer.modules.uvr5.modules import uvr
|
10 |
+
from infer.lib.train.process_ckpt import (
|
11 |
+
change_info,
|
12 |
+
extract_small_model,
|
13 |
+
merge,
|
14 |
+
show_info,
|
15 |
+
)
|
16 |
+
from i18n.i18n import I18nAuto
|
17 |
+
from configs.config import Config
|
18 |
+
from sklearn.cluster import MiniBatchKMeans
|
19 |
+
import torch, platform
|
20 |
+
import numpy as np
|
21 |
+
import gradio as gr
|
22 |
+
import faiss
|
23 |
+
import fairseq
|
24 |
+
import pathlib
|
25 |
+
import json
|
26 |
+
from time import sleep
|
27 |
+
from subprocess import Popen
|
28 |
+
from random import shuffle
|
29 |
+
import warnings
|
30 |
+
import traceback
|
31 |
+
import threading
|
32 |
+
import shutil
|
33 |
+
import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
37 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
38 |
+
|
39 |
+
logger = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
tmp = os.path.join(now_dir, "TEMP")
|
42 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
43 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
44 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
45 |
+
os.makedirs(tmp, exist_ok=True)
|
46 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
47 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
48 |
+
os.environ["TEMP"] = tmp
|
49 |
+
warnings.filterwarnings("ignore")
|
50 |
+
torch.manual_seed(114514)
|
51 |
+
|
52 |
+
|
53 |
+
config = Config()
|
54 |
+
vc = VC(config)
|
55 |
+
|
56 |
+
|
57 |
+
if config.dml == True:
|
58 |
+
|
59 |
+
def forward_dml(ctx, x, scale):
|
60 |
+
ctx.scale = scale
|
61 |
+
res = x.clone().detach()
|
62 |
+
return res
|
63 |
+
|
64 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
65 |
+
i18n = I18nAuto()
|
66 |
+
logger.info(i18n)
|
67 |
+
# 判断是否有能用来训练和加速推理的N卡
|
68 |
+
ngpu = torch.cuda.device_count()
|
69 |
+
gpu_infos = []
|
70 |
+
mem = []
|
71 |
+
if_gpu_ok = False
|
72 |
+
|
73 |
+
if torch.cuda.is_available() or ngpu != 0:
|
74 |
+
for i in range(ngpu):
|
75 |
+
gpu_name = torch.cuda.get_device_name(i)
|
76 |
+
if any(
|
77 |
+
value in gpu_name.upper()
|
78 |
+
for value in [
|
79 |
+
"10",
|
80 |
+
"16",
|
81 |
+
"20",
|
82 |
+
"30",
|
83 |
+
"40",
|
84 |
+
"A2",
|
85 |
+
"A3",
|
86 |
+
"A4",
|
87 |
+
"P4",
|
88 |
+
"A50",
|
89 |
+
"500",
|
90 |
+
"A60",
|
91 |
+
"70",
|
92 |
+
"80",
|
93 |
+
"90",
|
94 |
+
"M4",
|
95 |
+
"T4",
|
96 |
+
"TITAN",
|
97 |
+
"4060",
|
98 |
+
"L",
|
99 |
+
"6000",
|
100 |
+
]
|
101 |
+
):
|
102 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
103 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
104 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
105 |
+
mem.append(
|
106 |
+
int(
|
107 |
+
torch.cuda.get_device_properties(i).total_memory
|
108 |
+
/ 1024
|
109 |
+
/ 1024
|
110 |
+
/ 1024
|
111 |
+
+ 0.4
|
112 |
+
)
|
113 |
+
)
|
114 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
115 |
+
gpu_info = "\n".join(gpu_infos)
|
116 |
+
default_batch_size = min(mem) // 2
|
117 |
+
else:
|
118 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
119 |
+
default_batch_size = 1
|
120 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
121 |
+
|
122 |
+
|
123 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
124 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
125 |
+
|
126 |
+
def __init__(self, **kwargs):
|
127 |
+
super().__init__(variant="tool", **kwargs)
|
128 |
+
|
129 |
+
def get_block_name(self):
|
130 |
+
return "button"
|
131 |
+
|
132 |
+
|
133 |
+
weight_root = os.getenv("weight_root")
|
134 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
135 |
+
index_root = os.getenv("index_root")
|
136 |
+
outside_index_root = os.getenv("outside_index_root")
|
137 |
+
|
138 |
+
names = []
|
139 |
+
for name in os.listdir(weight_root):
|
140 |
+
if name.endswith(".pth"):
|
141 |
+
names.append(name)
|
142 |
+
index_paths = []
|
143 |
+
|
144 |
+
|
145 |
+
def lookup_indices(index_root):
|
146 |
+
global index_paths
|
147 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
148 |
+
for name in files:
|
149 |
+
if name.endswith(".index") and "trained" not in name:
|
150 |
+
index_paths.append("%s/%s" % (root, name))
|
151 |
+
|
152 |
+
|
153 |
+
lookup_indices(index_root)
|
154 |
+
lookup_indices(outside_index_root)
|
155 |
+
uvr5_names = []
|
156 |
+
for name in os.listdir(weight_uvr5_root):
|
157 |
+
if name.endswith(".pth") or "onnx" in name:
|
158 |
+
uvr5_names.append(name.replace(".pth", ""))
|
159 |
+
|
160 |
+
|
161 |
+
def change_choices():
|
162 |
+
names = []
|
163 |
+
for name in os.listdir(weight_root):
|
164 |
+
if name.endswith(".pth"):
|
165 |
+
names.append(name)
|
166 |
+
index_paths = []
|
167 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
168 |
+
for name in files:
|
169 |
+
if name.endswith(".index") and "trained" not in name:
|
170 |
+
index_paths.append("%s/%s" % (root, name))
|
171 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
172 |
+
"choices": sorted(index_paths),
|
173 |
+
"__type__": "update",
|
174 |
+
}
|
175 |
+
|
176 |
+
|
177 |
+
def clean():
|
178 |
+
return {"value": "", "__type__": "update"}
|
179 |
+
|
180 |
+
|
181 |
+
def export_onnx(ModelPath, ExportedPath):
|
182 |
+
from infer.modules.onnx.export import export_onnx as eo
|
183 |
+
|
184 |
+
eo(ModelPath, ExportedPath)
|
185 |
+
|
186 |
+
|
187 |
+
sr_dict = {
|
188 |
+
"32k": 32000,
|
189 |
+
"40k": 40000,
|
190 |
+
"48k": 48000,
|
191 |
+
}
|
192 |
+
|
193 |
+
|
194 |
+
def if_done(done, p):
|
195 |
+
while 1:
|
196 |
+
if p.poll() is None:
|
197 |
+
sleep(0.5)
|
198 |
+
else:
|
199 |
+
break
|
200 |
+
done[0] = True
|
201 |
+
|
202 |
+
|
203 |
+
def if_done_multi(done, ps):
|
204 |
+
while 1:
|
205 |
+
# poll==None代表进程未结束
|
206 |
+
# 只要有一个进程未结束都不停
|
207 |
+
flag = 1
|
208 |
+
for p in ps:
|
209 |
+
if p.poll() is None:
|
210 |
+
flag = 0
|
211 |
+
sleep(0.5)
|
212 |
+
break
|
213 |
+
if flag == 1:
|
214 |
+
break
|
215 |
+
done[0] = True
|
216 |
+
|
217 |
+
|
218 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
219 |
+
sr = sr_dict[sr]
|
220 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
221 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
222 |
+
f.close()
|
223 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
224 |
+
config.python_cmd,
|
225 |
+
trainset_dir,
|
226 |
+
sr,
|
227 |
+
n_p,
|
228 |
+
now_dir,
|
229 |
+
exp_dir,
|
230 |
+
config.noparallel,
|
231 |
+
config.preprocess_per,
|
232 |
+
)
|
233 |
+
logger.info("Execute: " + cmd)
|
234 |
+
# , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
235 |
+
p = Popen(cmd, shell=True)
|
236 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
237 |
+
done = [False]
|
238 |
+
threading.Thread(
|
239 |
+
target=if_done,
|
240 |
+
args=(
|
241 |
+
done,
|
242 |
+
p,
|
243 |
+
),
|
244 |
+
).start()
|
245 |
+
while 1:
|
246 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
247 |
+
yield (f.read())
|
248 |
+
sleep(1)
|
249 |
+
if done[0]:
|
250 |
+
break
|
251 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
252 |
+
log = f.read()
|
253 |
+
logger.info(log)
|
254 |
+
yield log
|
255 |
+
|
256 |
+
|
257 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
258 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
259 |
+
gpus = gpus.split("-")
|
260 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
261 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
262 |
+
f.close()
|
263 |
+
if if_f0:
|
264 |
+
if f0method != "rmvpe_gpu":
|
265 |
+
cmd = (
|
266 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
267 |
+
% (
|
268 |
+
config.python_cmd,
|
269 |
+
now_dir,
|
270 |
+
exp_dir,
|
271 |
+
n_p,
|
272 |
+
f0method,
|
273 |
+
)
|
274 |
+
)
|
275 |
+
logger.info("Execute: " + cmd)
|
276 |
+
p = Popen(
|
277 |
+
cmd, shell=True, cwd=now_dir
|
278 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
279 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
280 |
+
done = [False]
|
281 |
+
threading.Thread(
|
282 |
+
target=if_done,
|
283 |
+
args=(
|
284 |
+
done,
|
285 |
+
p,
|
286 |
+
),
|
287 |
+
).start()
|
288 |
+
else:
|
289 |
+
if gpus_rmvpe != "-":
|
290 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
291 |
+
leng = len(gpus_rmvpe)
|
292 |
+
ps = []
|
293 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
294 |
+
cmd = (
|
295 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
296 |
+
% (
|
297 |
+
config.python_cmd,
|
298 |
+
leng,
|
299 |
+
idx,
|
300 |
+
n_g,
|
301 |
+
now_dir,
|
302 |
+
exp_dir,
|
303 |
+
config.is_half,
|
304 |
+
)
|
305 |
+
)
|
306 |
+
logger.info("Execute: " + cmd)
|
307 |
+
p = Popen(
|
308 |
+
cmd, shell=True, cwd=now_dir
|
309 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
310 |
+
ps.append(p)
|
311 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
312 |
+
done = [False]
|
313 |
+
threading.Thread(
|
314 |
+
target=if_done_multi, #
|
315 |
+
args=(
|
316 |
+
done,
|
317 |
+
ps,
|
318 |
+
),
|
319 |
+
).start()
|
320 |
+
else:
|
321 |
+
cmd = (
|
322 |
+
config.python_cmd
|
323 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
324 |
+
% (
|
325 |
+
now_dir,
|
326 |
+
exp_dir,
|
327 |
+
)
|
328 |
+
)
|
329 |
+
logger.info("Execute: " + cmd)
|
330 |
+
p = Popen(
|
331 |
+
cmd, shell=True, cwd=now_dir
|
332 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
333 |
+
p.wait()
|
334 |
+
done = [True]
|
335 |
+
while 1:
|
336 |
+
with open(
|
337 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
338 |
+
) as f:
|
339 |
+
yield (f.read())
|
340 |
+
sleep(1)
|
341 |
+
if done[0]:
|
342 |
+
break
|
343 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
344 |
+
log = f.read()
|
345 |
+
logger.info(log)
|
346 |
+
yield log
|
347 |
+
# 对不同part分别开多进程
|
348 |
+
"""
|
349 |
+
n_part=int(sys.argv[1])
|
350 |
+
i_part=int(sys.argv[2])
|
351 |
+
i_gpu=sys.argv[3]
|
352 |
+
exp_dir=sys.argv[4]
|
353 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
354 |
+
"""
|
355 |
+
leng = len(gpus)
|
356 |
+
ps = []
|
357 |
+
for idx, n_g in enumerate(gpus):
|
358 |
+
cmd = (
|
359 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s'
|
360 |
+
% (
|
361 |
+
config.python_cmd,
|
362 |
+
config.device,
|
363 |
+
leng,
|
364 |
+
idx,
|
365 |
+
n_g,
|
366 |
+
now_dir,
|
367 |
+
exp_dir,
|
368 |
+
version19,
|
369 |
+
config.is_half,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
logger.info("Execute: " + cmd)
|
373 |
+
p = Popen(
|
374 |
+
cmd, shell=True, cwd=now_dir
|
375 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
376 |
+
ps.append(p)
|
377 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
378 |
+
done = [False]
|
379 |
+
threading.Thread(
|
380 |
+
target=if_done_multi,
|
381 |
+
args=(
|
382 |
+
done,
|
383 |
+
ps,
|
384 |
+
),
|
385 |
+
).start()
|
386 |
+
while 1:
|
387 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
388 |
+
yield (f.read())
|
389 |
+
sleep(1)
|
390 |
+
if done[0]:
|
391 |
+
break
|
392 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
393 |
+
log = f.read()
|
394 |
+
logger.info(log)
|
395 |
+
yield log
|
396 |
+
|
397 |
+
|
398 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
399 |
+
if_pretrained_generator_exist = os.access(
|
400 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
401 |
+
)
|
402 |
+
if_pretrained_discriminator_exist = os.access(
|
403 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
404 |
+
)
|
405 |
+
if not if_pretrained_generator_exist:
|
406 |
+
logger.warning(
|
407 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
408 |
+
path_str,
|
409 |
+
f0_str,
|
410 |
+
sr2,
|
411 |
+
)
|
412 |
+
if not if_pretrained_discriminator_exist:
|
413 |
+
logger.warning(
|
