File size: 50,678 Bytes
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
# Copyright (c) 2023 HuggingFace Team
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache License, Version 2.0 (the "License")
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 1st June 2025
#
# Original file was released under Apache License, Version 2.0 (the "License"), with the full license text
# available at http://www.apache.org/licenses/LICENSE-2.0.
#
# This modified file is released under the same license.


from contextlib import nullcontext
from typing import Literal, Optional, Tuple, Union
import diffusers
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention, SpatialNorm
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.downsampling import Downsample2D
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.resnet import ResnetBlock2D
from diffusers.models.unets.unet_2d_blocks import DownEncoderBlock2D, UpDecoderBlock2D
from diffusers.models.upsampling import Upsample2D
from diffusers.utils import is_torch_version
from diffusers.utils.accelerate_utils import apply_forward_hook
from einops import rearrange

from common.distributed.advanced import get_sequence_parallel_world_size
from common.logger import get_logger
from models.video_vae_v3.modules.causal_inflation_lib import (
    InflatedCausalConv3d,
    causal_norm_wrapper,
    init_causal_conv3d,
    remove_head,
)
from models.video_vae_v3.modules.context_parallel_lib import (
    causal_conv_gather_outputs,
    causal_conv_slice_inputs,
)
from models.video_vae_v3.modules.global_config import set_norm_limit
from models.video_vae_v3.modules.types import (
    CausalAutoencoderOutput,
    CausalDecoderOutput,
    CausalEncoderOutput,
    MemoryState,
    _inflation_mode_t,
    _memory_device_t,
    _receptive_field_t,
)

logger = get_logger(__name__)  # pylint: disable=invalid-name


class Upsample3D(Upsample2D):
    """A 3D upsampling layer with an optional convolution."""

    def __init__(
        self,
        *args,
        inflation_mode: _inflation_mode_t = "tail",
        temporal_up: bool = False,
        spatial_up: bool = True,
        slicing: bool = False,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        conv = self.conv if self.name == "conv" else self.Conv2d_0

        assert type(conv) is not nn.ConvTranspose2d
        # Note: lora_layer is not passed into constructor in the original implementation.
        # So we make a simplification.
        conv = init_causal_conv3d(
            self.channels,
            self.out_channels,
            3,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.temporal_up = temporal_up
        self.spatial_up = spatial_up
        self.temporal_ratio = 2 if temporal_up else 1
        self.spatial_ratio = 2 if spatial_up else 1
        self.slicing = slicing

        assert not self.interpolate
        # [Override] MAGViT v2 implementation
        if not self.interpolate:
            upscale_ratio = (self.spatial_ratio**2) * self.temporal_ratio
            self.upscale_conv = nn.Conv3d(
                self.channels, self.channels * upscale_ratio, kernel_size=1, padding=0
            )
            identity = (
                torch.eye(self.channels)
                .repeat(upscale_ratio, 1)
                .reshape_as(self.upscale_conv.weight)
            )
            self.upscale_conv.weight.data.copy_(identity)
            nn.init.zeros_(self.upscale_conv.bias)

        if self.name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        output_size: Optional[int] = None,
        memory_state: MemoryState = MemoryState.DISABLED,
        **kwargs,
    ) -> torch.FloatTensor:
        assert hidden_states.shape[1] == self.channels

        if hasattr(self, "norm") and self.norm is not None:
            # [Overridden] change to causal norm.
            hidden_states = causal_norm_wrapper(self.norm, hidden_states)

        if self.use_conv_transpose:
            return self.conv(hidden_states)

        if self.slicing:
            split_size = hidden_states.size(2) // 2
            hidden_states = list(
                hidden_states.split([split_size, hidden_states.size(2) - split_size], dim=2)
            )
        else:
            hidden_states = [hidden_states]

        for i in range(len(hidden_states)):
            hidden_states[i] = self.upscale_conv(hidden_states[i])
            hidden_states[i] = rearrange(
                hidden_states[i],
                "b (x y z c) f h w -> b c (f z) (h x) (w y)",
                x=self.spatial_ratio,
                y=self.spatial_ratio,
                z=self.temporal_ratio,
            )

