Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ nltk.download('wordnet', quiet=True)
|
|
8 |
from nltk.stem import WordNetLemmatizer
|
9 |
from heapq import nlargest
|
10 |
import warnings
|
11 |
-
!python -m spacy download en_core_web_sm
|
12 |
|
13 |
|
14 |
warnings.filterwarnings("ignore")
|
@@ -23,7 +22,7 @@ def get_wiki_summary(inp):
|
|
23 |
nlp = spacy.load("en_core_web_sm")
|
24 |
|
25 |
lemmatizer = WordNetLemmatizer()
|
26 |
-
tokens = [lemmatizer.lemmatize(str(token).lower()) for token in
|
27 |
word_counts = {}
|
28 |
|
29 |
for token in tokens:
|
@@ -36,19 +35,19 @@ def get_wiki_summary(inp):
|
|
36 |
|
37 |
sentence_scores = {}
|
38 |
|
39 |
-
for sentence in
|
40 |
sentence_scores[sentence] = 0
|
41 |
-
for wrd in sentence:
|
42 |
if lemmatizer.lemmatize(str(wrd).lower()) in word_counts.keys():
|
43 |
sentence_scores[sentence] += word_counts[lemmatizer.lemmatize(str(wrd).lower())]
|
44 |
|
45 |
summary_length = int(len(sentence_scores)*0.20)
|
46 |
summary = str()
|
47 |
|
48 |
-
for sentence in
|
49 |
for i in range(0,summary_length):
|
50 |
if str(sentence).find(str(nlargest(summary_length, sentence_scores, key = sentence_scores.get)[i])) == 0:
|
51 |
-
summary += str(sentence)
|
52 |
summary += ' '
|
53 |
|
54 |
|
@@ -56,4 +55,5 @@ def get_wiki_summary(inp):
|
|
56 |
|
57 |
return print(summary)
|
58 |
|
59 |
-
|
|
|
|
8 |
from nltk.stem import WordNetLemmatizer
|
9 |
from heapq import nlargest
|
10 |
import warnings
|
|
|
11 |
|
12 |
|
13 |
warnings.filterwarnings("ignore")
|
|
|
22 |
nlp = spacy.load("en_core_web_sm")
|
23 |
|
24 |
lemmatizer = WordNetLemmatizer()
|
25 |
+
tokens = [lemmatizer.lemmatize(str(token).lower()) for token in nltk.word_tokenize(text) if str(token) not in punctuation and str(token).lower() not in stopwords and len(token) >1]
|
26 |
word_counts = {}
|
27 |
|
28 |
for token in tokens:
|
|
|
35 |
|
36 |
sentence_scores = {}
|
37 |
|
38 |
+
for sentence in nltk.sent_tokenize(text):
|
39 |
sentence_scores[sentence] = 0
|
40 |
+
for wrd in nltk.word_tokenize(sentence):
|
41 |
if lemmatizer.lemmatize(str(wrd).lower()) in word_counts.keys():
|
42 |
sentence_scores[sentence] += word_counts[lemmatizer.lemmatize(str(wrd).lower())]
|
43 |
|
44 |
summary_length = int(len(sentence_scores)*0.20)
|
45 |
summary = str()
|
46 |
|
47 |
+
for sentence in nltk.sent_tokenize(text):
|
48 |
for i in range(0,summary_length):
|
49 |
if str(sentence).find(str(nlargest(summary_length, sentence_scores, key = sentence_scores.get)[i])) == 0:
|
50 |
+
summary += str(sentence).replace('\n','')
|
51 |
summary += ' '
|
52 |
|
53 |
|
|
|
55 |
|
56 |
return print(summary)
|
57 |
|
58 |
+
if __name__ == '__main__':
|
59 |
+
gr.Interface(fn=get_wiki_summary, inputs=gr.inputs.Textbox(label="Requested Topic from Wikipedia : "), outputs="text").launch(inline=False, share=True)
|