414 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
415 |
+
path_str,
|
416 |
+
f0_str,
|
417 |
+
sr2,
|
418 |
+
)
|
419 |
+
return (
|
420 |
+
(
|
421 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
422 |
+
if if_pretrained_generator_exist
|
423 |
+
else ""
|
424 |
+
),
|
425 |
+
(
|
426 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
427 |
+
if if_pretrained_discriminator_exist
|
428 |
+
else ""
|
429 |
+
),
|
430 |
+
)
|
431 |
+
|
432 |
+
|
433 |
+
def change_sr2(sr2, if_f0_3, version19):
|
434 |
+
path_str = "" if version19 == "v1" else "_v2"
|
435 |
+
f0_str = "f0" if if_f0_3 else ""
|
436 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
437 |
+
|
438 |
+
|
439 |
+
def change_version19(sr2, if_f0_3, version19):
|
440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
441 |
+
if sr2 == "32k" and version19 == "v1":
|
442 |
+
sr2 = "40k"
|
443 |
+
to_return_sr2 = (
|
444 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
445 |
+
if version19 == "v1"
|
446 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
447 |
+
)
|
448 |
+
f0_str = "f0" if if_f0_3 else ""
|
449 |
+
return (
|
450 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
451 |
+
to_return_sr2,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
456 |
+
path_str = "" if version19 == "v1" else "_v2"
|
457 |
+
return (
|
458 |
+
{"visible": if_f0_3, "__type__": "update"},
|
459 |
+
{"visible": if_f0_3, "__type__": "update"},
|
460 |
+
*get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
465 |
+
def click_train(
|
466 |
+
exp_dir1,
|
467 |
+
sr2,
|
468 |
+
if_f0_3,
|
469 |
+
spk_id5,
|
470 |
+
save_epoch10,
|
471 |
+
total_epoch11,
|
472 |
+
batch_size12,
|
473 |
+
if_save_latest13,
|
474 |
+
pretrained_G14,
|
475 |
+
pretrained_D15,
|
476 |
+
gpus16,
|
477 |
+
if_cache_gpu17,
|
478 |
+
if_save_every_weights18,
|
479 |
+
version19,
|
480 |
+
):
|
481 |
+
# 生成filelist
|
482 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
483 |
+
os.makedirs(exp_dir, exist_ok=True)
|
484 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
485 |
+
feature_dir = (
|
486 |
+
"%s/3_feature256" % (exp_dir)
|
487 |
+
if version19 == "v1"
|
488 |
+
else "%s/3_feature768" % (exp_dir)
|
489 |
+
)
|
490 |
+
if if_f0_3:
|
491 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
492 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
493 |
+
names = (
|
494 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
495 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
496 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
497 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
501 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
502 |
+
)
|
503 |
+
opt = []
|
504 |
+
for name in names:
|
505 |
+
if if_f0_3:
|
506 |
+
opt.append(
|
507 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
508 |
+
% (
|
509 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
510 |
+
name,
|
511 |
+
feature_dir.replace("\\", "\\\\"),
|
512 |
+
name,
|
513 |
+
f0_dir.replace("\\", "\\\\"),
|
514 |
+
name,
|
515 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
516 |
+
name,
|
517 |
+
spk_id5,
|
518 |
+
)
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
opt.append(
|
522 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
523 |
+
% (
|
524 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
525 |
+
name,
|
526 |
+
feature_dir.replace("\\", "\\\\"),
|
527 |
+
name,
|
528 |
+
spk_id5,
|
529 |
+
)
|
530 |
+
)
|
531 |
+
fea_dim = 256 if version19 == "v1" else 768
|
532 |
+
if if_f0_3:
|
533 |
+
for _ in range(2):
|
534 |
+
opt.append(
|
535 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
536 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
for _ in range(2):
|
540 |
+
opt.append(
|
541 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
542 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
543 |
+
)
|
544 |
+
shuffle(opt)
|
545 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
546 |
+
f.write("\n".join(opt))
|
547 |
+
logger.debug("Write filelist done")
|
548 |
+
# 生成config#无需生成config
|
549 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
550 |
+
logger.info("Use gpus: %s", str(gpus16))
|
551 |
+
if pretrained_G14 == "":
|
552 |
+
logger.info("No pretrained Generator")
|
553 |
+
if pretrained_D15 == "":
|
554 |
+
logger.info("No pretrained Discriminator")
|
555 |
+
if version19 == "v1" or sr2 == "40k":
|
556 |
+
config_path = "v1/%s.json" % sr2
|
557 |
+
else:
|
558 |
+
config_path = "v2/%s.json" % sr2
|
559 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
560 |
+
if not pathlib.Path(config_save_path).exists():
|
561 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
562 |
+
json.dump(
|
563 |
+
config.json_config[config_path],
|
564 |
+
f,
|
565 |
+
ensure_ascii=False,
|
566 |
+
indent=4,
|
567 |
+
sort_keys=True,
|
568 |
+
)
|
569 |
+
f.write("\n")
|
570 |
+
if gpus16:
|
571 |
+
cmd = (
|
572 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
573 |
+
% (
|
574 |
+
config.python_cmd,
|
575 |
+
exp_dir1,
|
576 |
+
sr2,
|
577 |
+
1 if if_f0_3 else 0,
|
578 |
+
batch_size12,
|
579 |
+
gpus16,
|
580 |
+
total_epoch11,
|
581 |
+
save_epoch10,
|
582 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
583 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
584 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
585 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
586 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
587 |
+
version19,
|
588 |
+
)
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
cmd = (
|
592 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
593 |
+
% (
|
594 |
+
config.python_cmd,
|
595 |
+
exp_dir1,
|
596 |
+
sr2,
|
597 |
+
1 if if_f0_3 else 0,
|
598 |
+
batch_size12,
|
599 |
+
total_epoch11,
|
600 |
+
save_epoch10,
|
601 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
602 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
603 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
604 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
605 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
606 |
+
version19,
|
607 |
+
)
|
608 |
+
)
|
609 |
+
logger.info("Execute: " + cmd)
|
610 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
611 |
+
p.wait()
|
612 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
613 |
+
|
614 |
+
|
615 |
+
# but4.click(train_index, [exp_dir1], info3)
|
616 |
+
def train_index(exp_dir1, version19):
|
617 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
618 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
619 |
+
os.makedirs(exp_dir, exist_ok=True)
|
620 |
+
feature_dir = (
|
621 |
+
"%s/3_feature256" % (exp_dir)
|
622 |
+
if version19 == "v1"
|
623 |
+
else "%s/3_feature768" % (exp_dir)
|
624 |
+
)
|
625 |
+
if not os.path.exists(feature_dir):
|
626 |
+
return "请先进行特征提取!"
|
627 |
+
listdir_res = list(os.listdir(feature_dir))
|
628 |
+
if len(listdir_res) == 0:
|
629 |
+
return "请先进行特征提取!"
|
630 |
+
infos = []
|
631 |
+
npys = []
|
632 |
+
for name in sorted(listdir_res):
|
633 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
634 |
+
npys.append(phone)
|
635 |
+
big_npy = np.concatenate(npys, 0)
|
636 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
637 |
+
np.random.shuffle(big_npy_idx)
|
638 |
+
big_npy = big_npy[big_npy_idx]
|
639 |
+
if big_npy.shape[0] > 2e5:
|
640 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
641 |
+
yield "\n".join(infos)
|
642 |
+
try:
|
643 |
+
big_npy = (
|
644 |
+
MiniBatchKMeans(
|
645 |
+
n_clusters=10000,
|
646 |
+
verbose=True,
|
647 |
+
batch_size=256 * config.n_cpu,
|
648 |
+
compute_labels=False,
|
649 |
+
init="random",
|
650 |
+
)
|
651 |
+
.fit(big_npy)
|
652 |
+
.cluster_centers_
|
653 |
+
)
|
654 |
+
except:
|
655 |
+
info = traceback.format_exc()
|
656 |
+
logger.info(info)
|
657 |
+
infos.append(info)
|
658 |
+
yield "\n".join(infos)
|
659 |
+
|
660 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
661 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
662 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
663 |
+
yield "\n".join(infos)
|
664 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
665 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
666 |
+
infos.append("training")
|
667 |
+
yield "\n".join(infos)
|
668 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
669 |
+
index_ivf.nprobe = 1
|
670 |
+
index.train(big_npy)
|
671 |
+
faiss.write_index(
|
672 |
+
index,
|
673 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
674 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
675 |
+
)
|
676 |
+
infos.append("adding")
|
677 |
+
yield "\n".join(infos)
|
678 |
+
batch_size_add = 8192
|
679 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
680 |
+
index.add(big_npy[i : i + batch_size_add])
|
681 |
+
faiss.write_index(
|
682 |
+
index,
|
683 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
684 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
685 |
+
)
|
686 |
+
infos.append(
|
687 |
+
"成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
688 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
689 |
+
)
|
690 |
+
try:
|
691 |
+
link = os.link if platform.system() == "Windows" else os.symlink
|
692 |
+
link(
|
693 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
694 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
695 |
+
"%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
696 |
+
% (
|
697 |
+
outside_index_root,
|
698 |
+
exp_dir1,
|
699 |
+
n_ivf,
|
700 |
+
index_ivf.nprobe,
|
701 |
+
exp_dir1,
|
702 |
+
version19,
|
703 |
+
),
|
704 |
+
)
|
705 |
+
infos.append("链接索引到外部-%s" % (outside_index_root))
|
706 |
+
except:
|
707 |
+
infos.append("链接索引到外部-%s失败" % (outside_index_root))
|
708 |
+
|
709 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
710 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
711 |
+
yield "\n".join(infos)
|
712 |
+
|
713 |
+
|
714 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
715 |
+
def train1key(
|
716 |
+
exp_dir1,
|
717 |
+
sr2,
|
718 |
+
if_f0_3,
|
719 |
+
trainset_dir4,
|
720 |
+
spk_id5,
|
721 |
+
np7,
|
722 |
+
f0method8,
|
723 |
+
save_epoch10,
|
724 |
+
total_epoch11,
|
725 |
+
batch_size12,
|
726 |
+
if_save_latest13,
|
727 |
+
pretrained_G14,
|
728 |
+
pretrained_D15,
|
729 |
+
gpus16,
|
730 |
+
if_cache_gpu17,
|
731 |
+
if_save_every_weights18,
|
732 |
+
version19,
|
733 |
+
gpus_rmvpe,
|
734 |
+
):
|
735 |
+
infos = []
|
736 |
+
|
737 |
+
def get_info_str(strr):
|
738 |
+
infos.append(strr)
|
739 |
+
return "\n".join(infos)
|
740 |
+
|
741 |
+
# step1:处理数据
|
742 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
743 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
744 |
+
|
745 |
+
# step2a:提取音高
|
746 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
747 |
+
[
|
748 |
+
get_info_str(_)
|
749 |
+
for _ in extract_f0_feature(
|
750 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
751 |
+
)
|
752 |
+
]
|
753 |
+
|
754 |
+
# step3a:训练模型
|
755 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
756 |
+
click_train(
|
757 |
+
exp_dir1,
|
758 |
+
sr2,
|
759 |
+
if_f0_3,
|
760 |
+
spk_id5,
|
761 |
+
save_epoch10,
|
762 |
+
total_epoch11,
|
763 |
+
batch_size12,
|
764 |
+
if_save_latest13,
|
765 |
+
pretrained_G14,
|
766 |
+
pretrained_D15,
|
767 |
+
gpus16,
|
768 |
+
if_cache_gpu17,
|
769 |
+
if_save_every_weights18,
|
770 |
+
version19,
|
771 |
+
)
|
772 |
+
yield get_info_str(
|
773 |
+
i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
|
774 |
+
)
|
775 |
+
|
776 |
+
# step3b:训练索引
|
777 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
778 |
+
yield get_info_str(i18n("全流程结束!"))
