import os import gradio as gr import requests import pandas as pd import asyncio import time from pathlib import Path # LlamaIndex and tool imports from llama_index.core.agent.workflow import AgentWorkflow, ReActAgent from llama_index.core.tools import FunctionTool from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec from llama_index.llms.azure_openai import AzureOpenAI from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound from bs4 import BeautifulSoup import pdfplumber import docx import speech_recognition as sr import base64 import tempfile import re from io import BytesIO, StringIO from dotenv import load_dotenv load_dotenv() # ------------------------------ # 0. Define Azure OpenAI LLM # ------------------------------ api_key = os.getenv("AZURE_OPENAI_API_KEY") azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") azure_api_version = os.getenv("AZURE_OPENAI_API_VERSION") azure_deployment_name = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME") azure_model_name = os.getenv("AZURE_OPENAI_MODEL_NAME") llm = AzureOpenAI( engine=azure_deployment_name, model=azure_model_name, temperature=0.0, azure_endpoint=azure_endpoint, api_key=api_key, api_version=azure_api_version, ) # ------------------------------ # 1. Helper Functions / Tools # ------------------------------ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # File parsing tool def parse_file(file_url: str, file_name: str) -> str: try: # Determine file type from file_name or URL if len(file_name)>0: file_type = Path(file_name).suffix.lower() file_type = file_type.split("?")[0] else: file_type = None # Remove query params if file_type: resp = requests.get(file_url, timeout=30) resp.raise_for_status() content = resp.content # --- Excel Files --- if file_type in [".xlsx", ".xls"]: try: df = pd.read_excel(BytesIO(content)) return f"Excel Content:\n{df.head(5).to_string(index=False)}" # Only first 5 rows except Exception as e: return f"Excel parsing error: {str(e)}" # --- CSV Files --- elif file_type == ".csv": try: df = pd.read_csv(BytesIO(content)) return f"CSV Content:\n{df.head(5).to_string(index=False)}" # Only first 5 rows except Exception as e: return f"CSV parsing error: {str(e)}" # --- Text Files --- elif file_type == ".txt": text = content.decode(errors='ignore') return f"Text Content:\n{text[:3500]}" # --- PDF Files --- elif file_type == ".pdf": try: with pdfplumber.open(BytesIO(content)) as pdf: text = "\n".join(page.extract_text() or "" for page in pdf.pages[:3]) # First 3 pages return f"PDF Content:\n{text[:3500]}" except Exception as e: return f"PDF parsing error: {str(e)}" # --- DOCX Files --- elif file_type == ".docx": try: d = docx.Document(BytesIO(content)) text = "\n".join(p.text for p in d.paragraphs[:50]) # First 50 paragraphs return f"DOCX Content:\n{text[:3500]}" except Exception as e: return f"DOCX parsing error: {str(e)}" # --- MP3 Files --- elif file_type == ".mp3": return transcribe_audio(content) # Use helper function # --- Python Files --- elif file_type == ".py": text = content.decode(errors='ignore') return f"Python Code:\n{text[:3500]}" # --- Unsupported Types --- else: return f"Unsupported file type: {file_type}" else: return "No file type provided or file URL is invalid." except Exception as e: print(f"[parse_file] ERROR: {e}") return f"File parsing failed: {str(e)}" # Audio transcription helper def transcribe_audio(content: bytes) -> str: try: # Create temp files with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as mp3_tmp: mp3_tmp.write(content) mp3_path = mp3_tmp.name wav_path = mp3_path.replace(".mp3", ".wav") # Convert to WAV try: from pydub import AudioSegment audio = AudioSegment.from_mp3(mp3_path) audio.export(wav_path, format="wav") audio_file = wav_path except ImportError: audio_file = mp3_path # Fallback to MP3 if pydub not available # Transcribe audio recognizer = sr.Recognizer() with sr.AudioFile(audio_file) as source: audio = recognizer.record(source) transcript = recognizer.recognize_google(audio) # Cleanup for path in [mp3_path, wav_path]: if os.path.exists(path): os.remove(path) return f"Audio Transcript:\n{transcript}" except Exception as e: print(f"Audio transcription error: {e}") return "Could not transcribe audio" # YouTube transcript tool def get_youtube_transcript(url: str) -> str: try: video_id = url.split("v=")[-1].split("&")[0] # Clean video ID transcript = YouTubeTranscriptApi.get_transcript(video_id) return " ".join([e['text'] for e in