        # [Overridden] For causal temporal conv
        if self.temporal_up and memory_state != MemoryState.ACTIVE:
            hidden_states[0] = remove_head(hidden_states[0])

        if not self.slicing:
            hidden_states = hidden_states[0]

        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states, memory_state=memory_state)
            else:
                hidden_states = self.Conv2d_0(hidden_states, memory_state=memory_state)

        if not self.slicing:
            return hidden_states
        else:
            return torch.cat(hidden_states, dim=2)


class Downsample3D(Downsample2D):
    """A 3D downsampling layer with an optional convolution."""

    def __init__(
        self,
        *args,
        inflation_mode: _inflation_mode_t = "tail",
        spatial_down: bool = False,
        temporal_down: bool = False,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        conv = self.conv
        self.temporal_down = temporal_down
        self.spatial_down = spatial_down

        self.temporal_ratio = 2 if temporal_down else 1
        self.spatial_ratio = 2 if spatial_down else 1

        self.temporal_kernel = 3 if temporal_down else 1
        self.spatial_kernel = 3 if spatial_down else 1

        if type(conv) in [nn.Conv2d, LoRACompatibleConv]:
            # Note: lora_layer is not passed into constructor in the original implementation.
            # So we make a simplification.
            conv = init_causal_conv3d(
                self.channels,
                self.out_channels,
                kernel_size=(self.temporal_kernel, self.spatial_kernel, self.spatial_kernel),
                stride=(self.temporal_ratio, self.spatial_ratio, self.spatial_ratio),
                padding=(
                    1 if self.temporal_down else 0,
                    self.padding if self.spatial_down else 0,
                    self.padding if self.spatial_down else 0,
                ),
                inflation_mode=inflation_mode,
            )
        elif type(conv) is nn.AvgPool2d:
            assert self.channels == self.out_channels
            conv = nn.AvgPool3d(
                kernel_size=(self.temporal_ratio, self.spatial_ratio, self.spatial_ratio),
                stride=(self.temporal_ratio, self.spatial_ratio, self.spatial_ratio),
            )
        else:
            raise NotImplementedError

        if self.name == "conv":
            self.Conv2d_0 = conv
            self.conv = conv
        else:
            self.conv = conv

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState = MemoryState.DISABLED,
        **kwargs,
    ) -> torch.FloatTensor:

        assert hidden_states.shape[1] == self.channels

        if hasattr(self, "norm") and self.norm is not None:
            # [Overridden] change to causal norm.
            hidden_states = causal_norm_wrapper(self.norm, hidden_states)

        if self.use_conv and self.padding == 0 and self.spatial_down:
            pad = (0, 1, 0, 1)
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)

        assert hidden_states.shape[1] == self.channels

        hidden_states = self.conv(hidden_states, memory_state=memory_state)

        return hidden_states


class ResnetBlock3D(ResnetBlock2D):
    def __init__(
        self,
        *args,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        slicing: bool = False,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.conv1 = init_causal_conv3d(
            self.in_channels,
            self.out_channels,
            kernel_size=(1, 3, 3) if time_receptive_field == "half" else (3, 3, 3),
            stride=1,
            padding=(0, 1, 1) if time_receptive_field == "half" else (1, 1, 1),
            inflation_mode=inflation_mode,
        )

        self.conv2 = init_causal_conv3d(
            self.out_channels,
            self.conv2.out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        if self.up:
            assert type(self.upsample) is Upsample2D
            self.upsample = Upsample3D(
                self.in_channels,
                use_conv=False,
                inflation_mode=inflation_mode,
                slicing=slicing,
            )
        elif self.down:
            assert type(self.downsample) is Downsample2D
            self.downsample = Downsample3D(
                self.in_channels,
                use_conv=False,
                padding=1,
                name="op",
                inflation_mode=inflation_mode,
            )

        if self.use_in_shortcut:
            self.conv_shortcut = init_causal_conv3d(
                self.in_channels,
                self.conv_shortcut.out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=(self.conv_shortcut.bias is not None),
                inflation_mode=inflation_mode,
            )

    def forward(
        self, input_tensor, temb, memory_state: MemoryState = MemoryState.DISABLED, **kwargs
    ):
        hidden_states = input_tensor

        hidden_states = causal_norm_wrapper(self.norm1, hidden_states)