|
779 |
+
|
780 |
+
|
781 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
782 |
+
def change_info_(ckpt_path):
|
783 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
784 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
785 |
+
try:
|
786 |
+
with open(
|
787 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
788 |
+
) as f:
|
789 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
790 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
791 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
792 |
+
return sr, str(f0), version
|
793 |
+
except:
|
794 |
+
traceback.print_exc()
|
795 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
796 |
+
|
797 |
+
|
798 |
+
F0GPUVisible = config.dml == False
|
799 |
+
|
800 |
+
|
801 |
+
def change_f0_method(f0method8):
|
802 |
+
if f0method8 == "rmvpe_gpu":
|
803 |
+
visible = F0GPUVisible
|
804 |
+
else:
|
805 |
+
visible = False
|
806 |
+
return {"visible": visible, "__type__": "update"}
|
807 |
+
|
808 |
+
|
809 |
+
with gr.Blocks(title="RVC WebUI") as app:
|
810 |
+
gr.Markdown("## RVC WebUI")
|
811 |
+
gr.Markdown(
|
812 |
+
value=i18n(
|
813 |
+
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
814 |
+
)
|
815 |
+
)
|
816 |
+
with gr.Tabs():
|
817 |
+
with gr.TabItem(i18n("模型推理")):
|
818 |
+
with gr.Row():
|
819 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
820 |
+
with gr.Column():
|
821 |
+
refresh_button = gr.Button(
|
822 |
+
i18n("刷新音色列表和索引路径"), variant="primary"
|
823 |
+
)
|
824 |
+
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
825 |
+
spk_item = gr.Slider(
|
826 |
+
minimum=0,
|
827 |
+
maximum=2333,
|
828 |
+
step=1,
|
829 |
+
label=i18n("请选择说话人id"),
|
830 |
+
value=0,
|
831 |
+
visible=False,
|
832 |
+
interactive=True,
|
833 |
+
)
|
834 |
+
clean_button.click(
|
835 |
+
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
836 |
+
)
|
837 |
+
with gr.TabItem(i18n("单次推理")):
|
838 |
+
with gr.Group():
|
839 |
+
with gr.Row():
|
840 |
+
with gr.Column():
|
841 |
+
vc_transform0 = gr.Number(
|
842 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
843 |
+
value=0,
|
844 |
+
)
|
845 |
+
input_audio0 = gr.Textbox(
|
846 |
+
label=i18n(
|
847 |
+
"输入待处理音频文件路径(默认是正确格式示例)"
|
848 |
+
),
|
849 |
+
placeholder="C:\\Users\\Desktop\\audio_example.wav",
|
850 |
+
)
|
851 |
+
file_index1 = gr.Textbox(
|
852 |
+
label=i18n(
|
853 |
+
"特征检索库文件路径,为空则使用下拉的选择结果"
|
854 |
+
),
|
855 |
+
placeholder="C:\\Users\\Desktop\\model_example.index",
|
856 |
+
interactive=True,
|
857 |
+
)
|
858 |
+
file_index2 = gr.Dropdown(
|
859 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
860 |
+
choices=sorted(index_paths),
|
861 |
+
interactive=True,
|
862 |
+
)
|
863 |
+
f0method0 = gr.Radio(
|
864 |
+
label=i18n(
|
865 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
866 |
+
),
|
867 |
+
choices=(
|
868 |
+
["pm", "harvest", "crepe", "rmvpe"]
|
869 |
+
if config.dml == False
|
870 |
+
else ["pm", "harvest", "rmvpe"]
|
871 |
+
),
|
872 |
+
value="rmvpe",
|
873 |
+
interactive=True,
|
874 |
+
)
|
875 |
+
|
876 |
+
with gr.Column():
|
877 |
+
resample_sr0 = gr.Slider(
|
878 |
+
minimum=0,
|
879 |
+
maximum=48000,
|
880 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
881 |
+
value=0,
|
882 |
+
step=1,
|
883 |
+
interactive=True,
|
884 |
+
)
|
885 |
+
rms_mix_rate0 = gr.Slider(
|
886 |
+
minimum=0,
|
887 |
+
maximum=1,
|
888 |
+
label=i18n(
|
889 |
+
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
890 |
+
),
|
891 |
+
value=0.25,
|
892 |
+
interactive=True,
|
893 |
+
)
|
894 |
+
protect0 = gr.Slider(
|
895 |
+
minimum=0,
|
896 |
+
maximum=0.5,
|
897 |
+
label=i18n(
|
898 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
899 |
+
),
|
900 |
+
value=0.33,
|
901 |
+
step=0.01,
|
902 |
+
interactive=True,
|
903 |
+
)
|
904 |
+
filter_radius0 = gr.Slider(
|
905 |
+
minimum=0,
|
906 |
+
maximum=7,
|
907 |
+
label=i18n(
|
908 |
+
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
909 |
+
),
|
910 |
+
value=3,
|
911 |
+
step=1,
|
912 |
+
interactive=True,
|
913 |
+
)
|
914 |
+
index_rate1 = gr.Slider(
|
915 |
+
minimum=0,
|
916 |
+
maximum=1,
|
917 |
+
label=i18n("检索特征占比"),
|
918 |
+
value=0.75,
|
919 |
+
interactive=True,
|
920 |
+
)
|
921 |
+
f0_file = gr.File(
|
922 |
+
label=i18n(
|
923 |
+
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"
|
924 |
+
),
|
925 |
+
visible=False,
|
926 |
+
)
|
927 |
+
|
928 |
+
refresh_button.click(
|
929 |
+
fn=change_choices,
|
930 |
+
inputs=[],
|
931 |
+
outputs=[sid0, file_index2],
|
932 |
+
api_name="infer_refresh",
|
933 |
+
)
|
934 |
+
# file_big_npy1 = gr.Textbox(
|
935 |
+
# label=i18n("特征文件路径"),
|
936 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
937 |
+
# interactive=True,
|
938 |
+
# )
|
939 |
+
with gr.Group():
|
940 |
+
with gr.Column():
|
941 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
942 |
+
with gr.Row():
|
943 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
944 |
+
vc_output2 = gr.Audio(
|
945 |
+
label=i18n("输出音频(右下角三个点,点了可以下载)")
|
946 |
+
)
|
947 |
+
|
948 |
+
but0.click(
|
949 |
+
vc.vc_single,
|
950 |
+
[
|
951 |
+
spk_item,
|
952 |
+
input_audio0,
|
953 |
+
vc_transform0,
|
954 |
+
f0_file,
|
955 |
+
f0method0,
|
956 |
+
file_index1,
|
957 |
+
file_index2,
|
958 |
+
# file_big_npy1,
|
959 |
+
index_rate1,
|
960 |
+
filter_radius0,
|
961 |
+
resample_sr0,
|
962 |
+
rms_mix_rate0,
|
963 |
+
protect0,
|
964 |
+
],
|
965 |
+
[vc_output1, vc_output2],
|
966 |
+
api_name="infer_convert",
|
967 |
+
)
|
968 |
+
with gr.TabItem(i18n("批量推理")):
|
969 |
+
gr.Markdown(
|
970 |
+
value=i18n(
|
971 |
+
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. "
|
972 |
+
)
|
973 |
+
)
|
974 |
+
with gr.Row():
|
975 |
+
with gr.Column():
|
976 |
+
vc_transform1 = gr.Number(
|
977 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
978 |
+
value=0,
|
979 |
+
)
|
980 |
+
opt_input = gr.Textbox(
|
981 |
+
label=i18n("指定输出文件夹"), value="opt"
|
982 |
+
)
|
983 |
+
file_index3 = gr.Textbox(
|
984 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
985 |
+
value="",
|
986 |
+
interactive=True,
|
987 |
+
)
|
988 |
+
file_index4 = gr.Dropdown(
|
989 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
990 |
+
choices=sorted(index_paths),
|
991 |
+
interactive=True,
|
992 |
+
)
|
993 |
+
f0method1 = gr.Radio(
|
994 |
+
label=i18n(
|
995 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
996 |
+
),
|
997 |
+
choices=(
|
998 |
+
["pm", "harvest", "crepe", "rmvpe"]
|
999 |
+
if config.dml == False
|
1000 |
+
else ["pm", "harvest", "rmvpe"]
|
1001 |
+
),
|
1002 |
+
value="rmvpe",
|
1003 |
+
interactive=True,
|
1004 |
+
)
|
1005 |
+
format1 = gr.Radio(
|
1006 |
+
label=i18n("导出文件格式"),
|
1007 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1008 |
+
value="wav",
|
1009 |
+
interactive=True,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
refresh_button.click(
|
1013 |
+
fn=lambda: change_choices()[1],
|
1014 |
+
inputs=[],
|
1015 |
+
outputs=file_index4,
|
1016 |
+
api_name="infer_refresh_batch",
|
1017 |
+
)
|
1018 |
+
# file_big_npy2 = gr.Textbox(
|
1019 |
+
# label=i18n("特征文件路径"),
|
1020 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1021 |
+
# interactive=True,
|
1022 |
+
# )
|
1023 |
+
|
1024 |
+
with gr.Column():
|
1025 |
+
resample_sr1 = gr.Slider(
|
1026 |
+
minimum=0,
|
1027 |
+
maximum=48000,
|
1028 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1029 |
+
value=0,
|
1030 |
+
step=1,
|
1031 |
+
interactive=True,
|
1032 |
+
)
|
1033 |
+
rms_mix_rate1 = gr.Slider(
|
1034 |
+
minimum=0,
|
1035 |
+
maximum=1,
|
1036 |
+
label=i18n(
|
1037 |
+
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
1038 |
+
),
|
1039 |
+
value=1,
|
1040 |
+
interactive=True,
|
1041 |
+
)
|
1042 |
+
protect1 = gr.Slider(
|
1043 |
+
minimum=0,
|
1044 |
+
maximum=0.5,
|
1045 |
+
label=i18n(
|
1046 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1047 |
+
),
|
1048 |
+
value=0.33,
|
1049 |
+
step=0.01,
|
1050 |
+
interactive=True,
|
1051 |
+
)
|
1052 |
+
filter_radius1 = gr.Slider(
|
1053 |
+
minimum=0,
|
1054 |
+
maximum=7,
|
1055 |
+
label=i18n(
|
1056 |
+
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
1057 |
+
),
|
1058 |
+
value=3,
|
1059 |
+
step=1,
|
1060 |
+
interactive=True,
|
1061 |
+
)
|
1062 |
+
index_rate2 = gr.Slider(
|
1063 |
+
minimum=0,
|
1064 |
+
maximum=1,
|
1065 |
+
label=i18n("检索特征占比"),
|
1066 |
+
value=1,
|
1067 |
+
interactive=True,
|
1068 |
+
)
|
1069 |
+
with gr.Row():
|
1070 |
+
dir_input = gr.Textbox(
|
1071 |
+
label=i18n(
|
1072 |
+
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"
|
1073 |
+
),
|
1074 |
+
placeholder="C:\\Users\\Desktop\\input_vocal_dir",
|
1075 |
+
)
|
1076 |
+
inputs = gr.File(
|
1077 |
+
file_count="multiple",
|
1078 |
+
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
with gr.Row():
|
1082 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1083 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1084 |
+
|
1085 |
+
but1.click(
|
1086 |
+
vc.vc_multi,
|
1087 |
+
[
|
1088 |
+
spk_item,
|
1089 |
+
dir_input,
|
1090 |
+
opt_input,
|
1091 |
+
inputs,
|
1092 |
+
vc_transform1,
