#!/usr/bin/env python from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch import re from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer model_id = "google/gemma-3-12b-it" processor = AutoProcessor.from_pretrained(model_id, padding_side="left") model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" ) import cv2 from PIL import Image import numpy as np import tempfile def downsample_video(video_path): vidcap = cv2.VideoCapture(video_path) fps = vidcap.get(cv2.CAP_PROP_FPS) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_interval = int(fps / 3) frames = [] for i in range(0, total_frames, frame_interval): vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames def process_new_user_message(message: dict) -> list[dict]: if message["files"]: if "" in message["text"]: content = [] print("message[files]", message["files"]) parts = re.split(r'()', message["text"]) image_index = 0 print("parts", parts) for part in parts: print("part", part) if part == "": content.append({"type": "image", "url": message["files"][image_index]}) print("file", message["files"][image_index]) image_index += 1 elif part.strip(): content.append({"type": "text", "text": part.strip()}) elif isinstance(part, str) and not part == "": content.append({"type": "text", "text": part}) print(content) return content elif message["files"][0].endswith(".mp4"): content = [] video = message["files"].pop(0) frames = downsample_video(video) for frame in frames: pil_image, timestamp = frame with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file: pil_image.save(temp_file.name) content.append({"type": "text", "text": f"Frame {timestamp}:"}) content.append({"type": "image", "url": temp_file.name}) print(content) return content else: # non interleaved images return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]] else: return [{"type": "text", "text": message["text"]}] def process_history(history: list[dict]) -> list[dict]: messages = [] current_user_content: list[dict] = [] for item in history: if item["role"] == "assistant": if current_user_content: messages.append({"role": "user", "content": current_user_content}) current_user_content = [] messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) else: content = item["content"] if isinstance(content, str): current_user_content.append({"type": "text", "text": content}) else: current_user_content.append({"type": "image", "url": content[0]}) return messages @spaces.GPU(duration=120) def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: messages = [] if system_prompt: messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) messages.extend(process_history(history)) messages.append({"role": "user", "content": process_new_user_message(message)}) inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(device=model.device, dtype=torch.bfloat16) streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() output = "" for delta in streamer: output += delta yield output examples = [ [ { "text": "Preciso estar no Japão por 10 dias, indo para Tóquio, Kyoto e Osaka. Pense no número de atrações em cada uma delas e aloque o número de dias para cada cidade. Faça recomendações de transporte público.", "files": [], } ], [ { "text": "Escreva o código matplotlib para gerar o mesmo gráfico de barras.", "files": ["assets/sample-images/barchart.png"], } ], [ { "text": "O que há de estranho neste vídeo?", "files": ["assets/sample-images/tmp.mp4"], } ], [ { "text": "Eu já tenho este suplemento e quero comprar este outro . Há algum aviso que eu deva saber?", "files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"], } ], [ { "text": "Escreva um poema inspirado nos elementos visuais das imagens.", "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], } ], [ { "text": "Componha uma pequena peça musical inspirada nos elementos visuais das imagens.", "files": [ "assets/sample-images/07-1.png", "assets/sample-images/07-2.png", "assets/sample-images/07-3.png", "assets/sample-images/07-4.png", ], } ], [ { "text": "Escreva uma história curta sobre o que pode ter acontecido nesta casa.", "files": ["assets/sample-images/08.png"], } ], [ { "text": "Crie uma história curta baseada na sequência de imagens.", "files": [ "assets/sample-images/09-1.png", "assets/sample-images/09-2.png", "assets/sample-images/09-3.png", "assets/sample-images/09-4.png", "assets/sample-images/09-5.png", ], } ], [ { "text": "Descreva essa imagem.", "files": ["assets/sample-images/PIX.png"], } ], [ { "text": "Leia o texto na imagem.", "files": ["assets/additional-examples/1.png"], } ], [ { "text": "Quando este bilhete foi datado e quanto custou?", "files": ["assets/additional-examples/2.png"], } ], [ { "text": "Leia o texto na imagem em markdown.", "files": ["assets/additional-examples/3.png"], } ], [ { "text": "Avalie esta integral.", "files": ["assets/additional-examples/4.png"], } ], [ { "text": "Legende esta imagem.", "files": ["assets/sample-images/01.png"], } ], [ { "text": "O que diz a placa?", "files": ["assets/sample-images/02.png"], } ], [ { "text": "Compare e contraste as duas imagens.", "files": ["assets/sample-images/03.png"], } ], [ { "text": "Liste todos os objetos na imagem e suas cores.", "files": ["assets/sample-images/04.png"], } ], [ { "text": "Descreva a atmosfera da cena.", "files": ["assets/sample-images/05.png"], } ], ] demo = gr.ChatInterface( fn=run, type="messages", textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"), multimodal=True, additional_inputs=[ gr.Textbox(label="System Prompt", value="Você é um assistente, responder em ptbr."), gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700), ], stop_btn=False, title="Gemma 3 12B PT-BR", description="
This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.", examples=examples, run_examples_on_click=False, cache_examples=False, css_paths="style.css", delete_cache=(1800, 1800), ) if __name__ == "__main__": demo.launch()