File size: 34,069 Bytes
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
# Copyright (c) 2023 HuggingFace Team
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache License, Version 2.0 (the "License")
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 1st June 2025
#
# Original file was released under Apache License, Version 2.0 (the "License"), with the full license text
# available at http://www.apache.org/licenses/LICENSE-2.0.
#
# This modified file is released under the same license.

from contextlib import nullcontext
from typing import Optional, Tuple, Literal, Callable, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from einops import rearrange

from common.distributed.advanced import get_sequence_parallel_world_size
from common.logger import get_logger
from models.video_vae_v3.modules.causal_inflation_lib import (
    InflatedCausalConv3d,
    causal_norm_wrapper,
    init_causal_conv3d,
    remove_head,
)
from models.video_vae_v3.modules.context_parallel_lib import (
    causal_conv_gather_outputs,
    causal_conv_slice_inputs,
)
from models.video_vae_v3.modules.global_config import set_norm_limit
from models.video_vae_v3.modules.types import (
    CausalAutoencoderOutput,
    CausalDecoderOutput,
    CausalEncoderOutput,
    MemoryState,
    _inflation_mode_t,
    _memory_device_t,
    _receptive_field_t,
    _selective_checkpointing_t,
)

logger = get_logger(__name__)  # pylint: disable=invalid-name

# Fake func, no checkpointing is required for inference
def gradient_checkpointing(module: Union[Callable, nn.Module], *args, enabled: bool, **kwargs):
    return module(*args, **kwargs)

class ResnetBlock2D(nn.Module):
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer.
            If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
    """

    def __init__(
        self, *, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0
    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        self.nonlinearity = nn.SiLU()

        self.norm1 = torch.nn.GroupNorm(
            num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
        )

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        self.norm2 = torch.nn.GroupNorm(
            num_groups=32, num_channels=out_channels, eps=1e-6, affine=True
        )

        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        self.use_in_shortcut = self.in_channels != out_channels

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = nn.Conv2d(
                in_channels, out_channels, kernel_size=1, stride=1, padding=0
            )

    def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden = input_tensor

        hidden = self.norm1(hidden)
        hidden = self.nonlinearity(hidden)
        hidden = self.conv1(hidden)

        hidden = self.norm2(hidden)
        hidden = self.nonlinearity(hidden)
        hidden = self.dropout(hidden)
        hidden = self.conv2(hidden)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden

        return output_tensor

class Upsample3D(nn.Module):
    """A 3D upsampling layer."""

    def __init__(
        self,
        channels: int,
        inflation_mode: _inflation_mode_t = "tail",
        temporal_up: bool = False,
        spatial_up: bool = True,
        slicing: bool = False,
    ):
        super().__init__()
        self.channels = channels
        self.conv = init_causal_conv3d(
            self.channels, self.channels, kernel_size=3, padding=1, inflation_mode=inflation_mode
        )

        self.temporal_up = temporal_up
        self.spatial_up = spatial_up
        self.temporal_ratio = 2 if temporal_up else 1
        self.spatial_ratio = 2 if spatial_up else 1
        self.slicing = slicing

        upscale_ratio = (self.spatial_ratio**2) * self.temporal_ratio
        self.upscale_conv = nn.Conv3d(
            self.channels, self.channels * upscale_ratio, kernel_size=1, padding=0
        )
        identity = (
            torch.eye(self.channels).repeat(upscale_ratio, 1).reshape_as(self.upscale_conv.weight)
        )

        self.upscale_conv.weight.data.copy_(identity)
        nn.init.zeros_(self.upscale_conv.bias)
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState,
    ) -> torch.FloatTensor:
        return gradient_checkpointing(
            self.custom_forward,
            hidden_states,
            memory_state,
            enabled=self.training and self.gradient_checkpointing,
        )

    def custom_forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState,
    ) -> torch.FloatTensor:
        assert hidden_states.shape[1] == self.channels

        if self.slicing:
            split_size = hidden_states.size(2) // 2
            hidden_states = list(
                hidden_states.split([split_size, hidden_states.size(2) - split_size], dim=2)
            )
        else:
            hidden_states = [hidden_states]

        for i in range(len(hidden_states)):
            hidden_states[i] = self.upscale_conv(hidden_states[i])
            hidden_states[i] = rearrange(
                hidden_states[i],
                "b (x y z c) f h w -> b c (f z) (h x) (w y)",
                x=self.spatial_ratio,
                y=self.spatial_ratio,
                z=self.temporal_ratio,
            )