|
1093 |
+
f0method1,
|
1094 |
+
file_index3,
|
1095 |
+
file_index4,
|
1096 |
+
# file_big_npy2,
|
1097 |
+
index_rate2,
|
1098 |
+
filter_radius1,
|
1099 |
+
resample_sr1,
|
1100 |
+
rms_mix_rate1,
|
1101 |
+
protect1,
|
1102 |
+
format1,
|
1103 |
+
],
|
1104 |
+
[vc_output3],
|
1105 |
+
api_name="infer_convert_batch",
|
1106 |
+
)
|
1107 |
+
sid0.change(
|
1108 |
+
fn=vc.get_vc,
|
1109 |
+
inputs=[sid0, protect0, protect1],
|
1110 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
1111 |
+
api_name="infer_change_voice",
|
1112 |
+
)
|
1113 |
+
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
1114 |
+
with gr.Group():
|
1115 |
+
gr.Markdown(
|
1116 |
+
value=i18n(
|
1117 |
+
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
1118 |
+
)
|
1119 |
+
)
|
1120 |
+
with gr.Row():
|
1121 |
+
with gr.Column():
|
1122 |
+
dir_wav_input = gr.Textbox(
|
1123 |
+
label=i18n("输入待处理音频文件夹路径"),
|
1124 |
+
placeholder="C:\\Users\\Desktop\\todo-songs",
|
1125 |
+
)
|
1126 |
+
wav_inputs = gr.File(
|
1127 |
+
file_count="multiple",
|
1128 |
+
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
1129 |
+
)
|
1130 |
+
with gr.Column():
|
1131 |
+
model_choose = gr.Dropdown(
|
1132 |
+
label=i18n("模型"), choices=uvr5_names
|
1133 |
+
)
|
1134 |
+
agg = gr.Slider(
|
1135 |
+
minimum=0,
|
1136 |
+
maximum=20,
|
1137 |
+
step=1,
|
1138 |
+
label="人声提取激进程度",
|
1139 |
+
value=10,
|
1140 |
+
interactive=True,
|
1141 |
+
visible=False, # 先不开放调整
|
1142 |
+
)
|
1143 |
+
opt_vocal_root = gr.Textbox(
|
1144 |
+
label=i18n("指定输出主人声文件夹"), value="opt"
|
1145 |
+
)
|
1146 |
+
opt_ins_root = gr.Textbox(
|
1147 |
+
label=i18n("指定输出非主人声文件夹"), value="opt"
|
1148 |
+
)
|
1149 |
+
format0 = gr.Radio(
|
1150 |
+
label=i18n("导出文件格式"),
|
1151 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1152 |
+
value="flac",
|
1153 |
+
interactive=True,
|
1154 |
+
)
|
1155 |
+
but2 = gr.Button(i18n("转换"), variant="primary")
|
1156 |
+
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
1157 |
+
but2.click(
|
1158 |
+
uvr,
|
1159 |
+
[
|
1160 |
+
model_choose,
|
1161 |
+
dir_wav_input,
|
1162 |
+
opt_vocal_root,
|
1163 |
+
wav_inputs,
|
1164 |
+
opt_ins_root,
|
1165 |
+
agg,
|
1166 |
+
format0,
|
1167 |
+
],
|
1168 |
+
[vc_output4],
|
1169 |
+
api_name="uvr_convert",
|
1170 |
+
)
|
1171 |
+
with gr.TabItem(i18n("训练")):
|
1172 |
+
gr.Markdown(
|
1173 |
+
value=i18n(
|
1174 |
+
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
1175 |
+
)
|
1176 |
+
)
|
1177 |
+
with gr.Row():
|
1178 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
1179 |
+
sr2 = gr.Radio(
|
1180 |
+
label=i18n("目标采样率"),
|
1181 |
+
choices=["40k", "48k"],
|
1182 |
+
value="40k",
|
1183 |
+
interactive=True,
|
1184 |
+
)
|
1185 |
+
if_f0_3 = gr.Radio(
|
1186 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1187 |
+
choices=[True, False],
|
1188 |
+
value=True,
|
1189 |
+
interactive=True,
|
1190 |
+
)
|
1191 |
+
version19 = gr.Radio(
|
1192 |
+
label=i18n("版本"),
|
1193 |
+
choices=["v1", "v2"],
|
1194 |
+
value="v2",
|
1195 |
+
interactive=True,
|
1196 |
+
visible=True,
|
1197 |
+
)
|
1198 |
+
np7 = gr.Slider(
|
1199 |
+
minimum=0,
|
1200 |
+
maximum=config.n_cpu,
|
1201 |
+
step=1,
|
1202 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
1203 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
1204 |
+
interactive=True,
|
1205 |
+
)
|
1206 |
+
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
1207 |
+
gr.Markdown(
|
1208 |
+
value=i18n(
|
1209 |
+
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
1210 |
+
)
|
1211 |
+
)
|
1212 |
+
with gr.Row():
|
1213 |
+
trainset_dir4 = gr.Textbox(
|
1214 |
+
label=i18n("输入训练文件夹路径"),
|
1215 |
+
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
|
1216 |
+
)
|
1217 |
+
spk_id5 = gr.Slider(
|
1218 |
+
minimum=0,
|
1219 |
+
maximum=4,
|
1220 |
+
step=1,
|
1221 |
+
label=i18n("请指定说话人id"),
|
1222 |
+
value=0,
|
1223 |
+
interactive=True,
|
1224 |
+
)
|
1225 |
+
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
1226 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
1227 |
+
but1.click(
|
1228 |
+
preprocess_dataset,
|
1229 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
1230 |
+
[info1],
|
1231 |
+
api_name="train_preprocess",
|
1232 |
+
)
|
1233 |
+
with gr.Group():
|
1234 |
+
gr.Markdown(
|
1235 |
+
value=i18n(
|
1236 |
+
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
|
1237 |
+
)
|
1238 |
+
)
|
1239 |
+
with gr.Row():
|
1240 |
+
with gr.Column():
|
1241 |
+
gpus6 = gr.Textbox(
|
1242 |
+
label=i18n(
|
1243 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
1244 |
+
),
|
1245 |
+
value=gpus,
|
1246 |
+
interactive=True,
|
1247 |
+
visible=F0GPUVisible,
|
1248 |
+
)
|
1249 |
+
gpu_info9 = gr.Textbox(
|
1250 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
1251 |
+
)
|
1252 |
+
with gr.Column():
|
1253 |
+
f0method8 = gr.Radio(
|
1254 |
+
label=i18n(
|
1255 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
1256 |
+
),
|
1257 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
1258 |
+
value="rmvpe_gpu",
|
1259 |
+
interactive=True,
|
1260 |
+
)
|
1261 |
+
gpus_rmvpe = gr.Textbox(
|
1262 |
+
label=i18n(
|
1263 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
1264 |
+
),
|
1265 |
+
value="%s-%s" % (gpus, gpus),
|
1266 |
+
interactive=True,
|
1267 |
+
visible=F0GPUVisible,
|
1268 |
+
)
|
1269 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
1270 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1271 |
+
f0method8.change(
|
1272 |
+
fn=change_f0_method,
|
1273 |
+
inputs=[f0method8],
|
1274 |
+
outputs=[gpus_rmvpe],
|
1275 |
+
)
|
1276 |
+
but2.click(
|
1277 |
+
extract_f0_feature,
|
1278 |
+
[
|
1279 |
+
gpus6,
|
1280 |
+
np7,
|
1281 |
+
f0method8,
|
1282 |
+
if_f0_3,
|
1283 |
+
exp_dir1,
|
1284 |
+
version19,
|
1285 |
+
gpus_rmvpe,
|
1286 |
+
],
|
1287 |
+
[info2],
|
1288 |
+
api_name="train_extract_f0_feature",
|
1289 |
+
)
|
1290 |
+
with gr.Group():
|
1291 |
+
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
1292 |
+
with gr.Row():
|
1293 |
+
save_epoch10 = gr.Slider(
|
1294 |
+
minimum=1,
|
1295 |
+
maximum=50,
|
1296 |
+
step=1,
|
1297 |
+
label=i18n("保存频率save_every_epoch"),
|
1298 |
+
value=5,
|
1299 |
+
interactive=True,
|
1300 |
+
)
|
1301 |
+
total_epoch11 = gr.Slider(
|
1302 |
+
minimum=2,
|
1303 |
+
maximum=1000,
|
1304 |
+
step=1,
|
1305 |
+
label=i18n("总训练轮数total_epoch"),
|
1306 |
+
value=20,
|
1307 |
+
interactive=True,
|
1308 |
+
)
|
1309 |
+
batch_size12 = gr.Slider(
|
1310 |
+
minimum=1,
|
1311 |
+
maximum=40,
|
1312 |
+
step=1,
|
1313 |
+
label=i18n("每张显卡的batch_size"),
|
1314 |
+
value=default_batch_size,
|
1315 |
+
interactive=True,
|
1316 |
+
)
|
1317 |
+
if_save_latest13 = gr.Radio(
|
1318 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
1319 |
+
choices=[i18n("是"), i18n("否")],
|
1320 |
+
value=i18n("否"),
|
1321 |
+
interactive=True,
|
1322 |
+
)
|
1323 |
+
if_cache_gpu17 = gr.Radio(
|
1324 |
+
label=i18n(
|
1325 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
1326 |
+
),
|
1327 |
+
choices=[i18n("是"), i18n("否")],
|
1328 |
+
value=i18n("否"),
|
1329 |
+
interactive=True,
|
1330 |
+
)
|
1331 |
+
if_save_every_weights18 = gr.Radio(
|
1332 |
+
label=i18n(
|
1333 |
+
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
1334 |
+
),
|
1335 |
+
choices=[i18n("是"), i18n("否")],
|
1336 |
+
value=i18n("否"),
|
1337 |
+
interactive=True,
|
1338 |
+
)
|
1339 |
+
with gr.Row():
|
1340 |
+
pretrained_G14 = gr.Textbox(
|
1341 |
+
label=i18n("加载预训练底模G路径"),
|
1342 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
1343 |
+
interactive=True,
|
1344 |
+
)
|
1345 |
+
pretrained_D15 = gr.Textbox(
|
1346 |
+
label=i18n("加载预训练底模D路径"),
|
1347 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
1348 |
+
interactive=True,
|
1349 |
+
)
|
1350 |
+
sr2.change(
|
1351 |
+
change_sr2,
|
1352 |
+
[sr2, if_f0_3, version19],
|
1353 |
+
[pretrained_G14, pretrained_D15],
|
1354 |
+
)
|
1355 |
+
version19.change(
|
1356 |
+
change_version19,
|
1357 |
+
[sr2, if_f0_3, version19],
|
1358 |
+
[pretrained_G14, pretrained_D15, sr2],
|
1359 |
+
)
|
1360 |
+
if_f0_3.change(
|
1361 |
+
change_f0,
|
1362 |
+
[if_f0_3, sr2, version19],
|
1363 |
+
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
|
1364 |
+
)
|
1365 |
+
gpus16 = gr.Textbox(
|
1366 |
+
label=i18n(
|
1367 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
1368 |
+
),
|
1369 |
+
value=gpus,
|
1370 |
+
interactive=True,
|
1371 |
+
)
|
1372 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
1373 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
1374 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
1375 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
1376 |
+
but3.click(
|
1377 |
+
click_train,
|
1378 |
+
[
|
1379 |
+
exp_dir1,
|
1380 |
+
sr2,
|
1381 |
+
if_f0_3,
|
1382 |
+
spk_id5,
|
1383 |
+
save_epoch10,
|
1384 |
+
total_epoch11,
|
1385 |
+
batch_size12,
|
1386 |
+
if_save_latest13,
|
1387 |
+
pretrained_G14,
|
1388 |
+
pretrained_D15,
|
1389 |
+
gpus16,
|
1390 |
+
if_cache_gpu17,
|
1391 |
+
if_save_every_weights18,
|
1392 |
+
version19,
|
1393 |
+
],
|
1394 |
+
info3,
