# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. from typing import Optional, Tuple, Union import torch from einops import rearrange from torch import nn from torch.nn import functional as F from torch.nn.modules.utils import _triple from common.cache import Cache from common.distributed.ops import gather_heads_scatter_seq, gather_seq_scatter_heads_qkv from ... import na from ...attention import FlashAttentionVarlen from ...mm import MMArg, MMModule from ...normalization import norm_layer_type from ...rope import get_na_rope from ...window import get_window_op from itertools import chain class NaMMAttention(nn.Module): def __init__( self, vid_dim: int, txt_dim: int, heads: int, head_dim: int, qk_bias: bool, qk_norm: norm_layer_type, qk_norm_eps: float, rope_type: Optional[str], rope_dim: int, shared_weights: bool, **kwargs, ): super().__init__() dim = MMArg(vid_dim, txt_dim) inner_dim = heads * head_dim qkv_dim = inner_dim * 3 self.head_dim = head_dim self.proj_qkv = MMModule( nn.Linear, dim, qkv_dim, bias=qk_bias, shared_weights=shared_weights ) self.proj_out = MMModule(nn.Linear, inner_dim, dim, shared_weights=shared_weights) self.norm_q = MMModule( qk_norm, dim=head_dim, eps=qk_norm_eps, elementwise_affine=True, shared_weights=shared_weights, ) self.norm_k = MMModule( qk_norm, dim=head_dim, eps=qk_norm_eps, elementwise_affine=True, shared_weights=shared_weights, ) self.rope = get_na_rope(rope_type=rope_type, dim=rope_dim) self.attn = FlashAttentionVarlen() def forward( self, vid: torch.FloatTensor, # l c txt: torch.FloatTensor, # l c vid_shape: torch.LongTensor, # b 3 txt_shape: torch.LongTensor, # b 1 cache: Cache, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, ]: vid_qkv, txt_qkv = self.proj_qkv(vid, txt) vid_qkv = gather_seq_scatter_heads_qkv( vid_qkv, seq_dim=0, qkv_shape=vid_shape, cache=cache.namespace("vid"), ) txt_qkv = gather_seq_scatter_heads_qkv( txt_qkv, seq_dim=0, qkv_shape=txt_shape, cache=cache.namespace("txt"), ) vid_qkv = rearrange(vid_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) vid_q, vid_k, vid_v = vid_qkv.unbind(1) txt_q, txt_k, txt_v = txt_qkv.unbind(1) vid_q, txt_q = self.norm_q(vid_q, txt_q) vid_k, txt_k = self.norm_k(vid_k, txt_k) if self.rope: if self.rope.mm: vid_q, vid_k, txt_q, txt_k = self.rope( vid_q, vid_k, vid_shape, txt_q, txt_k, txt_shape, cache ) else: vid_q, vid_k = self.rope(vid_q, vid_k, vid_shape, cache) vid_len = cache("vid_len", lambda: vid_shape.prod(-1)) txt_len = cache("txt_len", lambda: txt_shape.prod(-1)) all_len = cache("all_len", lambda: vid_len + txt_len) concat, unconcat = cache("mm_pnp", lambda: na.concat_idx(vid_len, txt_len)) attn = self.attn( q=concat(vid_q, txt_q).bfloat16(), k=concat(vid_k, txt_k).bfloat16(), v=concat(vid_v, txt_v).bfloat16(), cu_seqlens_q=cache("mm_seqlens", lambda: F.pad(all_len.cumsum(0), (1, 0)).int()), cu_seqlens_k=cache("mm_seqlens", lambda: F.pad(all_len.cumsum(0), (1, 0)).int()), max_seqlen_q=cache("mm_maxlen", lambda: all_len.max().item()), max_seqlen_k=cache("mm_maxlen", lambda: all_len.max().item()), ).type_as(vid_q) attn = rearrange(attn, "l h d -> l (h d)") vid_out, txt_out = unconcat(attn) vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0) txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0) vid_out, txt_out = self.proj_out(vid_out, txt_out) return vid_out, txt_out class NaSwinAttention(NaMMAttention): def __init__( self, *args, window: Union[int, Tuple[int, int, int]], window_method: str, **kwargs, ): super().