        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes.
            # see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor, memory_state=memory_state)
            hidden_states = self.upsample(hidden_states, memory_state=memory_state)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor, memory_state=memory_state)
            hidden_states = self.downsample(hidden_states, memory_state=memory_state)

        hidden_states = self.conv1(hidden_states, memory_state=memory_state)

        if self.time_emb_proj is not None:
            if not self.skip_time_act:
                temb = self.nonlinearity(temb)
            temb = self.time_emb_proj(temb)[:, :, None, None]

        if temb is not None and self.time_embedding_norm == "default":
            hidden_states = hidden_states + temb

        hidden_states = causal_norm_wrapper(self.norm2, hidden_states)

        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states, memory_state=memory_state)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor, memory_state=memory_state)

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor


class DownEncoderBlock3D(DownEncoderBlock2D):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_down: bool = True,
        spatial_down: bool = True,
    ):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            dropout=dropout,
            num_layers=num_layers,
            resnet_eps=resnet_eps,
            resnet_time_scale_shift=resnet_time_scale_shift,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_pre_norm=resnet_pre_norm,
            output_scale_factor=output_scale_factor,
            add_downsample=add_downsample,
            downsample_padding=downsample_padding,
        )
        resnets = []
        temporal_modules = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                # [Override] Replace module.
                ResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                )
            )
            temporal_modules.append(nn.Identity())

        self.resnets = nn.ModuleList(resnets)
        self.temporal_modules = nn.ModuleList(temporal_modules)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    # [Override] Replace module.
                    Downsample3D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
                        temporal_down=temporal_down,
                        spatial_down=spatial_down,
                        inflation_mode=inflation_mode,
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState = MemoryState.DISABLED,
        **kwargs,
    ) -> torch.FloatTensor:
        for resnet, temporal in zip(self.resnets, self.temporal_modules):
            hidden_states = resnet(hidden_states, temb=None, memory_state=memory_state)
            hidden_states = temporal(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, memory_state=memory_state)

        return hidden_states


class UpDecoderBlock3D(UpDecoderBlock2D):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",  # default, spatial
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        temb_channels: Optional[int] = None,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_up: bool = True,
        spatial_up: bool = True,
        slicing: bool = False,
    ):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            dropout=dropout,
            num_layers=num_layers,
            resnet_eps=resnet_eps,
            resnet_time_scale_shift=resnet_time_scale_shift,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_pre_norm=resnet_pre_norm,
            output_scale_factor=output_scale_factor,
            add_upsample=add_upsample,
            temb_channels=temb_channels,
        )
        resnets = []
        temporal_modules = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
                # [Override] Replace module.
                ResnetBlock3D(
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                    slicing=slicing,
                )
            )

            temporal_modules.append(nn.Identity())

        self.resnets = nn.ModuleList(resnets)
        self.temporal_modules = nn.ModuleList(temporal_modules)

        if add_upsample:
            # [Override] Replace module & use learnable upsample
            self.upsamplers = nn.ModuleList(
                [
                    Upsample3D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        temporal_up=temporal_up,
                        spatial_up=spatial_up,
                        interpolate=False,
                        inflation_mode=inflation_mode,
                        slicing=slicing,
                    )
                ]
            )
        else:
            self.upsamplers = None

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        memory_state: MemoryState = MemoryState.DISABLED,
    ) -> torch.FloatTensor:
        for resnet, temporal in zip(self.resnets, self.temporal_modules):
            hidden_states = resnet(hidden_states, temb=None, memory_state=memory_state)
            hidden_states = temporal(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, memory_state=memory_state)

        return hidden_states


class UNetMidBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",  # default, spatial
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        add_attention: bool = True,
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
    ):
        super().__init__()
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
        self.add_attention = add_attention

        # there is always at least one resnet
        resnets = [
            # [Override] Replace module.
            ResnetBlock3D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
                inflation_mode=inflation_mode,
                time_receptive_field=time_receptive_field,
            )
        ]
        attentions = []