|
1395 |
+
api_name="train_start",
|
1396 |
+
)
|
1397 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1398 |
+
but5.click(
|
1399 |
+
train1key,
|
1400 |
+
[
|
1401 |
+
exp_dir1,
|
1402 |
+
sr2,
|
1403 |
+
if_f0_3,
|
1404 |
+
trainset_dir4,
|
1405 |
+
spk_id5,
|
1406 |
+
np7,
|
1407 |
+
f0method8,
|
1408 |
+
save_epoch10,
|
1409 |
+
total_epoch11,
|
1410 |
+
batch_size12,
|
1411 |
+
if_save_latest13,
|
1412 |
+
pretrained_G14,
|
1413 |
+
pretrained_D15,
|
1414 |
+
gpus16,
|
1415 |
+
if_cache_gpu17,
|
1416 |
+
if_save_every_weights18,
|
1417 |
+
version19,
|
1418 |
+
gpus_rmvpe,
|
1419 |
+
],
|
1420 |
+
info3,
|
1421 |
+
api_name="train_start_all",
|
1422 |
+
)
|
1423 |
+
|
1424 |
+
with gr.TabItem(i18n("ckpt处理")):
|
1425 |
+
with gr.Group():
|
1426 |
+
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
1427 |
+
with gr.Row():
|
1428 |
+
ckpt_a = gr.Textbox(
|
1429 |
+
label=i18n("A模型路径"), value="", interactive=True
|
1430 |
+
)
|
1431 |
+
ckpt_b = gr.Textbox(
|
1432 |
+
label=i18n("B模型路径"), value="", interactive=True
|
1433 |
+
)
|
1434 |
+
alpha_a = gr.Slider(
|
1435 |
+
minimum=0,
|
1436 |
+
maximum=1,
|
1437 |
+
label=i18n("A模型权重"),
|
1438 |
+
value=0.5,
|
1439 |
+
interactive=True,
|
1440 |
+
)
|
1441 |
+
with gr.Row():
|
1442 |
+
sr_ = gr.Radio(
|
1443 |
+
label=i18n("目标采样率"),
|
1444 |
+
choices=["40k", "48k"],
|
1445 |
+
value="40k",
|
1446 |
+
interactive=True,
|
1447 |
+
)
|
1448 |
+
if_f0_ = gr.Radio(
|
1449 |
+
label=i18n("模型是否带音高指导"),
|
1450 |
+
choices=[i18n("是"), i18n("否")],
|
1451 |
+
value=i18n("是"),
|
1452 |
+
interactive=True,
|
1453 |
+
)
|
1454 |
+
info__ = gr.Textbox(
|
1455 |
+
label=i18n("要置入的模型信息"),
|
1456 |
+
value="",
|
1457 |
+
max_lines=8,
|
1458 |
+
interactive=True,
|
1459 |
+
)
|
1460 |
+
name_to_save0 = gr.Textbox(
|
1461 |
+
label=i18n("保存的模型名不带后缀"),
|
1462 |
+
value="",
|
1463 |
+
max_lines=1,
|
1464 |
+
interactive=True,
|
1465 |
+
)
|
1466 |
+
version_2 = gr.Radio(
|
1467 |
+
label=i18n("模型版本型号"),
|
1468 |
+
choices=["v1", "v2"],
|
1469 |
+
value="v1",
|
1470 |
+
interactive=True,
|
1471 |
+
)
|
1472 |
+
with gr.Row():
|
1473 |
+
but6 = gr.Button(i18n("融合"), variant="primary")
|
1474 |
+
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1475 |
+
but6.click(
|
1476 |
+
merge,
|
1477 |
+
[
|
1478 |
+
ckpt_a,
|
1479 |
+
ckpt_b,
|
1480 |
+
alpha_a,
|
1481 |
+
sr_,
|
1482 |
+
if_f0_,
|
1483 |
+
info__,
|
1484 |
+
name_to_save0,
|
1485 |
+
version_2,
|
1486 |
+
],
|
1487 |
+
info4,
|
1488 |
+
api_name="ckpt_merge",
|
1489 |
+
) # def merge(path1,path2,alpha1,sr,f0,info):
|
1490 |
+
with gr.Group():
|
1491 |
+
gr.Markdown(
|
1492 |
+
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
|
1493 |
+
)
|
1494 |
+
with gr.Row():
|
1495 |
+
ckpt_path0 = gr.Textbox(
|
1496 |
+
label=i18n("模型路径"), value="", interactive=True
|
1497 |
+
)
|
1498 |
+
info_ = gr.Textbox(
|
1499 |
+
label=i18n("要改的模型信息"),
|
1500 |
+
value="",
|
1501 |
+
max_lines=8,
|
1502 |
+
interactive=True,
|
1503 |
+
)
|
1504 |
+
name_to_save1 = gr.Textbox(
|
1505 |
+
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
1506 |
+
value="",
|
1507 |
+
max_lines=8,
|
1508 |
+
interactive=True,
|
1509 |
+
)
|
1510 |
+
with gr.Row():
|
1511 |
+
but7 = gr.Button(i18n("修改"), variant="primary")
|
1512 |
+
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1513 |
+
but7.click(
|
1514 |
+
change_info,
|
1515 |
+
[ckpt_path0, info_, name_to_save1],
|
1516 |
+
info5,
|
1517 |
+
api_name="ckpt_modify",
|
1518 |
+
)
|
1519 |
+
with gr.Group():
|
1520 |
+
gr.Markdown(
|
1521 |
+
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
|
1522 |
+
)
|
1523 |
+
with gr.Row():
|
1524 |
+
ckpt_path1 = gr.Textbox(
|
1525 |
+
label=i18n("模型路径"), value="", interactive=True
|
1526 |
+
)
|
1527 |
+
but8 = gr.Button(i18n("查看"), variant="primary")
|
1528 |
+
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1529 |
+
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
|
1530 |
+
with gr.Group():
|
1531 |
+
gr.Markdown(
|
1532 |
+
value=i18n(
|
1533 |
+
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
1534 |
+
)
|
1535 |
+
)
|
1536 |
+
with gr.Row():
|
1537 |
+
ckpt_path2 = gr.Textbox(
|
1538 |
+
label=i18n("模型路径"),
|
1539 |
+
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
1540 |
+
interactive=True,
|
1541 |
+
)
|
1542 |
+
save_name = gr.Textbox(
|
1543 |
+
label=i18n("保存名"), value="", interactive=True
|
1544 |
+
)
|
1545 |
+
sr__ = gr.Radio(
|
1546 |
+
label=i18n("目标采样率"),
|
1547 |
+
choices=["32k", "40k", "48k"],
|
1548 |
+
value="40k",
|
1549 |
+
interactive=True,
|
1550 |
+
)
|
1551 |
+
if_f0__ = gr.Radio(
|
1552 |
+
label=i18n("模型是否带音高指导,1是0否"),
|
1553 |
+
choices=["1", "0"],
|
1554 |
+
value="1",
|
1555 |
+
interactive=True,
|
1556 |
+
)
|
1557 |
+
version_1 = gr.Radio(
|
1558 |
+
label=i18n("模型版本型号"),
|
1559 |
+
choices=["v1", "v2"],
|
1560 |
+
value="v2",
|
1561 |
+
interactive=True,
|
1562 |
+
)
|
1563 |
+
info___ = gr.Textbox(
|
1564 |
+
label=i18n("要置入的模型信息"),
|
1565 |
+
value="",
|
1566 |
+
max_lines=8,
|
1567 |
+
interactive=True,
|
1568 |
+
)
|
1569 |
+
but9 = gr.Button(i18n("提取"), variant="primary")
|
1570 |
+
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1571 |
+
ckpt_path2.change(
|
1572 |
+
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
1573 |
+
)
|
1574 |
+
but9.click(
|
1575 |
+
extract_small_model,
|
1576 |
+
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
1577 |
+
info7,
|
1578 |
+
api_name="ckpt_extract",
|
1579 |
+
)
|
1580 |
+
|
1581 |
+
with gr.TabItem(i18n("Onnx导出")):
|
1582 |
+
with gr.Row():
|
1583 |
+
ckpt_dir = gr.Textbox(
|
1584 |
+
label=i18n("RVC模型路径"), value="", interactive=True
|
1585 |
+
)
|
1586 |
+
with gr.Row():
|
1587 |
+
onnx_dir = gr.Textbox(
|
1588 |
+
label=i18n("Onnx输出路径"), value="", interactive=True
|
1589 |
+
)
|
1590 |
+
with gr.Row():
|
1591 |
+
infoOnnx = gr.Label(label="info")
|
1592 |
+
with gr.Row():
|
1593 |
+
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
1594 |
+
butOnnx.click(
|
1595 |
+
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
tab_faq = i18n("常见问题解答")
|
1599 |
+
with gr.TabItem(tab_faq):
|
1600 |
+
try:
|
1601 |
+
if tab_faq == "常见问题解答":
|
1602 |
+
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
|
1603 |
+
info = f.read()
|
1604 |
+
else:
|
1605 |
+
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
|
1606 |
+
info = f.read()
|
1607 |
+
gr.Markdown(value=info)
|
1608 |
+
except:
|
1609 |
+
gr.Markdown(traceback.format_exc())
|
1610 |
+
|
1611 |
+
if config.iscolab:
|
1612 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
1613 |
+
else:
|
1614 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
1615 |
+
server_name="0.0.0.0",
|
1616 |
+
inbrowser=not config.noautoopen,
|
1617 |
+
server_port=config.listen_port,
|
1618 |
+
quiet=True,
|
1619 |
+
)
|
infer_batch_rvc.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
print("Command-line arguments:", sys.argv)
|
6 |
+
|
7 |
+
now_dir = os.getcwd()
|
8 |
+
sys.path.append(now_dir)
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import tqdm as tq
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from scipy.io import wavfile
|
14 |
+
|
15 |
+
from config import Config
|
16 |
+
from modules import VC
|
17 |
+
|
18 |
+
|
19 |
+
def arg_parse() -> tuple:
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument("--f0up_key", type=int, default=0)
|
22 |
+
parser.add_argument("--input_path", type=str, help="input path")
|
23 |
+
parser.add_argument("--index_path", type=str, help="index path")
|
24 |
+
parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
|
25 |
+
parser.add_argument("--opt_path", type=str, help="opt path")
|
26 |
+
parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
|
27 |
+
parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
|
28 |
+
parser.add_argument("--device", type=str, help="device")
|
29 |
+
parser.add_argument("--is_half", type=bool, help="use half -> True")
|
30 |
+
parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
|
31 |
+
parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
|
32 |
+
parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
|
33 |
+
parser.add_argument("--protect", type=float, default=0.33, help="protect")
|
34 |
+
|
35 |
+
args = parser.parse_args()
|
36 |
+
sys.argv = sys.argv[:1]
|
37 |
+
|
38 |
+
return args
|
39 |
+
|
40 |
+
|
41 |
+
def main():
|
42 |
+
load_dotenv()
|
43 |
+
args = arg_parse()
|
44 |
+
config = Config()
|
45 |
+
config.device = args.device if args.device else config.device
|
46 |
+
config.is_half = args.is_half if args.is_half else config.is_half
|
47 |
+
vc = VC(config)
|
48 |
+
vc.get_vc(args.model_name)
|
49 |
+
audios = os.listdir(args.input_path)
|
50 |
+
for file in tq.tqdm(audios):
|
51 |
+
if file.endswith(".wav"):
|
52 |
+
file_path = os.path.join(args.input_path, file)
|
53 |
+
_, wav_opt = vc.vc_single(
|
54 |
+
0,
|
55 |
+
file_path,
|
56 |
+
args.f0up_key,
|
57 |
+
None,
|
58 |
+
args.f0method,
|
59 |
+
args.index_path,
|
60 |
+
None,
|
61 |
+
args.index_rate,
|
62 |
+
args.filter_radius,
|
63 |
+
args.resample_sr,
|
64 |
+
