File size: 22,075 Bytes
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70037c5
 
08f2d0e
fd37a32
08f2d0e
 
 
 
 
 
 
 
 
 
fd37a32
 
718f5e2
1979685
6a6a21f
 
 
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718f5e2
1979685
08f2d0e
 
 
 
fd37a32
bcdd850
fd37a32
08f2d0e
 
 
fd37a32
70037c5
08f2d0e
 
 
 
 
 
 
fd37a32
70037c5
08f2d0e
 
 
fd37a32
08f2d0e
 
 
 
 
 
 
 
fd37a32
70037c5
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcce982
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
fd37a32
08f2d0e
ea7754d
fd37a32
08f2d0e
 
 
 
fd37a32
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec787a0
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd37a32
08f2d0e
fd37a32
 
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd37a32
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd37a32
08f2d0e
 
fd37a32
08f2d0e
fd37a32
3223042
08f2d0e
3223042
 
 
 
 
 
 
 
08f2d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70037c5
08f2d0e
70037c5
 
3e9dad5
9e82be4
1ad2320
 
 
 
3e9dad5
 
 
 
 
 
 
 
 
 
 
 
ae043fd
 
 
3e9dad5
70037c5
 
 
08f2d0e
70037c5
08f2d0e
70037c5
3223042
70037c5
 
 
 
 
 
08f2d0e
1ad2320
 
 
 
 
 
 
 
ae043fd
1ad2320
3e9dad5
 
 
 
 
1ad2320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70037c5
1ad2320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70037c5
1ad2320
 
 
 
70037c5
 
1ad2320
 
 
 
70037c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d9441
 
 
70037c5
 
 
 
 
 
 
71d9441
 
 
70037c5
 
 
 
 
 
 
71d9441
 
 
70037c5
 
 
 
 
 
 
71d9441
 
 
70037c5
 
 
 
 
 
08f2d0e
70037c5
71d9441
 
 
70037c5
 
 
 
 
 
 
 
 
 
08f2d0e
48ffa2f
6cf93e3
df618a5
2f2e9f1
df618a5
70037c5
60af241
 
1a14f73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
from PIL import Image
import subprocess

import spaces

import torch
import gradio as gr
import string
import random, time, os, math   

from src.flux.generate import generate_from_test_sample, seed_everything
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
from eval.tools.face_id import FaceID
from eval.tools.florence_sam import ObjectDetector
import shutil
import yaml
import numpy as np

from huggingface_hub import snapshot_download

print(os.getcwd())
os.environ["TORCH_HOME"] = os.path.join(os.getcwd(), "checkpoints")

dtype = torch.bfloat16
device = "cuda"

config_path = "train/config/XVerse_config_demo.yaml"

config = config_train = get_train_config(config_path)
config["model"]["dit_quant"] = "int8-quanto"
config["model"]["use_dit_lora"] = False
model = CustomFluxPipeline(
    config, device, torch_dtype=dtype,
)
model.pipe.set_progress_bar_config(leave=False)

face_model = FaceID(device)
detector = ObjectDetector(device)
config = get_train_config(config_path)
model.config = config
store_attn_map = False

ckpt_root = snapshot_download(repo_id="ByteDance/XVerse")

modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
model.add_modulation_adapter(modulation_adapter)
if config["model"]["use_dit_lora"]:
    load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)

num_inputs = 4

# 定义清空图像的函数,只返回四个 None
def clear_images():
    return [None, ]*num_inputs

@spaces.GPU()
def det_seg_img(image, label):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")
    instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
    indices = list(range(len(instance_result_dict["instance_images"])))
    ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
    return ins

@spaces.GPU()
def crop_face_img(image):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")

    # image = resize_keep_aspect_ratio(image, 1024)
    image = pad_to_square(image).resize((2048, 2048))
    
    face_bbox = face_model.detect(
        (pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
    )[0]
    face = image.crop(face_bbox)
    return face

@spaces.GPU()
def vlm_img_caption(image):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")
    
    try:
        caption = detector.detector.caption(image, "<CAPTION>").strip()
        if caption.endswith("."):
            caption = caption[:-1]

    except Exception as e:
        print(e)
        caption = ""
    
    caption = caption.lower()
    return caption


def generate_random_string(length=4):
    letters = string.ascii_letters  # 包含大小写字母的字符串
    result_str = ''.join(random.choice(letters) for i in range(length))
    return result_str

def resize_keep_aspect_ratio(pil_image, target_size=1024):
    H, W = pil_image.height, pil_image.width
    target_area = target_size * target_size
    current_area = H * W
    scaling_factor = (target_area / current_area) ** 0.5  # sqrt(target_area / current_area)
    new_H = int(round(H * scaling_factor))
    new_W = int(round(W * scaling_factor))
    return pil_image.resize((new_W, new_H))

