# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. """ Linear interpolation schedule (lerp). """ from typing import Union import torch from .base import Schedule class LinearInterpolationSchedule(Schedule): """ Linear interpolation schedule (lerp) is proposed by flow matching and rectified flow. It leads to straighter probability flow theoretically. It is also used by Stable Diffusion 3. x_t = (1 - t) * x_0 + t * x_T Can be either continuous or discrete. """ def __init__(self, T: Union[int, float] = 1.0): self._T = T @property def T(self) -> Union[int, float]: return self._T def A(self, t: torch.Tensor) -> torch.Tensor: return 1 - (t / self.T) def B(self, t: torch.Tensor) -> torch.Tensor: return t / self.T # ---------------------------------------------------- def isnr(self, snr: torch.Tensor) -> torch.Tensor: t = self.T / (1 + snr**0.5) t = t if self.is_continuous() else t.round().int() return t