        # [Overridden] For causal temporal conv
        if self.temporal_up and memory_state != MemoryState.ACTIVE:
            hidden_states[0] = remove_head(hidden_states[0])

        if self.slicing:
            hidden_states = self.conv(hidden_states, memory_state=memory_state)
            return torch.cat(hidden_states, dim=2)
        else:
            return self.conv(hidden_states[0], memory_state=memory_state)


class Downsample3D(nn.Module):
    """A 3D downsampling layer."""

    def __init__(
        self,
        channels: int,
        inflation_mode: _inflation_mode_t = "tail",
        temporal_down: bool = False,
        spatial_down: bool = True,
    ):
        super().__init__()
        self.channels = channels
        self.temporal_down = temporal_down
        self.spatial_down = spatial_down

        self.temporal_ratio = 2 if temporal_down else 1
        self.spatial_ratio = 2 if spatial_down else 1

        self.temporal_kernel = 3 if temporal_down else 1
        self.spatial_kernel = 3 if spatial_down else 1

        self.conv = init_causal_conv3d(
            self.channels,
            self.channels,
            kernel_size=(self.temporal_kernel, self.spatial_kernel, self.spatial_kernel),
            stride=(self.temporal_ratio, self.spatial_ratio, self.spatial_ratio),
            padding=((1 if self.temporal_down else 0), 0, 0),
            inflation_mode=inflation_mode,
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState,
    ) -> torch.FloatTensor:
        return gradient_checkpointing(
            self.custom_forward,
            hidden_states,
            memory_state,
            enabled=self.training and self.gradient_checkpointing,
        )

    def custom_forward(
        self,
        hidden_states: torch.FloatTensor,
        memory_state: MemoryState,
    ) -> torch.FloatTensor:

        assert hidden_states.shape[1] == self.channels

        if self.spatial_down:
            hidden_states = F.pad(hidden_states, (0, 1, 0, 1), mode="constant", value=0)

        hidden_states = self.conv(hidden_states, memory_state=memory_state)
        return hidden_states


class ResnetBlock3D(ResnetBlock2D):
    def __init__(
        self,
        *args,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.conv1 = init_causal_conv3d(
            self.in_channels,
            self.out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.conv2 = init_causal_conv3d(
            self.out_channels,
            self.out_channels,
            kernel_size=(1, 3, 3) if time_receptive_field == "half" else (3, 3, 3),
            stride=1,
            padding=(0, 1, 1) if time_receptive_field == "half" else (1, 1, 1),
            inflation_mode=inflation_mode,
        )

        if self.use_in_shortcut:
            self.conv_shortcut = init_causal_conv3d(
                self.in_channels,
                self.out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=(self.conv_shortcut.bias is not None),
                inflation_mode=inflation_mode,
            )
        self.gradient_checkpointing = False

    def forward(self, input_tensor: torch.Tensor, memory_state: MemoryState = MemoryState.UNSET):
        return gradient_checkpointing(
            self.custom_forward,
            input_tensor,
            memory_state,
            enabled=self.training and self.gradient_checkpointing,
        )

    def custom_forward(
        self, input_tensor: torch.Tensor, memory_state: MemoryState = MemoryState.UNSET
    ):
        assert memory_state != MemoryState.UNSET
        hidden_states = input_tensor

        hidden_states = causal_norm_wrapper(self.norm1, hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states, memory_state=memory_state)

        hidden_states = causal_norm_wrapper(self.norm2, hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states, memory_state=memory_state)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor, memory_state=memory_state)