# 使用循环生成六个图像输入
images = []
captions = []
face_btns = []
det_btns = []
vlm_btns = []
idip_checkboxes = []

def open_accordion_on_example_selection(*args):
    return None, "", False

@spaces.GPU
def generate_image(
    prompt, 
    cond_size, target_height, target_width, 
    seed, 
    vae_skip_iter, control_weight_lambda,
    double_attention,  # 新增参数
    single_attention,  # 新增参数
    latent_dblora_scale_str,
    latent_sblora_scale_str, vae_lora_scale,
    *images_captions_faces,  # Combine all unpacked arguments into one tuple
):
    torch.cuda.empty_cache()
    num_images = 1

    # Determine the number of images, captions, and faces based on the indexs length
    images = list(images_captions_faces[:num_inputs])
    captions = list(images_captions_faces[num_inputs:2 * num_inputs])
    idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])

    print(f"Length of images: {len(images)}")
    print(f"Length of captions: {len(captions)}")
    
    print(f"Control weight lambda: {control_weight_lambda}")
    if control_weight_lambda != "no":
        parts = control_weight_lambda.split(',')
        new_parts = []
        for part in parts:
            if ':' in part:
                left, right = part.split(':')
                values = right.split('/')
                # 保存整体值
                global_value = values[0]
                id_value = values[1]
                ip_value = values[2]
                new_values = [global_value]
                for is_id in idips_checkboxes:
                    if is_id:
                        new_values.append(id_value)
                    else:
                        new_values.append(ip_value)
                new_part = f"{left}:{('/'.join(new_values))}"
                new_parts.append(new_part)
            else:
                new_parts.append(part)
        control_weight_lambda = ','.join(new_parts)
    
    print(f"Control weight lambda: {control_weight_lambda}")

    src_inputs = []
    use_words = []
    cur_run_time = time.strftime("%m%d-%H%M%S")
    tmp_dir_root = f"tmp/gradio_demo"
    temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
    os.makedirs(temp_dir, exist_ok=True)
    print(f"Temporary directory created: {temp_dir}")
    for i, (image_path, caption) in enumerate(zip(images, captions)):
        if image_path:
            if caption.startswith("a ") or caption.startswith("A "):
                word = caption[2:]
            else:
                word = caption
            
            if f"ENT{i+1}" in prompt:
                prompt = prompt.replace(f"ENT{i+1}", caption)
            
            image = resize_keep_aspect_ratio(Image.open(image_path), 768)
            save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
            image.save(save_path)
            
            input_image_path = save_path

            src_inputs.append(
                {
                    "image_path": input_image_path,
                    "caption": caption
                }
            )
            use_words.append((i, word, word))


    test_sample = dict(
        input_images=[], position_delta=[0, -32], 
        prompt=prompt,
        target_height=target_height,
        target_width=target_width,
        seed=seed,
        cond_size=cond_size,
        vae_skip_iter=vae_skip_iter,
        lora_scale=latent_dblora_scale_str,
        control_weight_lambda=control_weight_lambda,
        latent_sblora_scale=latent_sblora_scale_str,
        condition_sblora_scale=vae_lora_scale,
        double_attention=double_attention,
        single_attention=single_attention,
    )
    if len(src_inputs) > 0:
        test_sample["modulation"] = [
            dict(
                type="adapter",
                src_inputs=src_inputs,
                use_words=use_words,
            ),
        ]
    
    json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
    assert single_attention == True
    target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
    print(test_sample)

    model.config["train"]["dataset"]["val_condition_size"] = cond_size
    model.config["train"]["dataset"]["val_target_size"] = target_size
    
    if control_weight_lambda == "no":
        control_weight_lambda = None
    if vae_skip_iter == "no":
        vae_skip_iter = None
    use_condition_sblora_control = True
    use_latent_sblora_control = True
    image = generate_from_test_sample(
        test_sample, model.pipe, model.config, 
        num_images=num_images, 
        target_height=target_height,
        target_width=target_width,
        seed=seed,
        store_attn_map=store_attn_map, 
        vae_skip_iter=vae_skip_iter,  # 使用新的参数
        control_weight_lambda=control_weight_lambda,  # 传递新的参数
        double_attention=double_attention,  # 新增参数
        single_attention=single_attention,  # 新增参数
        ip_scale=latent_dblora_scale_str,
        use_latent_sblora_control=use_latent_sblora_control,
        latent_sblora_scale=latent_sblora_scale_str,
        use_condition_sblora_control=use_condition_sblora_control,
        condition_sblora_scale=vae_lora_scale,
    )
    if isinstance(image, list):
        num_cols = 2
        num_rows = int(math.ceil(num_images / num_cols))
        image = image_grid(image, num_rows, num_cols)