        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. "
                f"Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

        for _ in range(num_layers):
            if self.add_attention:
                attentions.append(
                    Attention(
                        in_channels,
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
                        norm_num_groups=(
                            resnet_groups if resnet_time_scale_shift == "default" else None
                        ),
                        spatial_norm_dim=(
                            temb_channels if resnet_time_scale_shift == "spatial" else None
                        ),
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
                    )
                )
            else:
                attentions.append(None)

            resnets.append(
                ResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states, temb=None, memory_state: MemoryState = MemoryState.DISABLED):
        video_length, frame_height, frame_width = hidden_states.size()[-3:]
        hidden_states = self.resnets[0](hidden_states, temb, memory_state=memory_state)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if attn is not None:
                hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
                hidden_states = attn(hidden_states, temb=temb)
                hidden_states = rearrange(
                    hidden_states, "(b f) c h w -> b c f h w", f=video_length
                )
            hidden_states = resnet(hidden_states, temb, memory_state=memory_state)

        return hidden_states


class Encoder3D(nn.Module):
    r"""
    [Override] override most logics to support extra condition input and causal conv

    The `Encoder` layer of a variational autoencoder that encodes
    its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use.
            See `~diffusers.models.unet_2d_blocks.get_down_block`
            for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use.
            See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock3D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
        mid_block_add_attention=True,
        # [Override] add extra_cond_dim, temporal down num
        temporal_down_num: int = 2,
        extra_cond_dim: int = None,
        gradient_checkpoint: bool = False,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.temporal_down_num = temporal_down_num

        self.conv_in = init_causal_conv3d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])
        self.extra_cond_dim = extra_cond_dim

        self.conv_extra_cond = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            # [Override] to support temporal down block design
            is_temporal_down_block = i >= len(block_out_channels) - self.temporal_down_num - 1
            # Note: take the last ones

            assert down_block_type == "DownEncoderBlock3D"

            down_block = DownEncoderBlock3D(
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
                downsample_padding=0,
                # Note: Don't know why set it as 0
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                temporal_down=is_temporal_down_block,
                spatial_down=True,
                inflation_mode=inflation_mode,
                time_receptive_field=time_receptive_field,
            )
            self.down_blocks.append(down_block)

            def zero_module(module):
                # Zero out the parameters of a module and return it.
                for p in module.parameters():
                    p.detach().zero_()
                return module

            self.conv_extra_cond.append(
                zero_module(
                    nn.Conv3d(extra_cond_dim, output_channel, kernel_size=1, stride=1, padding=0)
                )
                if self.extra_cond_dim is not None and self.extra_cond_dim > 0
                else None
            )

        # mid
        self.mid_block = UNetMidBlock3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
            add_attention=mid_block_add_attention,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(
            num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6
        )
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = init_causal_conv3d(
            block_out_channels[-1], conv_out_channels, 3, padding=1, inflation_mode=inflation_mode
        )

        self.gradient_checkpointing = gradient_checkpoint

    def forward(
        self,
        sample: torch.FloatTensor,
        extra_cond=None,
        memory_state: MemoryState = MemoryState.DISABLED,
    ) -> torch.FloatTensor:
        r"""The forward method of the `Encoder` class."""
        sample = self.conv_in(sample, memory_state=memory_state)
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
            # [Override] add extra block and extra cond
            for down_block, extra_block in zip(self.down_blocks, self.conv_extra_cond):
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(down_block), sample, memory_state, use_reentrant=False
                )
                if extra_block is not None:
                    sample = sample + F.interpolate(extra_block(extra_cond), size=sample.shape[2:])

            # middle
            sample = self.mid_block(sample, memory_state=memory_state)

            # sample = torch.utils.checkpoint.checkpoint(
            #     create_custom_forward(self.mid_block), sample, use_reentrant=False
            # )

        else:
            # down
            # [Override] add extra block and extra cond
            for down_block, extra_block in zip(self.down_blocks, self.conv_extra_cond):
                sample = down_block(sample, memory_state=memory_state)
                if extra_block is not None:
                    sample = sample + F.interpolate(extra_block(extra_cond), size=sample.shape[2:])

