Spaces:
Running
on
Zero
Running
on
Zero
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
""" | |
Euler ODE solver. | |
""" | |
from typing import Callable | |
import torch | |
from einops import rearrange | |
from torch.nn import functional as F | |
from models.dit_v2 import na | |
from ..types import PredictionType | |
from ..utils import expand_dims | |
from .base import Sampler, SamplerModelArgs | |
class EulerSampler(Sampler): | |
""" | |
The Euler method is the simplest ODE solver. | |
<https://en.wikipedia.org/wiki/Euler_method> | |
""" | |
def sample( | |
self, | |
x: torch.Tensor, | |
f: Callable[[SamplerModelArgs], torch.Tensor], | |
) -> torch.Tensor: | |
timesteps = self.timesteps.timesteps | |
progress = self.get_progress_bar() | |
i = 0 | |
for t, s in zip(timesteps[:-1], timesteps[1:]): | |
pred = f(SamplerModelArgs(x, t, i)) | |
x = self.step_to(pred, x, t, s) | |
i += 1 | |
progress.update() | |
if self.return_endpoint: | |
t = timesteps[-1] | |
pred = f(SamplerModelArgs(x, t, i)) | |
x = self.get_endpoint(pred, x, t) | |
progress.update() | |
return x | |
def step( | |
self, | |
pred: torch.Tensor, | |
x_t: torch.Tensor, | |
t: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Step to the next timestep. | |
""" | |
return self.step_to(pred, x_t, t, self.get_next_timestep(t)) | |
def step_to( | |
self, | |
pred: torch.Tensor, | |
x_t: torch.Tensor, | |
t: torch.Tensor, | |
s: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Steps from x_t at timestep t to x_s at timestep s. Returns x_s. | |
""" | |
t = expand_dims(t, x_t.ndim) | |
s = expand_dims(s, x_t.ndim) | |
T = self.schedule.T | |
# Step from x_t to x_s. | |
pred_x_0, pred_x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t) | |
pred_x_s = self.schedule.forward(pred_x_0, pred_x_T, s.clamp(0, T)) | |
# Clamp x_s to x_0 and x_T if s is out of bound. | |
pred_x_s = pred_x_s.where(s >= 0, pred_x_0) | |
pred_x_s = pred_x_s.where(s <= T, pred_x_T) | |
return pred_x_s | |