transcript]) except NoTranscriptFound: return "No transcript available for this video" except Exception as e: return f"Error retrieving transcript: {str(e)}" # ------------ DuckDuckGo Search and Extract ------------------------- def scrape_text_from_url(url: str, max_chars=4000) -> str: """Fetch and clean main text from a webpage (basic version).""" try: resp = requests.get(url, timeout=10) soup = BeautifulSoup(resp.text, 'html.parser') # Get visible text only, skip scripts/styles text = ' '.join(soup.stripped_strings) return text[:max_chars] except Exception as e: return f"Could not scrape {url}: {e}" def duckduckgo_search_and_scrape( question: str, max_results: int = 10, min_chars: int = 400, # treat shorter pages as “unscrapable” max_chars: int = 4000 # final truncate length ) -> str: """ DuckDuckGo → scrape → fallback. 1. Try up to max_results links; return the first page that gives ≥ min_chars of visible text. 2. If none succeed, compose an answer from the DDG result metadata. """ ddg_spec = DuckDuckGoSearchToolSpec() results = ddg_spec.duckduckgo_full_search(question) or [] if not isinstance(results, list): return "No search results found." cleaned_pages = [] for entry in results[:max_results]: href = entry.get("href", "") if not href: continue # --- attempt to scrape ------------------------------------------------ text = scrape_text_from_url(href, max_chars=max_chars) if text.startswith("Could not scrape") or len(text) < min_chars: continue # treat as failure – try next result # success! return ( f"Here is content scraped from {href}:\n\n" f"{text}\n\n" "Based on this, please answer the original question." ) # ---------------- fallback: build summary from DDG metadata -------------- if not results: return "No search results found." summary_lines = [] for idx, entry in enumerate(results[:max_results], start=1): title = entry.get("title") or "Untitled result" snippet = (entry.get("body") or "").replace("\n", " ")[:160] href = entry.get("href") summary_lines.append(f"{idx}. {title} – {snippet} ({href})") return ( "I could not successfully scrape any of the top pages. " "Here are the top DuckDuckGo results:\n\n" + "\n".join(summary_lines) + "\n\nPlease answer the original question using this list." ) # ------------ Image Processing Tool Functions ------------------------- # MIME type mapping for images MIME_MAP = { '.jpg': 'jpeg', '.jpeg': 'jpeg', '.png': 'png', '.bmp': 'bmp', '.gif': 'gif', '.webp': 'webp' } # 3. Image agent with enhanced capabilities def process_image(file_url: str, question: str) -> str: """ Download the image, send it to Azure's vision API, and return the reply text. """ try: print(f"Processing image via process_image function from URL: {file_url}") resp = requests.get(file_url, timeout=30) resp.raise_for_status() raw = resp.content # 2) Figure out the MIME type from headers (fallback to png) mime = resp.headers.get("Content-Type", "image/png") # 3) Build data URI img_b64 = base64.b64encode(raw).decode() data_uri = f"data:{mime};base64,{img_b64}" print(f"Image downloaded and encoded successfully.") from openai import AzureOpenAI vision_client = AzureOpenAI( api_key=api_key, api_version=azure_api_version, azure_endpoint=azure_endpoint, ) messages = [ {"role": "system", "content": ( "You are a vision expert. Answer based *only* on the image content." )}, {"role": "user", "content": [ {"type": "text", "text": question}, {"type": "image_url", "image_url": {"url": data_uri}} ]}, ] response = vision_client.chat.completions.create( model=azure_model_name, messages=messages, temperature=0.0, max_tokens=2000, ) print(f"Vision API response received : {response.choices[0].message.content.strip()}") return response.choices[0].message.content.strip() except Exception as e: return f"Vision API error: {e}" # ─── formatter.py (or inline in your module) ───────────────────────── from pydantic import BaseModel, ValidationError from openai import AzureOpenAI FALLBACK = "ANSWER_NOT_FOUND" # single source of truth, keep as plain text SYSTEM_PROMPT = ( "You are an answer-formatter. I will give you:\n" " • the user question\n" " • a raw multi-agent trace that may contain Thoughts, Actions, tool " " outputs, and possibly a FINAL ANSWER.\n\n" "Your job:\n" "1. Extract the true answer if it is present anywhere in the trace.\n" "2. Output exactly one line in this template:\n" " FINAL ANSWER: \n\n" "If the trace contains no FINAL ANSWER **but the question itself already contains enough information**, deduce the answer on your own." "Return a FINAL ANSWER line in the usual format.