args.rms_mix_rate,
|
65 |
+
args.protect,
|
66 |
+
)
|
67 |
+
out_path = os.path.join(args.opt_path, file)
|
68 |
+
wavfile.write(out_path, wav_opt[0], wav_opt[1])
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
main()
|
infer_cli.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
now_dir = os.getcwd()
|
6 |
+
sys.path.append(now_dir)
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from scipy.io import wavfile
|
9 |
+
|
10 |
+
from configs.config import Config
|
11 |
+
from infer.modules.vc.modules import VC
|
12 |
+
|
13 |
+
####
|
14 |
+
# USAGE
|
15 |
+
#
|
16 |
+
# In your Terminal or CMD or whatever
|
17 |
+
|
18 |
+
|
19 |
+
def arg_parse() -> tuple:
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument("--f0up_key", type=int, default=0)
|
22 |
+
parser.add_argument("--input_path", type=str, help="input path")
|
23 |
+
parser.add_argument("--index_path", type=str, help="index path")
|
24 |
+
parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
|
25 |
+
parser.add_argument("--opt_path", type=str, help="opt path")
|
26 |
+
parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
|
27 |
+
parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
|
28 |
+
parser.add_argument("--device", type=str, help="device")
|
29 |
+
parser.add_argument("--is_half", type=bool, help="use half -> True")
|
30 |
+
parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
|
31 |
+
parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
|
32 |
+
parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
|
33 |
+
parser.add_argument("--protect", type=float, default=0.33, help="protect")
|
34 |
+
|
35 |
+
args = parser.parse_args()
|
36 |
+
sys.argv = sys.argv[:1]
|
37 |
+
|
38 |
+
return args
|
39 |
+
|
40 |
+
|
41 |
+
def main():
|
42 |
+
load_dotenv()
|
43 |
+
args = arg_parse()
|
44 |
+
config = Config()
|
45 |
+
config.device = args.device if args.device else config.device
|
46 |
+
config.is_half = args.is_half if args.is_half else config.is_half
|
47 |
+
vc = VC(config)
|
48 |
+
vc.get_vc(args.model_name)
|
49 |
+
_, wav_opt = vc.vc_single(
|
50 |
+
0,
|
51 |
+
args.input_path,
|
52 |
+
args.f0up_key,
|
53 |
+
None,
|
54 |
+
args.f0method,
|
55 |
+
args.index_path,
|
56 |
+
None,
|
57 |
+
args.index_rate,
|
58 |
+
args.filter_radius,
|
59 |
+
args.resample_sr,
|
60 |
+
args.rms_mix_rate,
|
61 |
+
args.protect,
|
62 |
+
)
|
63 |
+
wavfile.write(args.opt_path, wav_opt[0], wav_opt[1])
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
modules.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import traceback
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
import torch
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
from infer.lib.audio import load_audio, wav2
|
12 |
+
from infer.lib.infer_pack.models import (
|
13 |
+
SynthesizerTrnMs256NSFsid,
|
14 |
+
SynthesizerTrnMs256NSFsid_nono,
|
15 |
+
SynthesizerTrnMs768NSFsid,
|
16 |
+
SynthesizerTrnMs768NSFsid_nono,
|
17 |
+
)
|
18 |
+
from infer.modules.vc.pipeline import Pipeline
|
19 |
+
from infer.modules.vc.utils import *
|
20 |
+
|
21 |
+
|
22 |
+
class VC:
|
23 |
+
def __init__(self, config):
|
24 |
+
self.n_spk = None
|
25 |
+
self.tgt_sr = None
|
26 |
+
self.net_g = None
|
27 |
+
self.pipeline = None
|
28 |
+
self.cpt = None
|
29 |
+
self.version = None
|
30 |
+
self.if_f0 = None
|
31 |
+
self.version = None
|
32 |
+
self.hubert_model = None
|
33 |
+
|
34 |
+
self.config = config
|
35 |
+
|
36 |
+
def get_vc(self, sid, *to_return_protect):
|
37 |
+
logger.info("Get sid: " + sid)
|
38 |
+
|
39 |
+
to_return_protect0 = {
|
40 |
+
"visible": self.if_f0 != 0,
|
41 |
+
"value": (
|
42 |
+
to_return_protect[0] if self.if_f0 != 0 and to_return_protect else 0.5
|
43 |
+
),
|
44 |
+
"__type__": "update",
|
45 |
+
}
|
46 |
+
to_return_protect1 = {
|
47 |
+
"visible": self.if_f0 != 0,
|
48 |
+
"value": (
|
49 |
+
to_return_protect[1] if self.if_f0 != 0 and to_return_protect else 0.33
|
50 |
+
),
|
51 |
+
"__type__": "update",
|
52 |
+
}
|
53 |
+
|
54 |
+
if sid == "" or sid == []:
|
55 |
+
if (
|
56 |
+
self.hubert_model is not None
|
57 |
+
): # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
58 |
+
logger.info("Clean model cache")
|
59 |
+
del (self.net_g, self.n_spk, self.hubert_model, self.tgt_sr) # ,cpt
|
60 |
+
self.hubert_model = self.net_g = self.n_spk = self.hubert_model = (
|
61 |
+
self.tgt_sr
|
62 |
+
) = None
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
torch.cuda.empty_cache()
|
65 |
+
###楼下不这么折腾清理不干净
|
66 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
67 |
+
self.version = self.cpt.get("version", "v1")
|
68 |
+
if self.version == "v1":
|
69 |
+
if self.if_f0 == 1:
|
70 |
+
self.net_g = SynthesizerTrnMs256NSFsid(
|
71 |
+
*self.cpt["config"], is_half=self.config.is_half
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
|
75 |
+
elif self.version == "v2":
|
76 |
+
if self.if_f0 == 1:
|
77 |
+
self.net_g = SynthesizerTrnMs768NSFsid(
|
78 |
+
*self.cpt["config"], is_half=self.config.is_half
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
|
82 |
+
del self.net_g, self.cpt
|
83 |
+
if torch.cuda.is_available():
|
84 |
+
torch.cuda.empty_cache()
|
85 |
+
return (
|
86 |
+
{"visible": False, "__type__": "update"},
|
87 |
+
{
|
88 |
+
"visible": True,
|
89 |
+
"value": to_return_protect0,
|
90 |
+
"__type__": "update",
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"visible": True,
|
94 |
+
"value": to_return_protect1,
|
95 |
+
"__type__": "update",
|
96 |
+
},
|
97 |
+
"",
|
98 |
+
"",
|
99 |
+
)
|
100 |
+
person = f'{os.getenv("weight_root")}/{sid}'
|
101 |
+
logger.info(f"Loading: {person}")
|
102 |
+
|
103 |
+
self.cpt = torch.load(person, map_location="cpu")
|
104 |
+
self.tgt_sr = self.cpt["config"][-1]
|
105 |
+
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
106 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
107 |
+
self.version = self.cpt.get("version", "v1")
|
108 |
+
|
109 |
+
synthesizer_class = {
|
110 |
+
("v1", 1): SynthesizerTrnMs256NSFsid,
|
111 |
+
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
|
112 |
+
("v2", 1): SynthesizerTrnMs768NSFsid,
|
113 |
+
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
|
114 |
+
}
|
115 |
+
|
116 |
+
self.net_g = synthesizer_class.get(
|
117 |
+
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid
|
118 |
+
)(*self.cpt["config"], is_half=self.config.is_half)
|
119 |
+
|
120 |
+
del self.net_g.enc_q
|
121 |
+
|
122 |
+
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
|
123 |
+
self.net_g.eval().to(self.config.device)
|
124 |
+
if self.config.is_half:
|
125 |
+
self.net_g = self.net_g.half()
|
126 |
+
else:
|
127 |
+
self.net_g = self.net_g.float()
|
128 |
+
|
129 |
+
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
130 |
+
n_spk = self.cpt["config"][-3]
|
131 |
+
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
132 |
+
logger.info("Select index: " + index["value"])
|
133 |
+
|
134 |
+
return (
|
135 |
+
(
|
136 |
+
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
137 |
+
to_return_protect0,
|
138 |
+
to_return_protect1,
|
139 |
+
index,
|
140 |
+
index,
|
141 |
+
)
|
142 |
+
if to_return_protect
|
143 |
+
else {"visible": True, "maximum": n_spk, "__type__": "update"}
|
144 |
+
)
|
145 |
+
|
146 |
+
def vc_single(
|
147 |
+
self,
|
148 |
+
sid,
|
149 |
+
input_audio_path,
|
150 |
+
f0_up_key,
|
151 |
+
f0_file,
|
152 |
+
f0_method,
|
153 |
+
file_index,
|
154 |
+
file_index2,
|
155 |
+
index_rate,
|
156 |
+
filter_radius,
|
157 |
+
resample_sr,
|
158 |
+
rms_mix_rate,
|
159 |
+
protect,
|
160 |
+
):
|
161 |
+
if input_audio_path is None:
|
162 |
+
return "You need to upload an audio", None
|
163 |
+
f0_up_key = int(f0_up_key)
|
164 |
+
try:
|
165 |
+
audio = load_audio(input_audio_path, 16000)
|
166 |
+
audio_max = np.abs(audio).max() / 0.95
|
167 |
+
if audio_max > 1:
|
168 |
+
audio /= audio_max
|
169 |
+
times = [0, 0, 0]
|
170 |
+
|
171 |
+
if self.hubert_model is None:
|
172 |
+
self.hubert_model = load_hubert(self.config)
|
173 |
+
|
174 |
+
if file_index:
|
175 |
+
file_index = (
|
176 |
+
file_index.strip(" ")
|
177 |
+
.strip('"')
|
178 |
+
.strip("\n")
|
179 |
+
.strip('"')
|
180 |
+
.strip(" ")
|
181 |
+
.replace("trained", "added")
|
182 |
+
)
|
183 |
+
elif file_index2:
|
184 |
+
file_index = file_index2
|
185 |
+
else:
|
186 |
+
file_index = "" # 防止小白写错,自动帮他替换掉
|
187 |
+
|
188 |
+
audio_opt = self.pipeline.pipeline(
|
189 |
+
self.hubert_model,
|
190 |
+
self.net_g,
|
191 |
+
sid,
|
192 |
+
audio,
|
193 |
+
input_audio_path,
|
194 |
+
times,
|
195 |
+
f0_up_key,
|
196 |
+
f0_method,
|
197 |
+
file_index,
|
198 |
+
index_rate,
|
199 |
+
self.if_f0,
|
200 |
+
filter_radius,
|
201 |
+
self.tgt_sr,
|
202 |
+
resample_sr,
|
203 |
+
rms_mix_rate,
|
204 |
+
self.version,
|
205 |
+
protect,
|
206 |
+
f0_file,
|
207 |
+
)
|
208 |
+
if self.tgt_sr != resample_sr >= 16000:
|
209 |
+
tgt_sr = resample_sr
|
210 |
+
else:
|
211 |
+
tgt_sr = self.tgt_sr
|
212 |
+
index_info = (
|
213 |
+
"Index:\n%s." % file_index
|
214 |
+
if os.path.exists(file_index)
|
215 |
+
else "Index not used."
