# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. from functools import lru_cache from typing import Tuple import torch from einops import rearrange from rotary_embedding_torch import RotaryEmbedding, apply_rotary_emb from torch import nn from common.cache import Cache class RotaryEmbeddingBase(nn.Module): def __init__(self, dim: int, rope_dim: int): super().__init__() self.rope = RotaryEmbedding( dim=dim // rope_dim, freqs_for="pixel", max_freq=256, ) # 1. Set model.requires_grad_(True) after model creation will make # the `requires_grad=False` for rope freqs no longer hold. # 2. Even if we don't set requires_grad_(True) explicitly, # FSDP is not memory efficient when handling fsdp_wrap # with mixed requires_grad=True/False. # With above consideration, it is easier just remove the freqs # out of nn.Parameters when `learned_freq=False` freqs = self.rope.freqs del self.rope.freqs self.rope.register_buffer("freqs", freqs.data) @lru_cache(maxsize=128) def get_axial_freqs(self, *dims): return self.rope.get_axial_freqs(*dims) class RotaryEmbedding3d(RotaryEmbeddingBase): def __init__(self, dim: int): super().__init__(dim, rope_dim=3) def forward( self, q: torch.FloatTensor, # b h l d k: torch.FloatTensor, # b h l d size: Tuple[int, int, int], ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, ]: T, H, W = size freqs = self.get_axial_freqs(T, H, W) q = rearrange(q, "b h (T H W) d -> b h T H W d", T=T, H=H, W=W) k = rearrange(k, "b h (T H W) d -> b h T H W d", T=T, H=H, W=W) q = apply_rotary_emb(freqs, q) k = apply_rotary_emb(freqs, k) q = rearrange(q, "b h T H W d -> b h (T H W) d") k = rearrange(k, "b h T H W d -> b h (T H W) d") return q, k class NaRotaryEmbedding3d(RotaryEmbedding3d): def forward( self, q: torch.FloatTensor, # L h d k: torch.FloatTensor, # L h d shape: torch.LongTensor, cache: Cache, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, ]: freqs = cache("rope_freqs_3d", lambda: self.get_freqs(shape)) q = rearrange(q, "L h d -> h L d") k = rearrange(k, "L h d -> h L d") q = apply_rotary_emb(freqs, q.float()).to(q.dtype) k = apply_rotary_emb(freqs, k.float()).to(k.dtype) q = rearrange(q, "h L d -> L h d") k = rearrange(k, "h L d -> L h d") return q, k def get_freqs( self, shape: torch.LongTensor, ) -> torch.Tensor: freq_list = [] for f, h, w in shape.tolist(): freqs = self.get_axial_freqs(f, h, w) freq_list.append(freqs.view(-1, freqs.size(-1))) return torch.cat(freq_list, dim=0)