\n" "Rules for :\n" "• Number → digits only, no commas, no currency/percent signs unless " " explicitly asked for.\n" "• String → as short as possible, no articles unless required.\n" "• List → comma-separated values following the above rules; if no order " " is specified, sort alphabetically.\n" "• If rounding or units are requested in the question, apply before " " formatting and include the unit with **no preceding space**.\n\n" f"If you cannot find a valid answer, output:\n" f" FINAL ANSWER: {FALLBACK}\n\n" "Examples (follow exactly)\n" "###\n" "Q: Reverse this word: elppa\n" "Trace: (no FINAL ANSWER)\n" "A: FINAL ANSWER: apple\n" "Q: What is 2+3?\n" "Trace: Thought: need a calculator\n" "A: FINAL ANSWER: 5\n" "Q: How many planets? Trace: … FINAL ANSWER: 8\n" "A: FINAL ANSWER: 8\n" "###\n" "Q: Give the colour. Trace: … blue.\n" "A: FINAL ANSWER: blue\n" "###\n" "Q: Name the three vowels. Trace: … a, e, i, o, u.\n" "A: FINAL ANSWER: a,e,i,o,u\n" "###\n" "Q: What’s the speed? (units requested) Trace: … 3.0 m/s.\n" "A: FINAL ANSWER: 3.0m/s\n" "###\n" "Q: Any answer? Trace: … tool failure …\n" f"A: FINAL ANSWER: {FALLBACK}" ) class Result(BaseModel): final_answer: str def format_final_answer(question: str, raw_trace: str, *, api_key: str, api_version: str, endpoint: str, deployment: str, temperature: float = 0.0) -> str: """ Second-pass LLM call that converts an unstructured agent trace into the strict 'FINAL ANSWER: …' template. On any error returns the FALLBACK. """ try: from openai import AzureOpenAI client = AzureOpenAI( api_key=api_key, api_version=api_version, azure_endpoint=endpoint, ) messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"Question: {question}\nTrace: {raw_trace}"} ] rsp = client.chat.completions.create( model=deployment, messages=messages, temperature=temperature, max_tokens=120, ) out = rsp.choices[0].message.content.strip() # Remove the label for downstream code (keep only the value) if out.lower().startswith("final answer:"): out = out.split(":", 1)[1].strip() # basic schema check – non-empty string Result(final_answer=out) return out or FALLBACK except (ValidationError, Exception): return FALLBACK # ------------------------------ # 2. BasicAgent Class Definition # ------------------------------ REASONING_PROMPT = """ You are the Router-&-Reasoning-Agent. NEVER output filler like “Could you please provide more context”. If the answer is not already in the question, DELEGATE: • Any external fact → WebSearch-Agent • YouTube link → YouTube-Agent • File link (PDF…) → File-Agent • Image link → Image-Agent How to delegate ─────────────── Call the special tool `handoff` **once** with JSON: {"to_agent":"","reason":""} When to answer directly ─────────────────────── • The question already contains all information needed (e.g. reversed text, Caesar cipher, mental arithmetic, pure logic). • You are 100 % certain no external resource is required. Output format ───────────── • If you delegate → return the tool call only; the delegated agent will finish. • If you answer yourself → one line: FINAL ANSWER: Follow the global rules (digits only, short strings, comma-lists, etc.). Never ───── • Never try to scrape the web or parse files yourself. • Never add filler like “Thinking…” or “Awaiting response”. • Never answer if the question clearly needs a specialised agent. Example ─────── Example (self-contained) Q: .rewsna eht sa "tfel" … ← reversed A: FINAL ANSWER: right Example (delegation) Q: Who wrote the novel Dune? A: Action: handoff Action Input: {"to_agent":"websearch_agent","reason":"needs web"} """ class BasicAgent: def __init__(self): """Initialize the BasicAgent with all tools and agent workflow.""" self.llm = llm self.api_url = DEFAULT_API_URL # Initialize tools self._setup_tools() # Initialize agents self._setup_agents() # Initialize agent workflow self._setup_workflow() # Define routing instruction self.routing_instruction = ( "You are a multi-agent AI system that routes questions **and** produces " "the final answer.\n\n" "– If the question already *contains* the needed information " "(e.g. encoded, reversed, maths puzzle), **answer directly** – " "no tools, no sub-agents.\n\n" "You have four specialised agents:\n" "• File-Agent – files (PDF, DOCX, …)\n" "• YouTube-Agent – video transcripts\n" "• WebSearch-Agent – fresh/general web info\n" "• Image-Agent – vision questions\n\n" "When you delegate, do **not** add commentary such as " "'I will await the agent's response'.