# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import torch import torch.nn as nn class ScalingLayer(nn.Module): def __init__(self, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]): super().__init__() self.register_buffer('shift', torch.Tensor(mean)[None, :, None, None]) self.register_buffer('scale', torch.Tensor(std)[None, :, None, None]) def forward(self, inp): return (inp - self.shift) / self.scale def inv(self, inp): return inp * self.scale + self.shift