File size: 1,583 Bytes
146dae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.

import copy
import inspect

import torch

models = {}


def register(name):
    def decorator(cls):
        models[name] = cls
        return cls
    return decorator


def make(model_spec, args=None, load_sd=False) -> torch.nn.Module:
    if args is not None:
        model_args = copy.deepcopy(model_spec['args'])
        model_args.update(args)
    else:
        model_args = model_spec['args']
    model_params = inspect.signature(models[model_spec['name']]).parameters
    if 'kwargs' not in model_params:
        model_args = {k: v for k, v in model_args.items() if k in model_params}
    model = models[model_spec['name']](**model_args)
    if load_sd:
        if ('abs_pe' in  model_spec['sd']) and hasattr(model, 'abs_pe') and model_spec['sd']['abs_pe'].shape != model.abs_pe.shape:
            del model_spec['sd']['abs_pe']
        msg = model.load_state_dict(model_spec['sd'], strict=False)
        print(msg)
    return model