# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. from typing import Optional import torch import torch.nn.functional as F from torch import nn def get_mlp(mlp_type: Optional[str] = "normal"): if mlp_type == "normal": return MLP elif mlp_type == "swiglu": return SwiGLUMLP class MLP(nn.Module): def __init__( self, dim: int, expand_ratio: int, ): super().__init__() self.proj_in = nn.Linear(dim, dim * expand_ratio) self.act = nn.GELU("tanh") self.proj_out = nn.Linear(dim * expand_ratio, dim) def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: x = self.proj_in(x) x = self.act(x) x = self.proj_out(x) return x class SwiGLUMLP(nn.Module): def __init__( self, dim: int, expand_ratio: int, multiple_of: int = 256, ): super().__init__() hidden_dim = int(2 * dim * expand_ratio / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.proj_in_gate = nn.Linear(dim, hidden_dim, bias=False) self.proj_out = nn.Linear(hidden_dim, dim, bias=False) self.proj_in = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: x = self.proj_out(F.silu(self.proj_in_gate(x)) * self.proj_in(x)) return x