            # middle
            sample = self.mid_block(sample, memory_state=memory_state)

        # post-process
        sample = causal_norm_wrapper(self.conv_norm_out, sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample, memory_state=memory_state)

        return sample


class Decoder3D(nn.Module):
    r"""
    The `Decoder` layer of a variational autoencoder that
    decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use.
            See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use.
            See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock3D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
        mid_block_add_attention=True,
        # [Override] add temporal up block
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_up_num: int = 2,
        slicing_up_num: int = 0,
        gradient_checkpoint: bool = False,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.temporal_up_num = temporal_up_num

        self.conv_in = init_causal_conv3d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
            add_attention=mid_block_add_attention,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        print(f"slicing_up_num: {slicing_up_num}")
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1
            is_temporal_up_block = i < self.temporal_up_num
            is_slicing_up_block = i >= len(block_out_channels) - slicing_up_num
            # Note: Keep symmetric

            assert up_block_type == "UpDecoderBlock3D"
            up_block = UpDecoderBlock3D(
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=norm_type,
                temb_channels=temb_channels,
                temporal_up=is_temporal_up_block,
                slicing=is_slicing_up_block,
                inflation_mode=inflation_mode,
                time_receptive_field=time_receptive_field,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6
            )
        self.conv_act = nn.SiLU()
        self.conv_out = init_causal_conv3d(
            block_out_channels[0], out_channels, 3, padding=1, inflation_mode=inflation_mode
        )

        self.gradient_checkpointing = gradient_checkpoint

    # Note: Just copy from Decoder.
    def forward(
        self,
        sample: torch.FloatTensor,
        latent_embeds: Optional[torch.FloatTensor] = None,
        memory_state: MemoryState = MemoryState.DISABLED,
    ) -> torch.FloatTensor:
        r"""The forward method of the `Decoder` class."""

        sample = self.conv_in(sample, memory_state=memory_state)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                sample = self.mid_block(sample, latent_embeds, memory_state=memory_state)
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        memory_state,
                        use_reentrant=False,
                    )
            else:
                # middle
                sample = self.mid_block(sample, latent_embeds, memory_state=memory_state)
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(up_block), sample, latent_embeds, memory_state
                    )
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds, memory_state=memory_state)
            sample = sample.to(upscale_dtype)

            # up
            for up_block in self.up_blocks:
                sample = up_block(sample, latent_embeds, memory_state=memory_state)

        # post-process
        sample = causal_norm_wrapper(self.conv_norm_out, sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample, memory_state=memory_state)

        return sample


class AutoencoderKL(diffusers.AutoencoderKL):
    """
    We simply inherit the model code from diffusers
    """

    def __init__(self, attention: bool = True, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # A hacky way to remove attention.
        if not attention:
            self.encoder.mid_block.attentions = torch.nn.ModuleList([None])
            self.decoder.mid_block.attentions = torch.nn.ModuleList([None])

    def load_state_dict(self, state_dict, strict=True):
        # Newer version of diffusers changed the model keys,
        # causing incompatibility with old checkpoints.
        # They provided a method for conversion. We call conversion before loading state_dict.
        convert_deprecated_attention_blocks = getattr(
            self, "_convert_deprecated_attention_blocks", None
        )
        if callable(convert_deprecated_attention_blocks):
            convert_deprecated_attention_blocks(state_dict)
        return super().load_state_dict(state_dict, strict)


class VideoAutoencoderKL(diffusers.AutoencoderKL):
    """
    We simply inherit the model code from diffusers
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock3D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock3D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
        scaling_factor: float = 0.18215,
        force_upcast: float = True,
        attention: bool = True,
        temporal_scale_num: int = 2,
        slicing_up_num: int = 0,
        gradient_checkpoint: bool = False,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "full",
        slicing_sample_min_size: int = 32,
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
        *args,
        **kwargs,
    ):
        extra_cond_dim = kwargs.pop("extra_cond_dim") if "extra_cond_dim" in kwargs else None
        self.slicing_sample_min_size = slicing_sample_min_size
        self.slicing_latent_min_size = slicing_sample_min_size // (2**temporal_scale_num)

