Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
| # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import tempfile | |
| from PIL import Image | |
| import subprocess | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| import string | |
| import random, time, os, math | |
| from src.flux.generate import generate_from_test_sample, seed_everything | |
| from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora | |
| from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes | |
| from eval.tools.face_id import FaceID | |
| from eval.tools.florence_sam import ObjectDetector | |
| import shutil | |
| import yaml | |
| import numpy as np | |
| from huggingface_hub import snapshot_download | |
| print(os.getcwd()) | |
| os.environ["TORCH_HOME"] = os.path.join(os.getcwd(), "checkpoints") | |
| dtype = torch.bfloat16 | |
| device = "cuda" | |
| config_path = "train/config/XVerse_config_demo.yaml" | |
| config = config_train = get_train_config(config_path) | |
| config["model"]["dit_quant"] = "int8-quanto" | |
| config["model"]["use_dit_lora"] = False | |
| model = CustomFluxPipeline( | |
| config, device, torch_dtype=dtype, | |
| ) | |
| model.pipe.set_progress_bar_config(leave=False) | |
| face_model = FaceID(device) | |
| detector = ObjectDetector(device) | |
| config = get_train_config(config_path) | |
| model.config = config | |
| store_attn_map = False | |
| ckpt_root = snapshot_download(repo_id="ByteDance/XVerse") | |
| modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False) | |
| model.add_modulation_adapter(modulation_adapter) | |
| if config["model"]["use_dit_lora"]: | |
| load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False) | |
| num_inputs = 4 | |
| # 定义清空图像的函数,只返回四个 None | |
| def clear_images(): | |
| return [None, ]*num_inputs | |
| def det_seg_img(image, label): | |
| if isinstance(image, str): | |
| image = Image.open(image).convert("RGB") | |
| instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20) | |
| indices = list(range(len(instance_result_dict["instance_images"]))) | |
| ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"]) | |
| return ins | |
| def crop_face_img(image): | |
| if isinstance(image, str): | |
| image = Image.open(image).convert("RGB") | |
| # image = resize_keep_aspect_ratio(image, 1024) | |
| image = pad_to_square(image).resize((2048, 2048)) | |
| face_bbox = face_model.detect( | |
| (pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4 | |
| )[0] | |
| face = image.crop(face_bbox) | |
| return face | |
| def vlm_img_caption(image): | |
| if isinstance(image, str): | |
| image = Image.open(image).convert("RGB") | |
| try: | |
| caption = detector.detector.caption(image, "<CAPTION>").strip() | |
| if caption.endswith("."): | |
| caption = caption[:-1] | |
| except Exception as e: | |
| print(e) | |
| caption = "" | |
| caption = caption.lower() | |
| return caption | |
| def generate_random_string(length=4): | |
| letters = string.ascii_letters # 包含大小写字母的字符串 | |
| result_str = ''.join(random.choice(letters) for i in range(length)) | |
| return result_str | |
| def resize_keep_aspect_ratio(pil_image, target_size=1024): | |
| H, W = pil_image.height, pil_image.width | |
| target_area = target_size * target_size | |
| current_area = H * W | |
| scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area) | |
| new_H = int(round(H * scaling_factor)) | |
| new_W = int(round(W * scaling_factor)) | |
| return pil_image.resize((new_W, new_H)) | |
| # 使用循环生成六个图像输入 | |
| images = [] | |
| captions = [] | |
| face_btns = [] | |
| det_btns = [] | |
| vlm_btns = [] | |
| idip_checkboxes = [] | |
| def open_accordion_on_example_selection(*args): | |