__init__(*args, **kwargs) self.window = _triple(window) self.window_method = window_method assert all(map(lambda v: isinstance(v, int) and v >= 0, self.window)) self.window_op = get_window_op(window_method) def forward( self, vid: torch.FloatTensor, # l c txt: torch.FloatTensor, # l c vid_shape: torch.LongTensor, # b 3 txt_shape: torch.LongTensor, # b 1 cache: Cache, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, ]: vid_qkv, txt_qkv = self.proj_qkv(vid, txt) vid_qkv = gather_seq_scatter_heads_qkv( vid_qkv, seq_dim=0, qkv_shape=vid_shape, cache=cache.namespace("vid"), ) txt_qkv = gather_seq_scatter_heads_qkv( txt_qkv, seq_dim=0, qkv_shape=txt_shape, cache=cache.namespace("txt"), ) # re-org the input seq for window attn cache_win = cache.namespace(f"{self.window_method}_{self.window}_sd3") def make_window(x: torch.Tensor): t, h, w, _ = x.shape window_slices = self.window_op((t, h, w), self.window) return [x[st, sh, sw] for (st, sh, sw) in window_slices] window_partition, window_reverse, window_shape, window_count = cache_win( "win_transform", lambda: na.window_idx(vid_shape, make_window), ) vid_qkv_win = window_partition(vid_qkv) vid_qkv_win = rearrange(vid_qkv_win, "l (o h d) -> l o h d", o=3, d=self.head_dim) txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) vid_q, vid_k, vid_v = vid_qkv_win.unbind(1) txt_q, txt_k, txt_v = txt_qkv.unbind(1) vid_q, txt_q = self.norm_q(vid_q, txt_q) vid_k, txt_k = self.norm_k(vid_k, txt_k) txt_len = cache("txt_len", lambda: txt_shape.prod(-1)) vid_len_win = cache_win("vid_len", lambda: window_shape.prod(-1)) txt_len_win = cache_win("txt_len", lambda: txt_len.repeat_interleave(window_count)) all_len_win = cache_win("all_len", lambda: vid_len_win + txt_len_win) concat_win, unconcat_win = cache_win( "mm_pnp", lambda: na.repeat_concat_idx(vid_len_win, txt_len, window_count) ) # window rope if self.rope: if self.rope.mm: # repeat text q and k for window mmrope _, num_h, _ = txt_q.shape txt_q_repeat = rearrange(txt_q, "l h d -> l (h d)") txt_q_repeat = na.unflatten(txt_q_repeat, txt_shape) txt_q_repeat = [[x] * n for x, n in zip(txt_q_repeat, window_count)] txt_q_repeat = list(chain(*txt_q_repeat)) txt_q_repeat, txt_shape_repeat = na.flatten(txt_q_repeat) txt_q_repeat = rearrange(txt_q_repeat, "l (h d) -> l h d", h=num_h) txt_k_repeat = rearrange(txt_k, "l h d -> l (h d)") txt_k_repeat = na.unflatten(txt_k_repeat, txt_shape) txt_k_repeat = [[x] * n for x, n in zip(txt_k_repeat, window_count)] txt_k_repeat = list(chain(*txt_k_repeat)) txt_k_repeat, _ = na.flatten(txt_k_repeat) txt_k_repeat = rearrange(txt_k_repeat, "l (h d) -> l h d", h=num_h) vid_q, vid_k, txt_q, txt_k = self.rope( vid_q, vid_k, window_shape, txt_q_repeat, txt_k_repeat, txt_shape_repeat, cache_win ) else: vid_q, vid_k = self.rope(vid_q, vid_k, window_shape, cache_win) out = self.attn( q=concat_win(vid_q, txt_q).bfloat16(), k=concat_win(vid_k, txt_k).bfloat16(), v=concat_win(vid_v, txt_v).bfloat16(), cu_seqlens_q=cache_win( "vid_seqlens_q", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() ), cu_seqlens_k=cache_win( "vid_seqlens_k", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() ), max_seqlen_q=cache_win("vid_max_seqlen_q", lambda: all_len_win.max().item()), max_seqlen_k=cache_win("vid_max_seqlen_k", lambda: all_len_win.max().item()), ).type_as(vid_q) # text pooling vid_out, txt_out = unconcat_win(out) vid_out = rearrange(vid_out, "l h d -> l (h d)") txt_out = rearrange(txt_out, "l h d -> l (h d)") vid_out = window_reverse(vid_out) vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0) txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0) vid_out, txt_out = self.proj_out(vid_out, txt_out) return vid_out, txt_out