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            # [Override] make sure it can be normally initialized
            down_block_types=tuple(
                [down_block_type.replace("3D", "2D") for down_block_type in down_block_types]
            ),
            up_block_types=tuple(
                [up_block_type.replace("3D", "2D") for up_block_type in up_block_types]
            ),
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            latent_channels=latent_channels,
            norm_num_groups=norm_num_groups,
            sample_size=sample_size,
            scaling_factor=scaling_factor,
            force_upcast=force_upcast,
            *args,
            **kwargs,
        )

        # pass init params to Encoder
        self.encoder = Encoder3D(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
            extra_cond_dim=extra_cond_dim,
            # [Override] add temporal_down_num parameter
            temporal_down_num=temporal_scale_num,
            gradient_checkpoint=gradient_checkpoint,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # pass init params to Decoder
        self.decoder = Decoder3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
            # [Override] add temporal_up_num parameter
            temporal_up_num=temporal_scale_num,
            slicing_up_num=slicing_up_num,
            gradient_checkpoint=gradient_checkpoint,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        self.quant_conv = (
            init_causal_conv3d(
                in_channels=2 * latent_channels,
                out_channels=2 * latent_channels,
                kernel_size=1,
                inflation_mode=inflation_mode,
            )
            if use_quant_conv
            else None
        )
        self.post_quant_conv = (
            init_causal_conv3d(
                in_channels=latent_channels,
                out_channels=latent_channels,
                kernel_size=1,
                inflation_mode=inflation_mode,
            )
            if use_post_quant_conv
            else None
        )

        # A hacky way to remove attention.
        if not attention:
            self.encoder.mid_block.attentions = torch.nn.ModuleList([None])
            self.decoder.mid_block.attentions = torch.nn.ModuleList([None])

    @apply_forward_hook
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
        h = self.slicing_encode(x)
        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    @apply_forward_hook
    def decode(
        self, z: torch.Tensor, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
        decoded = self.slicing_decode(z)

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def _encode(
        self, x: torch.Tensor, memory_state: MemoryState = MemoryState.DISABLED
    ) -> torch.Tensor:
        _x = x.to(self.device)
        _x = causal_conv_slice_inputs(_x, self.slicing_sample_min_size, memory_state=memory_state)
        h = self.encoder(_x, memory_state=memory_state)
        if self.quant_conv is not None:
            output = self.quant_conv(h, memory_state=memory_state)
        else:
            output = h
        output = causal_conv_gather_outputs(output)
        return output.to(x.device)

    def _decode(
        self, z: torch.Tensor, memory_state: MemoryState = MemoryState.DISABLED
    ) -> torch.Tensor:
        _z = z.to(self.device)
        _z = causal_conv_slice_inputs(_z, self.slicing_latent_min_size, memory_state=memory_state)
        if self.post_quant_conv is not None:
            _z = self.post_quant_conv(_z, memory_state=memory_state)
        output = self.decoder(_z, memory_state=memory_state)
        output = causal_conv_gather_outputs(output)
        return output.to(z.device)

    def slicing_encode(self, x: torch.Tensor) -> torch.Tensor:
        sp_size = get_sequence_parallel_world_size()
        if self.use_slicing and (x.shape[2] - 1) > self.slicing_sample_min_size * sp_size:
            x_slices = x[:, :, 1:].split(split_size=self.slicing_sample_min_size * sp_size, dim=2)
            encoded_slices = [
                self._encode(
                    torch.cat((x[:, :, :1], x_slices[0]), dim=2),
                    memory_state=MemoryState.INITIALIZING,
                )
            ]
            for x_idx in range(1, len(x_slices)):
                encoded_slices.append(
                    self._encode(x_slices[x_idx], memory_state=MemoryState.ACTIVE)
                )
            return torch.cat(encoded_slices, dim=2)
        else:
            return self._encode(x)