        output_tensor = input_tensor + hidden_states

        return output_tensor


class DownEncoderBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        add_downsample: bool = True,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_down: bool = True,
        spatial_down: bool = True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        self.downsamplers = None
        if add_downsample:
            # Todo: Refactor this line before V5 Image VAE Training.
            self.downsamplers = nn.ModuleList(
                [
                    Downsample3D(
                        channels=out_channels,
                        inflation_mode=inflation_mode,
                        temporal_down=temporal_down,
                        spatial_down=spatial_down,
                    )
                ]
            )

    def forward(
        self, hidden_states: torch.FloatTensor, memory_state: MemoryState
    ) -> torch.FloatTensor:
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, memory_state=memory_state)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, memory_state=memory_state)

        return hidden_states


class UpDecoderBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        add_upsample: bool = True,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_up: bool = True,
        spatial_up: bool = True,
        slicing: bool = False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
                ResnetBlock3D(
                    in_channels=input_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        self.upsamplers = None
        # Todo: Refactor this line before V5 Image VAE Training.
        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    Upsample3D(
                        channels=out_channels,
                        inflation_mode=inflation_mode,
                        temporal_up=temporal_up,
                        spatial_up=spatial_up,
                        slicing=slicing,
                    )
                ]
            )

    def forward(
        self, hidden_states: torch.FloatTensor, memory_state: MemoryState
    ) -> torch.FloatTensor:
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, memory_state=memory_state)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, memory_state=memory_state)

        return hidden_states


class UNetMidBlock3D(nn.Module):
    def __init__(
        self,
        channels: int,
        dropout: float = 0.0,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
    ):
        super().__init__()
        self.resnets = nn.ModuleList(
            [
                ResnetBlock3D(
                    in_channels=channels,
                    out_channels=channels,
                    dropout=dropout,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                ),
                ResnetBlock3D(
                    in_channels=channels,
                    out_channels=channels,
                    dropout=dropout,
                    inflation_mode=inflation_mode,
                    time_receptive_field=time_receptive_field,
                ),
            ]
        )

    def forward(self, hidden_states: torch.Tensor, memory_state: MemoryState):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, memory_state)
        return hidden_states


class Encoder3D(nn.Module):
    r"""
    The `Encoder` layer of a variational autoencoder that encodes
    its input into a latent representation.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        double_z: bool = True,
        temporal_down_num: int = 2,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",),
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.temporal_down_num = temporal_down_num

        self.conv_in = init_causal_conv3d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i in range(len(block_out_channels)):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            is_temporal_down_block = i >= len(block_out_channels) - self.temporal_down_num - 1
            # Note: take the last one

            down_block = DownEncoderBlock3D(
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                temporal_down=is_temporal_down_block,
                spatial_down=True,
                inflation_mode=inflation_mode,
                time_receptive_field=time_receptive_field,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock3D(
            channels=block_out_channels[-1],
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(
            num_channels=block_out_channels[-1], num_groups=32, eps=1e-6
        )
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = init_causal_conv3d(
            block_out_channels[-1], conv_out_channels, 3, padding=1, inflation_mode=inflation_mode
        )

        assert len(selective_checkpointing) == len(self.down_blocks)
        self.set_gradient_checkpointing(selective_checkpointing)

    def set_gradient_checkpointing(self, checkpointing_types):
        gradient_checkpointing = []
        for down_block, sac_type in zip(self.down_blocks, checkpointing_types):
            if sac_type == "coarse":
                gradient_checkpointing.append(True)
            elif sac_type == "fine":
                for n, m in down_block.named_modules():
                    if hasattr(m, "gradient_checkpointing"):
                        m.gradient_checkpointing = True
                        logger.debug(f"set gradient_checkpointing: {n}")
                gradient_checkpointing.append(False)
            else:
                gradient_checkpointing.append(False)
        self.gradient_checkpointing = gradient_checkpointing
        logger.info(f"[Encoder3D] gradient_checkpointing: {checkpointing_types}")

    def forward(self, sample: torch.FloatTensor, memory_state: MemoryState) -> torch.FloatTensor:
        r"""The forward method of the `Encoder` class."""
        sample = self.conv_in(sample, memory_state=memory_state)
        # down
        for down_block, sac in zip(self.down_blocks, self.gradient_checkpointing):
            sample = gradient_checkpointing(
                down_block,
                sample,
                memory_state=memory_state,
                enabled=self.training and sac,
            )