    save_path = f"{temp_dir}/tmp_result.png"
    image.save(save_path)

    return image

def create_image_input(index):
    with gr.Column():
        image = gr.Image(type="filepath", label=f"Image {index + 1}")
        caption = gr.Textbox(label=f"Caption {index + 1}", value="")
        id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
        with gr.Row():
            vlm_btn = gr.Button("Auto Caption")
            det_btn = gr.Button("Det & Seg")
            face_btn = gr.Button("Crop Face")
    return image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox


def merge_instances(orig_img, indices, ins_bboxes, ins_images):
    orig_image_width, orig_image_height = orig_img.width, orig_img.height
    final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
    bboxes = []
    for i in indices:
        bbox = np.array(ins_bboxes[i], dtype=int).tolist()
        bboxes.append(bbox)
        
        img = cv2pil(ins_images[i])
        mask = (np.array(img)[..., :3] != 255).any(axis=-1)
        mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
        final_img.paste(img, (bbox[0], bbox[1]), mask)
    
    bbox = merge_bboxes(bboxes)
    img = final_img.crop(bbox)
    return img, bbox

if __name__ == "__main__":

    with gr.Blocks() as demo:

        gr.Markdown("""
## XVerse Demo

- **Paper**: [XVerse: A Versatile Image Generation Framework for Subject Consistency](https://arxiv.org/abs/2506.21416)
- **GitHub**: [ByteDance/XVerse](https://github.com/bytedance/XVerse)
- **Project Page**: [ByteDance/XVerse](https://bytedance.github.io/XVerse/)

#### Input Images and Prompts

* **Prompt**: The textual description guiding the image generation.
* **Upload Image**: Click "Image X" to upload your desired reference image.
* **Image Description**: Enter a description in the "Caption X" input box. You can also click "Auto Caption" to generate a description automatically.
* **Detection & Segmentation**: Click "Det & Seg" to perform detection and segmentation on the uploaded image.
* **Crop Face**: Use "Crop Face" to automatically crop the face from the image.
* **ID Checkbox**: Check or uncheck "ID or not" to determine whether to use ID-related weights for that specific input image.

> **⚠️ Important Usage Notes:**
>
> The main text prompt **MUST** include the exact text you entered in the `Image Description` field for each active image. **Generation will fail if this description is missing from the prompt.**
> * *Example*: If you upload two images and set their descriptions as "a man with red hair" (for Image 1) and "a woman with blue eyes" (for Image 2), your main prompt might be: "A `a man with red hair` walking beside `a woman with blue eyes` in a park."
> * You can then write your main prompt simply as: "`ENT1` walking beside `ENT2` in a park." The code will **automatically replace** these placeholders with the full description text before generation.
""")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="")
            
                clear_btn = gr.Button("清空输入图像")
                with gr.Row():
                    for i in range(num_inputs):
                        image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox = create_image_input(i)
                        images.append(image)
                        idip_checkboxes.append(id_ip_checkbox)
                        captions.append(caption)
                        face_btns.append(face_btn)
                        det_btns.append(det_btn)
                        vlm_btns.append(vlm_btn)
                
            with gr.Column():
                output = gr.Image(label="Generated Image")
                seed = gr.Number(value=42, label="Seed", info="")
                gen_btn = gr.Button("Generate Image")
        
        with gr.Row():
                
            # 将其他设置参数压缩到 Advanced Accordion 内
            with gr.Accordion("Advanced Settings", open=False):
                gr.Markdown("""The Gradio demo provides several parameters to control your image generation process:
* **Generated Height/Width**: Use the sliders to set the shape of the output image.
* **Weight_id/ip**: Adjust these weight parameters. Higher values generally lead to better subject consistency but might slightly impact the naturalness of the generated image.
* **latent_lora_scale and vae_lora_scale**: Control the LoRA scale. Similar to Weight_id/ip, larger LoRA values can improve subject consistency but may reduce image naturalness.
* **vae_skip_iter_before and vae_skip_iter_after**: Configure VAE skip iterations. Skipping more steps can result in better naturalness but might compromise subject consistency.
""")
                # 使用 Row 和 Column 来布局四个图像和描述
                with gr.Row():
                    target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
                    target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
                    cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
                with gr.Row():
                    # 修改 weight_id_ip_str 为两个 Slider
                    weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
                    weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
                with gr.Row():
                    # 修改 ip_scale_str 为 Slider,并添加 Textbox 显示转换后的格式
                    ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
                    vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
                with gr.Row():
                    # 修改 vae_skip_iter 为两个 Slider
                    vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
                    vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
            