|
216 |
+
)
|
217 |
+
return (
|
218 |
+
"Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
|
219 |
+
% (index_info, *times),
|
220 |
+
(tgt_sr, audio_opt),
|
221 |
+
)
|
222 |
+
except:
|
223 |
+
info = traceback.format_exc()
|
224 |
+
logger.warning(info)
|
225 |
+
return info, (None, None)
|
226 |
+
|
227 |
+
def vc_multi(
|
228 |
+
self,
|
229 |
+
sid,
|
230 |
+
dir_path,
|
231 |
+
opt_root,
|
232 |
+
paths,
|
233 |
+
f0_up_key,
|
234 |
+
f0_method,
|
235 |
+
file_index,
|
236 |
+
file_index2,
|
237 |
+
index_rate,
|
238 |
+
filter_radius,
|
239 |
+
resample_sr,
|
240 |
+
rms_mix_rate,
|
241 |
+
protect,
|
242 |
+
format1,
|
243 |
+
):
|
244 |
+
try:
|
245 |
+
dir_path = (
|
246 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
247 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
248 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
249 |
+
os.makedirs(opt_root, exist_ok=True)
|
250 |
+
try:
|
251 |
+
if dir_path != "":
|
252 |
+
paths = [
|
253 |
+
os.path.join(dir_path, name) for name in os.listdir(dir_path)
|
254 |
+
]
|
255 |
+
else:
|
256 |
+
paths = [path.name for path in paths]
|
257 |
+
except:
|
258 |
+
traceback.print_exc()
|
259 |
+
paths = [path.name for path in paths]
|
260 |
+
infos = []
|
261 |
+
for path in paths:
|
262 |
+
info, opt = self.vc_single(
|
263 |
+
sid,
|
264 |
+
path,
|
265 |
+
f0_up_key,
|
266 |
+
None,
|
267 |
+
f0_method,
|
268 |
+
file_index,
|
269 |
+
file_index2,
|
270 |
+
# file_big_npy,
|
271 |
+
index_rate,
|
272 |
+
filter_radius,
|
273 |
+
resample_sr,
|
274 |
+
rms_mix_rate,
|
275 |
+
protect,
|
276 |
+
)
|
277 |
+
if "Success" in info:
|
278 |
+
try:
|
279 |
+
tgt_sr, audio_opt = opt
|
280 |
+
if format1 in ["wav", "flac"]:
|
281 |
+
sf.write(
|
282 |
+
"%s/%s.%s"
|
283 |
+
% (opt_root, os.path.basename(path), format1),
|
284 |
+
audio_opt,
|
285 |
+
tgt_sr,
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
path = "%s/%s.%s" % (
|
289 |
+
opt_root,
|
290 |
+
os.path.basename(path),
|
291 |
+
format1,
|
292 |
+
)
|
293 |
+
with BytesIO() as wavf:
|
294 |
+
sf.write(wavf, audio_opt, tgt_sr, format="wav")
|
295 |
+
wavf.seek(0, 0)
|
296 |
+
with open(path, "wb") as outf:
|
297 |
+
wav2(wavf, outf, format1)
|
298 |
+
except:
|
299 |
+
info += traceback.format_exc()
|
300 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
301 |
+
yield "\n".join(infos)
|
302 |
+
yield "\n".join(infos)
|
303 |
+
except:
|
304 |
+
yield traceback.format_exc()
|
pipeline.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
from functools import lru_cache
|
9 |
+
from time import time as ttime
|
10 |
+
|
11 |
+
import faiss
|
12 |
+
import librosa
|
13 |
+
import numpy as np
|
14 |
+
import parselmouth
|
15 |
+
import pyworld
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchcrepe
|
19 |
+
from scipy import signal
|
20 |
+
|
21 |
+
now_dir = os.getcwd()
|
22 |
+
sys.path.append(now_dir)
|
23 |
+
|
24 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
25 |
+
|
26 |
+
input_audio_path2wav = {}
|
27 |
+
|
28 |
+
|
29 |
+
@lru_cache
|
30 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
31 |
+
audio = input_audio_path2wav[input_audio_path]
|
32 |
+
f0, t = pyworld.harvest(
|
33 |
+
audio,
|
34 |
+
fs=fs,
|
35 |
+
f0_ceil=f0max,
|
36 |
+
f0_floor=f0min,
|
37 |
+
frame_period=frame_period,
|
38 |
+
)
|
39 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
40 |
+
return f0
|
41 |
+
|
42 |
+
|
43 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
44 |
+
# print(data1.max(),data2.max())
|
45 |
+
rms1 = librosa.feature.rms(
|
46 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
47 |
+
) # 每半秒一个点
|
48 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
49 |
+
rms1 = torch.from_numpy(rms1)
|
50 |
+
rms1 = F.interpolate(
|
51 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
52 |
+
).squeeze()
|
53 |
+
rms2 = torch.from_numpy(rms2)
|
54 |
+
rms2 = F.interpolate(
|
55 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
56 |
+
).squeeze()
|
57 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
58 |
+
data2 *= (
|
59 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
60 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
61 |
+
).numpy()
|
62 |
+
return data2
|
63 |
+
|
64 |
+
|
65 |
+
class Pipeline(object):
|
66 |
+
def __init__(self, tgt_sr, config):
|
67 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
68 |
+
config.x_pad,
|
69 |
+
config.x_query,
|
70 |
+
config.x_center,
|
71 |
+
config.x_max,
|
72 |
+
config.is_half,
|
73 |
+
)
|
74 |
+
self.sr = 16000 # hubert输入采样率
|
75 |
+
self.window = 160 # 每帧点数
|
76 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
77 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
78 |
+
self.t_pad2 = self.t_pad * 2
|
79 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
80 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
81 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
82 |
+
self.device = config.device
|
83 |
+
|
84 |
+
def get_f0(
|
85 |
+
self,
|
86 |
+
input_audio_path,
|
87 |
+
x,
|
88 |
+
p_len,
|
89 |
+
f0_up_key,
|
90 |
+
f0_method,
|
91 |
+
filter_radius,
|
92 |
+
inp_f0=None,
|
93 |
+
):
|
94 |
+
global input_audio_path2wav
|
95 |
+
time_step = self.window / self.sr * 1000
|
96 |
+
f0_min = 50
|
97 |
+
f0_max = 1100
|
98 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
99 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
100 |
+
if f0_method == "pm":
|
101 |
+
f0 = (
|
102 |
+
parselmouth.Sound(x, self.sr)
|
103 |
+
.to_pitch_ac(
|
104 |
+
time_step=time_step / 1000,
|
105 |
+
voicing_threshold=0.6,
|
106 |
+
pitch_floor=f0_min,
|
107 |
+
pitch_ceiling=f0_max,
|
108 |
+
)
|
109 |
+
.selected_array["frequency"]
|
110 |
+
)
|
111 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
112 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
113 |
+
f0 = np.pad(
|
114 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
115 |
+
)
|
116 |
+
elif f0_method == "harvest":
|
117 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
118 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
119 |
+
if filter_radius > 2:
|
120 |
+
f0 = signal.medfilt(f0, 3)
|
121 |
+
elif f0_method == "crepe":
|
122 |
+
model = "full"
|
123 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
124 |
+
batch_size = 512
|
125 |
+
# Compute pitch using first gpu
|
126 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
127 |
+
f0, pd = torchcrepe.predict(
|
128 |
+
audio,
|
129 |
+
self.sr,
|
130 |
+
self.window,
|
131 |
+
f0_min,
|
132 |
+
f0_max,
|
133 |
+
model,
|
134 |
+
batch_size=batch_size,
|
135 |
+
device=self.device,
|
136 |
+
return_periodicity=True,
|
137 |
+
)
|
138 |
+
pd = torchcrepe.filter.median(pd, 3)
|
139 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
140 |
+
f0[pd < 0.1] = 0
|
141 |
+
f0 = f0[0].cpu().numpy()
|
142 |
+
elif f0_method == "rmvpe":
|
143 |
+
if not hasattr(self, "model_rmvpe"):
|
144 |
+
from infer.lib.rmvpe import RMVPE
|
145 |
+
|
146 |
+
logger.info(
|
147 |
+
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
148 |
+
)
|
149 |
+
self.model_rmvpe = RMVPE(
|
150 |
+
"%s/rmvpe.pt" % os.environ["rmvpe_root"],
|
151 |
+
is_half=self.is_half,
|
152 |
+
device=self.device,
|
153 |
+
)
|
154 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
155 |
+
|
156 |
+
if "privateuseone" in str(self.device): # clean ortruntime memory
|
157 |
+
del self.model_rmvpe.model
|
158 |
+
del self.model_rmvpe
|
159 |
+
logger.info("Cleaning ortruntime memory")
|
160 |
+
|
161 |
+
f0 *= pow(2, f0_up_key / 12)
|
162 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
163 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
164 |
+
if inp_f0 is not None:
|
165 |
+
delta_t = np.round(
|
166 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
167 |
+
).astype("int16")
|
168 |
+
replace_f0 = np.interp(
|
169 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
170 |
+
)
|
171 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
172 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
173 |
+
:shape
|
174 |
+
]
|
175 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
176 |
+
f0bak = f0.copy()
|
177 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
178 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
179 |
+
f0_mel_max - f0_mel_min
|
180 |
+
) + 1
|
181 |
+
f0_mel[f0_mel <= 1] = 1
|
182 |
+
f0_mel[f0_mel > 255] = 255
|
183 |
+
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
184 |
+
return f0_coarse, f0bak # 1-0
|
185 |
+
|
186 |
+
def vc(
|
187 |
+
self,
|
188 |
+
model,
|
189 |
+
net_g,
|
190 |
+
sid,
|
191 |
+
audio0,
|
192 |
+
pitch,
|
193 |
+
pitchf,
|
194 |
+
times,
|
195 |
+
index,
|
196 |
+
big_npy,
|
197 |
+
index_rate,
|
198 |
+
version,
|
199 |
+
protect,
|
200 |
+
): # ,file_index,file_big_npy
|
201 |
+
feats = torch.from_numpy(audio0)
|
202 |
+
if self.is_half:
|
203 |
+
feats = feats.half()
|
204 |
+
else:
|
205 |
+
feats = feats.float()
|
206 |
+
if feats.dim() == 2: # double channels
|
207 |
+
feats = feats.mean(-1)
|
208 |
+
assert feats.dim() == 1, feats.dim()
|
209 |
+
feats = feats.view(1, -1)
|
210 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
211 |
+
|
212 |
+
inputs = {
|
213 |
+
"source": feats.to(self.device),
|
214 |
+
"padding_mask": padding_mask,
|
215 |
+
"output_layer": 9 if version == "v1" else 12,
|
216 |
+
}
|
217 |
+
t0 = ttime()
|
218 |
+
with torch.no_grad():
|
219 |
+
logits = model.extract_features(**inputs)
|
220 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
221 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
222 |
+
feats0 = feats.clone()
|
223 |
+
if (
|
224 |
+
not isinstance(index, type(None))
|
225 |
+
and not isinstance(big_npy, type(None))
|
226 |
+
and index_rate != 0
|
227 |
+
):
|
228 |
+
npy = feats[0].cpu().numpy()
|
229 |
+
if self.is_half:
|
230 |
+
npy = npy.astype("float32")
|
231 |
+
|
232 |
+
# _, I = index.search(npy, 1)
|
233 |
+
# npy = big_npy[I.squeeze()]
|
234 |
+
|
235 |
+
score, ix = index.search(npy, k=8)
|
236 |
+
weight = np.square(1 / score)
|
237 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
238 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
239 |
+
|
240 |
+
if self.is_half:
|
241 |
+
npy = npy.astype("float16")
|
242 |
+
feats = (