        # middle
        sample = self.mid_block(sample, memory_state=memory_state)

        # post-process
        sample = causal_norm_wrapper(self.conv_norm_out, sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample, memory_state=memory_state)

        return sample


class Decoder3D(nn.Module):
    r"""
    The `Decoder` layer of a variational autoencoder that
    decodes its latent representation into an output sample.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        temporal_up_num: int = 2,
        slicing_up_num: int = 0,
        selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",),
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.temporal_up_num = temporal_up_num

        self.conv_in = init_causal_conv3d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
            inflation_mode=inflation_mode,
        )

        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock3D(
            channels=block_out_channels[-1],
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i in range(len(reversed_block_out_channels)):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1
            is_temporal_up_block = i < self.temporal_up_num
            is_slicing_up_block = i >= len(block_out_channels) - slicing_up_num
            # Note: Keep symmetric

            up_block = UpDecoderBlock3D(
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                add_upsample=not is_final_block,
                temporal_up=is_temporal_up_block,
                slicing=is_slicing_up_block,
                inflation_mode=inflation_mode,
                time_receptive_field=time_receptive_field,
            )
            self.up_blocks.append(up_block)

        # out
        self.conv_norm_out = nn.GroupNorm(
            num_channels=block_out_channels[0], num_groups=32, eps=1e-6
        )
        self.conv_act = nn.SiLU()
        self.conv_out = init_causal_conv3d(
            block_out_channels[0], out_channels, 3, padding=1, inflation_mode=inflation_mode
        )

        assert len(selective_checkpointing) == len(self.up_blocks)
        self.set_gradient_checkpointing(selective_checkpointing)

    def set_gradient_checkpointing(self, checkpointing_types):
        gradient_checkpointing = []
        for up_block, sac_type in zip(self.up_blocks, checkpointing_types):
            if sac_type == "coarse":
                gradient_checkpointing.append(True)
            elif sac_type == "fine":
                for n, m in up_block.named_modules():
                    if hasattr(m, "gradient_checkpointing"):
                        m.gradient_checkpointing = True
                        logger.debug(f"set gradient_checkpointing: {n}")
                gradient_checkpointing.append(False)
            else:
                gradient_checkpointing.append(False)
        self.gradient_checkpointing = gradient_checkpointing
        logger.info(f"[Decoder3D] gradient_checkpointing: {checkpointing_types}")

    def forward(self, sample: torch.FloatTensor, memory_state: MemoryState) -> torch.FloatTensor:
        r"""The forward method of the `Decoder` class."""

        sample = self.conv_in(sample, memory_state=memory_state)

        # middle
        sample = self.mid_block(sample, memory_state=memory_state)

        # up
        for up_block, sac in zip(self.up_blocks, self.gradient_checkpointing):
            sample = gradient_checkpointing(
                up_block,
                sample,
                memory_state=memory_state,
                enabled=self.training and sac,
            )

        # post-process
        sample = causal_norm_wrapper(self.conv_norm_out, sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample, memory_state=memory_state)

        return sample


class VideoAutoencoderKL(nn.Module):
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        latent_channels: int = 4,
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
        enc_selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",),
        dec_selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",),
        temporal_scale_num: int = 3,
        slicing_up_num: int = 0,
        inflation_mode: _inflation_mode_t = "tail",
        time_receptive_field: _receptive_field_t = "half",
        slicing_sample_min_size: int = None,
        spatial_downsample_factor: int = 16,
        temporal_downsample_factor: int = 8,
        freeze_encoder: bool = False,
    ):
        super().__init__()
        self.spatial_downsample_factor = spatial_downsample_factor
        self.temporal_downsample_factor = temporal_downsample_factor
        self.freeze_encoder = freeze_encoder
        if slicing_sample_min_size is None:
            slicing_sample_min_size = temporal_downsample_factor
        self.slicing_sample_min_size = slicing_sample_min_size
        self.slicing_latent_min_size = slicing_sample_min_size // (2**temporal_scale_num)