                with gr.Row():
                    weight_id_ip_str = gr.Textbox(
                        value="0-1:1/3/5",
                        label="weight_id_ip_str",
                        interactive=False, visible=False
                    )
                    weight_id.change(
                        lambda s1, s2: f"0-1:1/{s1}/{s2}",
                        inputs=[weight_id, weight_ip],
                        outputs=weight_id_ip_str
                    )
                    weight_ip.change(
                        lambda s1, s2: f"0-1:1/{s1}/{s2}",
                        inputs=[weight_id, weight_ip],
                        outputs=weight_id_ip_str
                    )
                    vae_skip_iter = gr.Textbox(
                        value="0-0.05:1,0.8-1:1",
                        label="vae_skip_iter",
                        interactive=False, visible=False
                    )
                    vae_skip_iter_s1.change(
                        lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
                        inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
                        outputs=vae_skip_iter
                    )
                    vae_skip_iter_s2.change(
                        lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
                        inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
                        outputs=vae_skip_iter
                    )
                
                with gr.Row():
                    db_latent_lora_scale_str = gr.Textbox(
                        value="0-1:0.85",
                        label="db_latent_lora_scale_str",
                        interactive=False, visible=False
                    )
                    sb_latent_lora_scale_str = gr.Textbox(
                        value="0-1:0.85",
                        label="sb_latent_lora_scale_str",
                        interactive=False, visible=False
                    )
                    vae_lora_scale_str = gr.Textbox(
                        value="0-1:1.3",
                        label="vae_lora_scale_str",
                        interactive=False, visible=False
                    )
                    vae_lora_scale.change(
                            lambda s: f"0-1:{s}",
                            inputs=vae_lora_scale,
                            outputs=vae_lora_scale_str
                        )
                    ip_scale_str.change(
                            lambda s: [f"0-1:{s}", f"0-1:{s}"],
                            inputs=ip_scale_str,
                            outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
                        )

                with gr.Row():
                    double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
                    single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)


        gr.Markdown("### Examples")
        gen_btn.click(
            generate_image, 
            inputs=[
                prompt, cond_size, target_height, target_width, seed,
                vae_skip_iter, weight_id_ip_str,
                double_attention, single_attention,
                db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
                *images,  
                *captions, 
                *idip_checkboxes,
            ], 
            outputs=output
        )

        # 修改清空函数的输出参数
        clear_btn.click(clear_images, outputs=images)

        # 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件
        for i in range(num_inputs):
            face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
            det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
            vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
        
        examples = gr.Examples(
            examples=[
                [
                    "sample/hamster.jpg", None, None,
                    "a hamster", None, None,
                    False, False, False,
                    "ENT1 wearing a tiny hat", 
                    42, 256, 768, 768,
                    3, 5,
                    0.85, 1.3,
                    0.05, 0.8,
                ],
                [
                    "sample/woman.jpg", None, None,
                    "a woman", None, None,
                    True, False, False,
                    "ENT1 in a red dress is smiling", 
                    42, 256, 768, 768,
                    3, 5,
                    0.85, 1.3,
                    0.05, 0.8,
                ],
                [
                    "sample/woman.jpg", "sample/girl.jpg", None,
                    "a woman", "a girl", None,
                    True, True, False,
                    "ENT1 and ENT2 standing together in a park.", 
                    42, 256, 768, 768,
                    2, 5,
                    0.85, 1.3,
                    0.05, 0.8,
                ],
                [
                    "sample/woman.jpg", "sample/girl.jpg", "sample/old_man.jpg", 
                    "a woman", "a girl", "an old man",
                    True, True, True,
                    "ENT1, ENT2, and ENT3 standing together in a park.", 
                    42, 256, 768, 768,
                    2.5, 5,
                    0.8, 1.2,
                    0.05, 0.8,
                ],
            ],
            inputs=[
                images[0], images[1], images[2], 
                captions[0], captions[1], captions[2], 
                idip_checkboxes[0], idip_checkboxes[1], idip_checkboxes[2],
                prompt, seed, 
                cond_size,
                target_height,
                target_width,
                weight_id,
                weight_ip,
                ip_scale_str,
                vae_lora_scale,
                vae_skip_iter_s1,
                vae_skip_iter_s2,
            ],
            outputs=[images[3], captions[3], idip_checkboxes[3]],
            fn=open_accordion_on_example_selection,
            run_on_click=True,
            cache_examples=False,
            label="Examples" 
        )
        
    demo.queue()
    demo.launch()