# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import torch import torch.nn.functional as F from flash_attn import flash_attn_varlen_func from torch import nn class TorchAttention(nn.Module): def tflops(self, args, kwargs, output) -> float: assert len(args) == 0 or len(args) > 2, "query, key should both provided by args / kwargs" q = kwargs.get("query") or args[0] k = kwargs.get("key") or args[1] b, h, sq, d = q.shape b, h, sk, d = k.shape return b * h * (4 * d * (sq / 1e6) * (sk / 1e6)) def forward(self, *args, **kwargs): return F.scaled_dot_product_attention(*args, **kwargs) class FlashAttentionVarlen(nn.Module): def tflops(self, args, kwargs, output) -> float: cu_seqlens_q = kwargs["cu_seqlens_q"] cu_seqlens_k = kwargs["cu_seqlens_k"] _, h, d = output.shape seqlens_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]) / 1e6 seqlens_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]) / 1e6 return h * (4 * d * (seqlens_q * seqlens_k).sum()) def forward(self, *args, **kwargs): kwargs["deterministic"] = torch.are_deterministic_algorithms_enabled() return flash_attn_varlen_func(*args, **kwargs)