        # pass init params to Encoder
        self.encoder = Encoder3D(
            in_channels=in_channels,
            out_channels=latent_channels,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            double_z=True,
            temporal_down_num=temporal_scale_num,
            selective_checkpointing=enc_selective_checkpointing,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        # pass init params to Decoder
        self.decoder = Decoder3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            # [Override] add temporal_up_num parameter
            temporal_up_num=temporal_scale_num,
            slicing_up_num=slicing_up_num,
            selective_checkpointing=dec_selective_checkpointing,
            inflation_mode=inflation_mode,
            time_receptive_field=time_receptive_field,
        )

        self.quant_conv = (
            init_causal_conv3d(
                in_channels=2 * latent_channels,
                out_channels=2 * latent_channels,
                kernel_size=1,
                inflation_mode=inflation_mode,
            )
            if use_quant_conv
            else None
        )
        self.post_quant_conv = (
            init_causal_conv3d(
                in_channels=latent_channels,
                out_channels=latent_channels,
                kernel_size=1,
                inflation_mode=inflation_mode,
            )
            if use_post_quant_conv
            else None
        )

        self.use_slicing = False

    def enable_slicing(self):
        self.use_slicing = True

    def disable_slicing(self):
        self.use_slicing = False

    def encode(self, x: torch.FloatTensor) -> CausalEncoderOutput:
        if x.ndim == 4:
            x = x.unsqueeze(2)
        h = self.slicing_encode(x)
        p = DiagonalGaussianDistribution(h)
        z = p.sample()
        return CausalEncoderOutput(z, p)

    def decode(self, z: torch.FloatTensor) -> CausalDecoderOutput:
        if z.ndim == 4:
            z = z.unsqueeze(2)
        x = self.slicing_decode(z)
        return CausalDecoderOutput(x)

    def _encode(self, x: torch.Tensor, memory_state: MemoryState) -> torch.Tensor:
        x = causal_conv_slice_inputs(x, self.slicing_sample_min_size, memory_state=memory_state)
        h = self.encoder(x, memory_state=memory_state)
        h = self.quant_conv(h, memory_state=memory_state) if self.quant_conv is not None else h
        h = causal_conv_gather_outputs(h)
        return h

    def _decode(self, z: torch.Tensor, memory_state: MemoryState) -> torch.Tensor:
        z = causal_conv_slice_inputs(z, self.slicing_latent_min_size, memory_state=memory_state)
        z = (
            self.post_quant_conv(z, memory_state=memory_state)
            if self.post_quant_conv is not None
            else z
        )
        x = self.decoder(z, memory_state=memory_state)
        x = causal_conv_gather_outputs(x)
        return x

    def slicing_encode(self, x: torch.Tensor) -> torch.Tensor:
        sp_size = get_sequence_parallel_world_size()
        if self.use_slicing and (x.shape[2] - 1) > self.slicing_sample_min_size * sp_size:
            x_slices = x[:, :, 1:].split(split_size=self.slicing_sample_min_size * sp_size, dim=2)
            encoded_slices = [
                self._encode(
                    torch.cat((x[:, :, :1], x_slices[0]), dim=2),
                    memory_state=MemoryState.INITIALIZING,
                )
            ]
            for x_idx in range(1, len(x_slices)):
                encoded_slices.append(
                    self._encode(x_slices[x_idx], memory_state=MemoryState.ACTIVE)
                )
            return torch.cat(encoded_slices, dim=2)
        else:
            return self._encode(x, memory_state=MemoryState.DISABLED)