    def slicing_decode(self, z: torch.Tensor) -> torch.Tensor:
        sp_size = get_sequence_parallel_world_size()
        if self.use_slicing and (z.shape[2] - 1) > self.slicing_latent_min_size * sp_size:
            z_slices = z[:, :, 1:].split(split_size=self.slicing_latent_min_size * sp_size, dim=2)
            decoded_slices = [
                self._decode(
                    torch.cat((z[:, :, :1], z_slices[0]), dim=2),
                    memory_state=MemoryState.INITIALIZING,
                )
            ]
            for z_idx in range(1, len(z_slices)):
                decoded_slices.append(
                    self._decode(z_slices[z_idx], memory_state=MemoryState.ACTIVE)
                )
            return torch.cat(decoded_slices, dim=2)
        else:
            return self._decode(z)

    def tiled_encode(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        raise NotImplementedError

    def tiled_decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
        raise NotImplementedError

    def forward(
        self, x: torch.FloatTensor, mode: Literal["encode", "decode", "all"] = "all", **kwargs
    ):
        # x: [b c t h w]
        if mode == "encode":
            h = self.encode(x)
            return h.latent_dist
        elif mode == "decode":
            h = self.decode(x)
            return h.sample
        else:
            h = self.encode(x)
            h = self.decode(h.latent_dist.mode())
            return h.sample

    def load_state_dict(self, state_dict, strict=False):
        # Newer version of diffusers changed the model keys,
        # causing incompatibility with old checkpoints.
        # They provided a method for conversion.
        # We call conversion before loading state_dict.
        convert_deprecated_attention_blocks = getattr(
            self, "_convert_deprecated_attention_blocks", None
        )
        if callable(convert_deprecated_attention_blocks):
            convert_deprecated_attention_blocks(state_dict)
        return super().load_state_dict(state_dict, strict)


class VideoAutoencoderKLWrapper(VideoAutoencoderKL):
    def __init__(
        self,
        *args,
        spatial_downsample_factor: int,
        temporal_downsample_factor: int,
        freeze_encoder: bool,
        **kwargs,
    ):
        self.spatial_downsample_factor = spatial_downsample_factor
        self.temporal_downsample_factor = temporal_downsample_factor
        self.freeze_encoder = freeze_encoder
        super().__init__(*args, **kwargs)

    def forward(self, x: torch.FloatTensor) -> CausalAutoencoderOutput:
        with torch.no_grad() if self.freeze_encoder else nullcontext():
            z, p = self.encode(x)
        x = self.decode(z).sample
        return CausalAutoencoderOutput(x, z, p)

    def encode(self, x: torch.FloatTensor) -> CausalEncoderOutput:
        if x.ndim == 4:
            x = x.unsqueeze(2)
        p = super().encode(x).latent_dist
        z = p.sample().squeeze(2)
        return CausalEncoderOutput(z, p)

    def decode(self, z: torch.FloatTensor) -> CausalDecoderOutput:
        if z.ndim == 4:
            z = z.unsqueeze(2)
        x = super().decode(z).sample.squeeze(2)
        return CausalDecoderOutput(x)

    def preprocess(self, x: torch.Tensor):
        # x should in [B, C, T, H, W], [B, C, H, W]
        assert x.ndim == 4 or x.size(2) % 4 == 1
        return x

    def postprocess(self, x: torch.Tensor):
        # x should in [B, C, T, H, W], [B, C, H, W]
        return x

    def set_causal_slicing(
        self,
        *,
        split_size: Optional[int],
        memory_device: _memory_device_t,
    ):
        assert (
            split_size is None or memory_device is not None
        ), "if split_size is set, memory_device must not be None."
        if split_size is not None:
            self.enable_slicing()
            self.slicing_sample_min_size = split_size
            self.slicing_latent_min_size = split_size // self.temporal_downsample_factor
        else:
            self.disable_slicing()
        for module in self.modules():
            if isinstance(module, InflatedCausalConv3d):
                module.set_memory_device(memory_device)

    def set_memory_limit(self, conv_max_mem: Optional[float], norm_max_mem: Optional[float]):
        set_norm_limit(norm_max_mem)
        for m in self.modules():
            if isinstance(m, InflatedCausalConv3d):
                m.set_memory_limit(conv_max_mem if conv_max_mem is not None else float("inf"))