|
243 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
244 |
+
+ (1 - index_rate) * feats
|
245 |
+
)
|
246 |
+
|
247 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
248 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
249 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
250 |
+
0, 2, 1
|
251 |
+
)
|
252 |
+
t1 = ttime()
|
253 |
+
p_len = audio0.shape[0] // self.window
|
254 |
+
if feats.shape[1] < p_len:
|
255 |
+
p_len = feats.shape[1]
|
256 |
+
if pitch is not None and pitchf is not None:
|
257 |
+
pitch = pitch[:, :p_len]
|
258 |
+
pitchf = pitchf[:, :p_len]
|
259 |
+
|
260 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
261 |
+
pitchff = pitchf.clone()
|
262 |
+
pitchff[pitchf > 0] = 1
|
263 |
+
pitchff[pitchf < 1] = protect
|
264 |
+
pitchff = pitchff.unsqueeze(-1)
|
265 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
266 |
+
feats = feats.to(feats0.dtype)
|
267 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
268 |
+
with torch.no_grad():
|
269 |
+
hasp = pitch is not None and pitchf is not None
|
270 |
+
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
271 |
+
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
272 |
+
del hasp, arg
|
273 |
+
del feats, p_len, padding_mask
|
274 |
+
if torch.cuda.is_available():
|
275 |
+
torch.cuda.empty_cache()
|
276 |
+
t2 = ttime()
|
277 |
+
times[0] += t1 - t0
|
278 |
+
times[2] += t2 - t1
|
279 |
+
return audio1
|
280 |
+
|
281 |
+
def pipeline(
|
282 |
+
self,
|
283 |
+
model,
|
284 |
+
net_g,
|
285 |
+
sid,
|
286 |
+
audio,
|
287 |
+
input_audio_path,
|
288 |
+
times,
|
289 |
+
f0_up_key,
|
290 |
+
f0_method,
|
291 |
+
file_index,
|
292 |
+
index_rate,
|
293 |
+
if_f0,
|
294 |
+
filter_radius,
|
295 |
+
tgt_sr,
|
296 |
+
resample_sr,
|
297 |
+
rms_mix_rate,
|
298 |
+
version,
|
299 |
+
protect,
|
300 |
+
f0_file=None,
|
301 |
+
):
|
302 |
+
if (
|
303 |
+
file_index != ""
|
304 |
+
# and file_big_npy != ""
|
305 |
+
# and os.path.exists(file_big_npy) == True
|
306 |
+
and os.path.exists(file_index)
|
307 |
+
and index_rate != 0
|
308 |
+
):
|
309 |
+
try:
|
310 |
+
index = faiss.read_index(file_index)
|
311 |
+
# big_npy = np.load(file_big_npy)
|
312 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
313 |
+
except:
|
314 |
+
traceback.print_exc()
|
315 |
+
index = big_npy = None
|
316 |
+
else:
|
317 |
+
index = big_npy = None
|
318 |
+
audio = signal.filtfilt(bh, ah, audio)
|
319 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
320 |
+
opt_ts = []
|
321 |
+
if audio_pad.shape[0] > self.t_max:
|
322 |
+
audio_sum = np.zeros_like(audio)
|
323 |
+
for i in range(self.window):
|
324 |
+
audio_sum += np.abs(audio_pad[i : i - self.window])
|
325 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
326 |
+
opt_ts.append(
|
327 |
+
t
|
328 |
+
- self.t_query
|
329 |
+
+ np.where(
|
330 |
+
audio_sum[t - self.t_query : t + self.t_query]
|
331 |
+
== audio_sum[t - self.t_query : t + self.t_query].min()
|
332 |
+
)[0][0]
|
333 |
+
)
|
334 |
+
s = 0
|
335 |
+
audio_opt = []
|
336 |
+
t = None
|
337 |
+
t1 = ttime()
|
338 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
339 |
+
p_len = audio_pad.shape[0] // self.window
|
340 |
+
inp_f0 = None
|
341 |
+
if hasattr(f0_file, "name"):
|
342 |
+
try:
|
343 |
+
with open(f0_file.name, "r") as f:
|
344 |
+
lines = f.read().strip("\n").split("\n")
|
345 |
+
inp_f0 = []
|
346 |
+
for line in lines:
|
347 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
348 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
349 |
+
except:
|
350 |
+
traceback.print_exc()
|
351 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
352 |
+
pitch, pitchf = None, None
|
353 |
+
if if_f0 == 1:
|
354 |
+
pitch, pitchf = self.get_f0(
|
355 |
+
input_audio_path,
|
356 |
+
audio_pad,
|
357 |
+
p_len,
|
358 |
+
f0_up_key,
|
359 |
+
f0_method,
|
360 |
+
filter_radius,
|
361 |
+
inp_f0,
|
362 |
+
)
|
363 |
+
pitch = pitch[:p_len]
|
364 |
+
pitchf = pitchf[:p_len]
|
365 |
+
if "mps" not in str(self.device) or "xpu" not in str(self.device):
|
366 |
+
pitchf = pitchf.astype(np.float32)
|
367 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
368 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
369 |
+
t2 = ttime()
|
370 |
+
times[1] += t2 - t1
|
371 |
+
for t in opt_ts:
|
372 |
+
t = t // self.window * self.window
|
373 |
+
if if_f0 == 1:
|
374 |
+
audio_opt.append(
|
375 |
+
self.vc(
|
376 |
+
model,
|
377 |
+
net_g,
|
378 |
+
sid,
|
379 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
380 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
381 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
382 |
+
times,
|
383 |
+
index,
|
384 |
+
big_npy,
|
385 |
+
index_rate,
|
386 |
+
version,
|
387 |
+
protect,
|
388 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
audio_opt.append(
|
392 |
+
self.vc(
|
393 |
+
model,
|
394 |
+
net_g,
|
395 |
+
sid,
|
396 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
397 |
+
None,
|
398 |
+
None,
|
399 |
+
times,
|
400 |
+
index,
|
401 |
+
big_npy,
|
402 |
+
index_rate,
|
403 |
+
version,
|
404 |
+
protect,
|
405 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
406 |
+
)
|
407 |
+
s = t
|
408 |
+
if if_f0 == 1:
|
409 |
+
audio_opt.append(
|
410 |
+
self.vc(
|
411 |
+
model,
|
412 |
+
net_g,
|
413 |
+
sid,
|
414 |
+
audio_pad[t:],
|
415 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
416 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
417 |
+
times,
|
418 |
+
index,
|
419 |
+
big_npy,
|
420 |
+
index_rate,
|
421 |
+
version,
|
422 |
+
protect,
|
423 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
audio_opt.append(
|
427 |
+
self.vc(
|
428 |
+
model,
|
429 |
+
net_g,
|
430 |
+
sid,
|
431 |
+
audio_pad[t:],
|
432 |
+
None,
|
433 |
+
None,
|
434 |
+
times,
|
435 |
+
index,
|
436 |
+
big_npy,
|
437 |
+
index_rate,
|
438 |
+
version,
|
439 |
+
protect,
|
440 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
441 |
+
)
|
442 |
+
audio_opt = np.concatenate(audio_opt)
|
443 |
+
if rms_mix_rate != 1:
|
444 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
445 |
+
if tgt_sr != resample_sr >= 16000:
|
446 |
+
audio_opt = librosa.resample(
|
447 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
448 |
+
)
|
449 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
450 |
+
max_int16 = 32768
|
451 |
+
if audio_max > 1:
|
452 |
+
max_int16 /= audio_max
|
453 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
454 |
+
del pitch, pitchf, sid
|
455 |
+
if torch.cuda.is_available():
|
456 |
+
torch.cuda.empty_cache()
|
457 |
+
return audio_opt
|
pyproject.toml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "rvc-beta"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["lj1995"]
|
6 |
+
license = "MIT"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.9"
|
10 |
+
torch = "2.4.0"
|
11 |
+
torchaudio = "2.4.0"
|
12 |
+
Cython = "^3.0.11"
|
13 |
+
gradio = "3.34.0"
|
14 |
+
pydub = ">=0.25.1"
|
15 |
+
soundfile = ">=0.12.1"
|
16 |
+
ffmpeg-python = ">=0.2.0"
|
17 |
+
tensorboardX = "^2.6.2.2"
|
18 |
+
fairseq = "0.12.2"
|
19 |
+
faiss-cpu = "1.7.3"
|
20 |
+
Jinja2 = ">=3.1.2"
|
21 |
+
json5 = "^0.9.25"
|
22 |
+
librosa = "0.9.1"
|
23 |
+
llvmlite = "0.39.0"
|
24 |
+
Markdown = "^3.6"
|
25 |
+
matplotlib = ">=3.7.0"
|
26 |
+
matplotlib-inline = ">=0.1.3"
|
27 |
+
numba = "0.56.4"
|
28 |
+
numpy = "1.23.5"
|
29 |
+
scipy = "1.13.1"
|
30 |
+
praat-parselmouth = ">=0.4.2"
|
31 |
+
Pillow = ">=9.1.1"
|
32 |
+
pyworld = "0.3.2"
|
33 |
+
resampy = ">=0.4.2"
|
34 |
+
scikit-learn = "^1.5.1"
|
35 |
+
tensorboard = "^2.17.0"
|
36 |
+
tqdm = ">=4.63.1"
|
37 |
+
tornado = ">=6.1"
|
38 |
+
Werkzeug = ">=2.2.3"
|
39 |
+
uc-micro-py = ">=1.0.1"
|
40 |
+
sympy = ">=1.11.1"
|
41 |
+
tabulate = ">=0.8.10"
|
42 |
+
PyYAML = ">=6.0"
|
43 |
+
pyasn1 = ">=0.4.8"
|
44 |
+
pyasn1-modules = ">=0.2.8"
|
45 |
+
fsspec = ">=2022.11.0"
|
46 |
+
absl-py = ">=1.2.0"
|
47 |
+
audioread = "^3.0.1"
|
48 |
+
uvicorn = ">=0.21.1"
|
49 |
+
colorama = ">=0.4.5"
|
50 |
+
torchcrepe = "0.0.20"
|
51 |
+
python-dotenv = ">=1.0.0"
|
52 |
+
av = "^12.3.0"
|
53 |
+
joblib = ">=1.1.0"
|
54 |
+
httpx = "^0.27.0"
|
55 |
+
onnxruntime-gpu = "^1.18.1"
|
56 |
+
fastapi = "0.88"
|
57 |
+
torchfcpe = "^0.0.4"
|
58 |
+
ffmpy = "0.3.1"
|
59 |
+
torchvision = "0.19.0"
|
60 |
+
[tool.poetry.dev-dependencies]
|
61 |
+
|
62 |
+
[build-system]
|
63 |
+
requires = ["poetry-core>=1.0.0"]
|
64 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aria2
|
2 |
+
joblib>=1.1.0
|
3 |
+
numba==0.56.4
|
4 |
+
numpy==1.23.5
|
5 |
+
scipy
|
6 |
+
librosa==0.9.1
|
7 |
+
llvmlite==0.39.0
|
8 |
+
fairseq==0.12.2
|
9 |
+
faiss-cpu==1.7.3
|
10 |
+
gradio==3.34.0
|
11 |
+
Cython
|
12 |
+
pydub>=0.25.1
|
13 |
+
soundfile>=0.12.1
|
14 |
+
ffmpeg-python>=0.2.0
|
15 |
+
tensorboardX
|
16 |
+
Jinja2>=3.1.2
|
17 |
+
json5
|
18 |
+
Markdown
|
19 |
+
matplotlib>=3.7.0
|
20 |
+
matplotlib-inline>=0.1.3
|
21 |
+
praat-parselmouth>=0.4.2
|
22 |
+
|
23 |
+
tensorboard
|
24 |
+
tqdm>=4.63.1
|
25 |
+
tornado>=6.1
|
26 |
+
httpx
|
27 |
+
onnxruntime; sys_platform == 'darwin'
|
28 |
+
onnxruntime-gpu; sys_platform != 'darwin'
|
29 |
+
torchcrepe==0.0.20
|
30 |
+
fastapi==0.88
|
31 |
+
torchfcpe
|
32 |
+
ffmpy==0.3.1
|
33 |
+
python-dotenv>=1.0.0
|
34 |
+
av
|
utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from fairseq import checkpoint_utils
|
4 |
+
|
5 |
+
|
6 |
+
def get_index_path_from_model(sid):
|
7 |
+
return next(
|
8 |
+
(
|
9 |
+
f
|
10 |
+
for f in [
|
11 |
+
os.path.join(root, name)
|
12 |
+
for root, _, files in os.walk(os.getenv("index_root"), topdown=False)
|
13 |
+
for name in files
|
14 |
+
if name.endswith(".index") and "trained" not in name
|
15 |
+
]
|
16 |
+
if sid.split(".")[0] in f
|
17 |
+
),
|
18 |
+
"",
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def load_hubert(config):
|
23 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
24 |
+
["assets/hubert/hubert_base.pt"],
|
25 |
+
suffix="",
|
26 |
+
)
|
27 |
+
hubert_model = models[0]
|
28 |
+
hubert_model = hubert_model.to(config.device)
|
29 |
+
if config.is_half:
|
30 |
+
hubert_model = hubert_model.half()
|
31 |
+
else:
|
32 |
+
hubert_model = hubert_model.float()
|
33 |
+
return hubert_model.eval()
|