    def slicing_decode(self, z: torch.Tensor) -> torch.Tensor:
        sp_size = get_sequence_parallel_world_size()
        if self.use_slicing and (z.shape[2] - 1) > self.slicing_latent_min_size * sp_size:
            z_slices = z[:, :, 1:].split(split_size=self.slicing_latent_min_size * sp_size, dim=2)
            decoded_slices = [
                self._decode(
                    torch.cat((z[:, :, :1], z_slices[0]), dim=2),
                    memory_state=MemoryState.INITIALIZING,
                )
            ]
            for z_idx in range(1, len(z_slices)):
                decoded_slices.append(
                    self._decode(z_slices[z_idx], memory_state=MemoryState.ACTIVE)
                )
            return torch.cat(decoded_slices, dim=2)
        else:
            return self._decode(z, memory_state=MemoryState.DISABLED)

    def forward(self, x: torch.FloatTensor) -> CausalAutoencoderOutput:
        with torch.no_grad() if self.freeze_encoder else nullcontext():
            z, p = self.encode(x)
        x = self.decode(z).sample
        return CausalAutoencoderOutput(x, z, p)

    def preprocess(self, x: torch.Tensor):
        # x should in [B, C, T, H, W], [B, C, H, W]
        assert x.ndim == 4 or x.size(2) % self.temporal_downsample_factor == 1
        return x

    def postprocess(self, x: torch.Tensor):
        # x should in [B, C, T, H, W], [B, C, H, W]
        return x

    def set_causal_slicing(
        self,
        *,
        split_size: Optional[int],
        memory_device: _memory_device_t,
    ):
        assert (
            split_size is None or memory_device is not None
        ), "if split_size is set, memory_device must not be None."
        if split_size is not None:
            self.enable_slicing()
            self.slicing_sample_min_size = split_size
            self.slicing_latent_min_size = split_size // self.temporal_downsample_factor
        else:
            self.disable_slicing()
        for module in self.modules():
            if isinstance(module, InflatedCausalConv3d):
                module.set_memory_device(memory_device)

    def set_memory_limit(self, conv_max_mem: Optional[float], norm_max_mem: Optional[float]):
        set_norm_limit(norm_max_mem)
        for m in self.modules():
            if isinstance(m, InflatedCausalConv3d):
                m.set_memory_limit(conv_max_mem if conv_max_mem is not None else float("inf"))


class VideoAutoencoderKLWrapper(VideoAutoencoderKL):
    def __init__(
        self, *args, spatial_downsample_factor: int, temporal_downsample_factor: int, **kwargs
    ):
        self.spatial_downsample_factor = spatial_downsample_factor
        self.temporal_downsample_factor = temporal_downsample_factor
        super().__init__(*args, **kwargs)

    def forward(self, x) -> CausalAutoencoderOutput:
        z, _, p = self.encode(x)
        x, _ = self.decode(z)
        return CausalAutoencoderOutput(x, z, None, p)

    def encode(self, x) -> CausalEncoderOutput:
        if x.ndim == 4:
            x = x.unsqueeze(2)
        p = super().encode(x).latent_dist
        z = p.sample().squeeze(2)
        return CausalEncoderOutput(z, None, p)

    def decode(self, z) -> CausalDecoderOutput:
        if z.ndim == 4:
            z = z.unsqueeze(2)
        x = super().decode(z).sample.squeeze(2)
        return CausalDecoderOutput(x, None)

    def preprocess(self, x):
        # x should in [B, C, T, H, W], [B, C, H, W]
        assert x.ndim == 4 or x.size(2) % 4 == 1
        return x

    def postprocess(self, x):
        # x should in [B, C, T, H, W], [B, C, H, W]
        return x

    def set_causal_slicing(
        self,
        *,
        split_size: Optional[int],
        memory_device: Optional[Literal["cpu", "same"]],
    ):
        assert (
            split_size is None or memory_device is not None
        ), "if split_size is set, memory_device must not be None."
        if split_size is not None:
            self.enable_slicing()
        else:
            self.disable_slicing()
        self.slicing_sample_min_size = split_size
        if split_size is not None:
            self.slicing_latent_min_size = split_size // self.temporal_downsample_factor
        for module in self.modules():
            if isinstance(module, InflatedCausalConv3d):
                module.set_memory_device(memory_device)