| return None, "", False | |
| def generate_image( | |
| prompt, | |
| cond_size, target_height, target_width, | |
| seed, | |
| vae_skip_iter, control_weight_lambda, | |
| double_attention, # 新增参数 | |
| single_attention, # 新增参数 | |
| latent_dblora_scale_str, | |
| latent_sblora_scale_str, vae_lora_scale, | |
| *images_captions_faces, # Combine all unpacked arguments into one tuple | |
| ): | |
| torch.cuda.empty_cache() | |
| num_images = 1 | |
| # Determine the number of images, captions, and faces based on the indexs length | |
| images = list(images_captions_faces[:num_inputs]) | |
| captions = list(images_captions_faces[num_inputs:2 * num_inputs]) | |
| idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs]) | |
| print(f"Length of images: {len(images)}") | |
| print(f"Length of captions: {len(captions)}") | |
| print(f"Control weight lambda: {control_weight_lambda}") | |
| if control_weight_lambda != "no": | |
| parts = control_weight_lambda.split(',') | |
| new_parts = [] | |
| for part in parts: | |
| if ':' in part: | |
| left, right = part.split(':') | |
| values = right.split('/') | |
| # 保存整体值 | |
| global_value = values[0] | |
| id_value = values[1] | |
| ip_value = values[2] | |
| new_values = [global_value] | |
| for is_id in idips_checkboxes: | |
| if is_id: | |
| new_values.append(id_value) | |
| else: | |
| new_values.append(ip_value) | |
| new_part = f"{left}:{('/'.join(new_values))}" | |
| new_parts.append(new_part) | |
| else: | |
| new_parts.append(part) | |
| control_weight_lambda = ','.join(new_parts) | |
| print(f"Control weight lambda: {control_weight_lambda}") | |
| src_inputs = [] | |
| use_words = [] | |
| cur_run_time = time.strftime("%m%d-%H%M%S") | |
| tmp_dir_root = f"tmp/gradio_demo" | |
| temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}" | |
| os.makedirs(temp_dir, exist_ok=True) | |
| print(f"Temporary directory created: {temp_dir}") | |
| for i, (image_path, caption) in enumerate(zip(images, captions)): | |
| if image_path: | |
| if caption.startswith("a ") or caption.startswith("A "): | |
| word = caption[2:] | |
| else: | |
| word = caption | |
| if f"ENT{i+1}" in prompt: | |
| prompt = prompt.replace(f"ENT{i+1}", caption) | |
| image = resize_keep_aspect_ratio(Image.open(image_path), 768) | |
| save_path = f"{temp_dir}/tmp_resized_input_{i}.png" | |
| image.save(save_path) | |
| input_image_path = save_path | |
| src_inputs.append( | |
| { | |
| "image_path": input_image_path, | |
| "caption": caption | |
| } | |
| ) | |
| use_words.append((i, word, word)) | |
| test_sample = dict( | |
| input_images=[], position_delta=[0, -32], | |
| prompt=prompt, | |
| target_height=target_height, | |
| target_width=target_width, | |
| seed=seed, | |
| cond_size=cond_size, | |
| vae_skip_iter=vae_skip_iter, | |
| lora_scale=latent_dblora_scale_str, | |
| control_weight_lambda=control_weight_lambda, | |
| latent_sblora_scale=latent_sblora_scale_str, | |
| condition_sblora_scale=vae_lora_scale, | |
| double_attention=double_attention, | |
| single_attention=single_attention, | |
| ) | |
| if len(src_inputs) > 0: | |
| test_sample["modulation"] = [ | |
| dict( | |
| type="adapter", | |
| src_inputs=src_inputs, | |
| use_words=use_words, | |
| ), | |
| ] | |
| json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8') | |
| assert single_attention == True | |
| target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16) | |
| print(test_sample) | |
| model.config["train"]["dataset"]["val_condition_size"] = cond_size | |
| model.config["train"]["dataset"]["val_target_size"] = target_size | |
| if control_weight_lambda == "no": | |
| control_weight_lambda = None | |
| if vae_skip_iter == "no": | |