\n" "When you answer yourself, end with:\n" " FINAL ANSWER: \n\n" "Example ➊ (self-contained)\n" 'Q: "opposite of north"..."\n' "A: FINAL ANSWER: south\n\n" "Example ➋ (delegation)\n" "Q: Who wrote Dune?\n" "A: Action: handoff\n" 'Action Input: {"to_agent":"websearch_agent","reason":"needs web"}\n' ) def _setup_tools(self): """Initialize all the tools.""" self.file_parser_tool = FunctionTool.from_defaults(parse_file) self.youtube_transcript_tool = FunctionTool.from_defaults(get_youtube_transcript) self.ddg_tool = FunctionTool.from_defaults( fn=duckduckgo_search_and_scrape, name="web_search", description=( "Performs a DuckDuckGo search, attempts to scrape each top result, " "and falls back to result metadata if scraping fails." ) ) self.image_processing_tool = FunctionTool.from_defaults( fn=process_image, name="image_processing", description="Downloads the image at `file_url` and answers `question` based on its visual content." ) def _setup_agents(self): """Initialize all the specialized agents.""" self.reasoning_agent = ReActAgent( name="reasoning_agent", description="Router and on-board reasoning.", system_prompt=REASONING_PROMPT, tools=[], # no direct tools – only `handoff` is implicit llm=self.llm, ) # File Parsing ReActAgent self.file_agent = ReActAgent( name="file_agent", description="Expert at reading and extracting info from files", system_prompt="""You are File-Agent. A router has already chosen you because the user’s question involves a non-image file (PDF, DOCX, XLSX, CSV, TXT, MP3, …). Rules 1. ALWAYS call the tool `parse_file(file_url, file_type?)` **once** to read the file. 2. Use ONLY the file content to answer the user. 3. NEVER hand the task to another agent and NEVER mention you are using a tool. 4. When you are done, reply with one line in this exact format: FINAL ANSWER: """, tools=[self.file_parser_tool], llm=self.llm, ) # YouTube ReActAgent self.youtube_agent = ReActAgent( name="youtube_agent", description="Expert at extracting info from YouTube videos by transcript.", system_prompt=""" You are YouTube-Agent. The router picked you because the question references a YouTube video. Rules 1. ALWAYS call `get_youtube_transcript(url)` once. 2. Base your answer ONLY on the transcript you receive. 3. Do NOT search the web, do NOT invoke other tools. 4. End with: FINAL ANSWER: """, tools=[self.youtube_transcript_tool], llm=self.llm, ) # DuckDuckGo Web Search ReActAgent self.search_agent = ReActAgent( name="websearch_agent", description="Web search expert.", system_prompt=( "You are WebSearch-Agent.\n" "1. ALWAYS call the tool `web_search` exactly once.\n" "2. Read the text the tool returns and craft a concise answer to the user.\n" "3. Do NOT quote the entire extract; use only the facts needed.\n" "4. Finish with:\n" " FINAL ANSWER: " "...\n" "Example\n" "User: Who wrote the novel Dune?\n" "Tool output: Here is content scraped from https://en.wikipedia.org/wiki/Dune_(novel): ... Frank Herbert ... Based on this, please answer the original question.\n" "Assistant: FINAL ANSWER: Frank Herbert\n" ), tools=[self.ddg_tool], llm=self.llm, ) # Image Agent self.image_agent = ReActAgent( name="image_agent", description="Analyzes images and answers questions using the image_processing tool.", system_prompt=( """ You are Image-Agent. The router picked you because the question involves an image file. Rules 1. ALWAYS call the tool `image_processing(file_url, question)` exactly once. 2. Use ONLY the image content to answer the user. 3. NEVER hand the task to another agent and NEVER mention you are using a tool. 4. When you are done, reply with one line in this exact format: FINAL ANSWER: """ ), tools=[self.image_processing_tool], llm=self.llm, ) def _setup_workflow(self): """Initialize the agent workflow.""" self.agentflow = AgentWorkflow( agents=[self.reasoning_agent, self.file_agent, self.youtube_agent, self.search_agent, self.image_agent], root_agent=self.reasoning_agent.name # start with pure reasoning ) # ─── BasicAgent._extract_final_answer ────────────────────────────────────────── def _extract_final_answer(self, question: str, agent_resp) -> str: raw_trace = "\n".join(block.text for block in agent_resp.response.blocks) return format_final_answer( question, raw_trace, api_key=api_key, api_version=azure_api_version, endpoint=azure_endpoint, deployment=azure_model_name, ) def __call__(self, question: str, task_id: str, file_name: str, file_type = None) -> str: """ Main method to process a question and return an answer. This method will be called by the evaluation system. Args: question (str): The question to answer task_id (str, optional): Task ID for file retrieval file_name (str, optional): Name of the file associated with the question file_type (str, optional): Type of the file (e.g., .pdf, .docx, etc.) Returns: str: The answer to the question """ try: # Check if there's a file associated with this question # The evaluation system should provide file info in the question or via task_id enhanced_question = question if len(file_name) > 0: file_url = f"{DEFAULT_API_URL}/files/{task_id}" print(f"Processing file: {file_name} with type {file_type} at URL {file_url}") enhanced_question += f"\nThis question relates to the file at {file_url} (filename: {file_name} and file type: {file_type}). Please analyze its contents using the appropriate tool." # Construct the full prompt with routing instructions full_prompt = f"\n\nUser Question:\n{enhanced_question}" # Run the agent workflow with proper async handling agent_resp = self._run_async_workflow(full_prompt) print(f"Agent response received:\n{question}\n---\n{agent_resp}") # Extract & return final_answer = self._extract_final_answer(question, agent_resp) print("Final answer extracted:", final_answer) print(f"Final answer extracted: {final_answer}") print("------------------------------------------------------------------------------------------------") print('****************************************************************************') return final_answer except Exception as e: print(f"Error in BasicAgent.__call__: {e}") return f"Error processing question: {str(e)}" # ─── keep just ONE runner ──────────────────────────────────────────── def _run_async_workflow(self, prompt: str): """ Call `agentflow.run()` until the response STOPs containing an Action/Thought line. Works with older llama-index that has no `.initialize() / .run_step()`. """ async def _step(msg): return await self.agentflow.run(user_msg=msg) async def _inner(): rsp = await _step(prompt) # first turn # If the last block is still a tool-call, keep asking “continue” while rsp.response.blocks[-1].text.lstrip().lower().startswith(("action:", "thought:")): rsp = await _step("continue") return rsp try: loop = asyncio.get_running_loop() # running inside Gradio except RuntimeError: # plain Python return asyncio.run(_inner()) else: return asyncio.run_coroutine_threadsafe(_inner(), loop).result() # ------------------------------ # 3. Modified answer_questions_batch function (kept for reference) # ------------------------------ async def answer_questions_batch(questions_data): """ This function is kept for reference but is no longer used in the main flow. The BasicAgent class now handles individual questions directly. """ answers = [] agent = BasicAgent() for question_data in questions_data: question = question_data.get("question", "") file_name = question_data.get("file_name", "") task_id = question_data.get("task_id", "") file_type = Path(file_name).suffix.lower().split("?")[0] if len(file_name)> 0 else None try: # Let the BasicAgent handle the question processing answer = agent(question, task_id, file_name, file_type) answers.append({ "task_id": task_id, "question": question, "submitted_answer": answer }) except Exception as e: print(f"Error processing question {task_id}: {e}") answers.append({ "task_id": task_id, "question": question, "submitted_answer": f"Error: {str(e)}" }) time.sleep(1) # Rate limiting return answers def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent try: agent = BasicAgent() print("BasicAgent instantiated successfully.") except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") file_name = item.get("file_name", "") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: # Prepare enhanced question with file information if present enhanced_question = question_text if len(file_name) > 0: file_type = Path(file_name).suffix.lower().split("?")[0] file_url = f"{api_url}/files/{task_id}" enhanced_question += f"\nThis question relates to the file at {file_url} (filename: {file_name} and file type: {file_type}). Please analyze its contents using the appropriate tool." else: file_type = None # Call the agent submitted_answer = agent(enhanced_question, task_id, file_name, file_type) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)