| vae_skip_iter = None | |
| use_condition_sblora_control = True | |
| use_latent_sblora_control = True | |
| image = generate_from_test_sample( | |
| test_sample, model.pipe, model.config, | |
| num_images=num_images, | |
| target_height=target_height, | |
| target_width=target_width, | |
| seed=seed, | |
| store_attn_map=store_attn_map, | |
| vae_skip_iter=vae_skip_iter, # 使用新的参数 | |
| control_weight_lambda=control_weight_lambda, # 传递新的参数 | |
| double_attention=double_attention, # 新增参数 | |
| single_attention=single_attention, # 新增参数 | |
| ip_scale=latent_dblora_scale_str, | |
| use_latent_sblora_control=use_latent_sblora_control, | |
| latent_sblora_scale=latent_sblora_scale_str, | |
| use_condition_sblora_control=use_condition_sblora_control, | |
| condition_sblora_scale=vae_lora_scale, | |
| ) | |
| if isinstance(image, list): | |
| num_cols = 2 | |
| num_rows = int(math.ceil(num_images / num_cols)) | |
| image = image_grid(image, num_rows, num_cols) | |
| save_path = f"{temp_dir}/tmp_result.png" | |
| image.save(save_path) | |
| return image | |
| def create_image_input(index): | |
| with gr.Column(): | |
| image = gr.Image(type="filepath", label=f"Image {index + 1}") | |
| caption = gr.Textbox(label=f"Caption {index + 1}", value="") | |
| id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True) | |
| with gr.Row(): | |
| vlm_btn = gr.Button("Auto Caption") | |
| det_btn = gr.Button("Det & Seg") | |
| face_btn = gr.Button("Crop Face") | |
| return image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox | |
| def merge_instances(orig_img, indices, ins_bboxes, ins_images): | |
| orig_image_width, orig_image_height = orig_img.width, orig_img.height | |
| final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255)) | |
| bboxes = [] | |
| for i in indices: | |
| bbox = np.array(ins_bboxes[i], dtype=int).tolist() | |
| bboxes.append(bbox) | |
| img = cv2pil(ins_images[i]) | |
| mask = (np.array(img)[..., :3] != 255).any(axis=-1) | |
| mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L') | |
| final_img.paste(img, (bbox[0], bbox[1]), mask) | |
| bbox = merge_bboxes(bboxes) | |
| img = final_img.crop(bbox) | |
| return img, bbox | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.Markdown("### XVerse Demo") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value="") | |
| clear_btn = gr.Button("清空输入图像") | |
| with gr.Row(): | |
| for i in range(num_inputs): | |
| image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox = create_image_input(i) | |
| images.append(image) | |
| idip_checkboxes.append(id_ip_checkbox) | |
| captions.append(caption) | |
| face_btns.append(face_btn) | |
| det_btns.append(det_btn) | |
| vlm_btns.append(vlm_btn) | |
| # 将其他设置参数压缩到 Advanced Accordion 内 | |
| with gr.Accordion("Advanced", open=False): | |
| # 使用 Row 和 Column 来布局四个图像和描述 | |
| with gr.Row(): | |
| target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="") | |
| target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="") | |
| cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="") | |
| with gr.Row(): | |
| # 修改 weight_id_ip_str 为两个 Slider | |
| weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id") | |
| weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip") | |
| with gr.Row(): | |
| # 修改 ip_scale_str 为 Slider,并添加 Textbox 显示转换后的格式 | |
| ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale") | |
| vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale") | |
| with gr.Row(): | |
| # 修改 vae_skip_iter 为两个 Slider | |
| vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before") | |
| vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after") | |
| with gr.Row(): | |
| weight_id_ip_str = gr.Textbox( | |
| value="0-1:1/3/5", | |
| label="weight_id_ip_str", | |
| interactive=False, visible=False | |
| ) | |
| weight_id.change( | |
| lambda s1, s2: f"0-1:1/{s1}/{s2}", | |
| inputs=[weight_id, weight_ip], | |
| outputs=weight_id_ip_str | |
| ) | |
| weight_ip.change( | |
| lambda s1, s2: f"0-1:1/{s1}/{s2}", | |
| inputs=[weight_id, weight_ip], | |
| outputs=weight_id_ip_str | |
| ) | |
| vae_skip_iter = gr.Textbox( | |
| value="0-0.05:1,0.8-1:1", | |
| label="vae_skip_iter", | |
| interactive=False, visible=False | |
| ) | |
| vae_skip_iter_s1.change( | |
| lambda s1, s2: f"0-{s1}:1,{s2}-1:1", | |
| inputs=[vae_skip_iter_s1, vae_skip_iter_s2], | |
| outputs=vae_skip_iter | |
| ) | |
| vae_skip_iter_s2.change( | |
| lambda s1, s2: f"0-{s1}:1,{s2}-1:1", | |
| inputs=[vae_skip_iter_s1, vae_skip_iter_s2], | |
| outputs=vae_skip_iter | |
| ) | |
| with gr.Row(): | |
| db_latent_lora_scale_str = gr.Textbox( | |
| value="0-1:0.85", | |
| label="db_latent_lora_scale_str", | |
| interactive=False, visible=False | |
| ) | |
| sb_latent_lora_scale_str = gr.Textbox( | |
| value="0-1:0.85", | |
| label="sb_latent_lora_scale_str", | |
| interactive=False, visible=False | |
| ) | |
| vae_lora_scale_str = gr.Textbox( | |
| value="0-1:1.3", | |
| label="vae_lora_scale_str", | |
| interactive=False, visible=False | |
| ) | |
| vae_lora_scale.change( | |
| lambda s: f"0-1:{s}", | |
| inputs=vae_lora_scale, | |
| outputs=vae_lora_scale_str | |
| ) | |
| ip_scale_str.change( | |
| lambda s: [f"0-1:{s}", f"0-1:{s}"], | |
| inputs=ip_scale_str, | |
| outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str] | |
| ) | |
| with gr.Row(): | |
| double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False) | |
| single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False) | |
| with gr.Column(): | |
| output = gr.Image(label="Generated Image") | |
| seed = gr.Number(value=42, label="Seed", info="") | |
| gen_btn = gr.Button("Generate Image") | |
| gr.Markdown("### Examples") | |
| gen_btn.click( | |
| generate_image, | |
| inputs=[ | |
| prompt, cond_size, target_height, target_width, seed, | |
| vae_skip_iter, weight_id_ip_str, | |
| double_attention, single_attention, | |
| db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str, | |
| *images, | |
| *captions, | |
| *idip_checkboxes, | |
| ], | |
| outputs=output | |
| ) | |
| # 修改清空函数的输出参数 | |
| clear_btn.click(clear_images, outputs=images) | |
| # 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件 | |
| for i in range(num_inputs): | |
| face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]]) | |
| det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]]) | |
| vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]]) | |
| examples = gr.Examples( | |
| examples=[ | |
| [ | |
| "sample/hamster.jpg", None, None, | |
| "a hamster", None, None, | |
| False, False, False, | |
| "ENT1 wearing a tiny hat", | |
| 42, 256, 768, 768, | |
| 3, 5, | |
| 0.85, 1.3, | |
| 0.05, 0.8, | |
| ], | |
| [ | |
| "sample/woman.jpg", None, None, | |
| "a woman", None, None, | |
| True, False, False, | |
| "ENT1 in a red dress is smiling", | |
| 42, 256, 768, 768, | |
| 3, 5, | |
| 0.85, 1.3, | |
| 0.05, 0.8, | |
| ], | |
| [ | |
| "sample/woman.jpg", "sample/girl.jpg", None, | |
| "a woman", "a girl", None, | |
| True, True, False, | |
| "ENT1 and ENT2 standing together in a park.", | |
| 42, 256, 768, 768, | |
| 2, 5, | |
| 0.85, 1.3, | |
| 0.05, 0.8, | |
| ], | |
| [ | |
| "sample/woman.jpg", "sample/girl.jpg", "sample/old_man.jpg", | |
| "a woman", "a girl", "an old man", | |
| True, True, True, | |
| "ENT1, ENT2, and ENT3 standing together in a park.", | |
| 42, 256, 768, 768, | |
| 2.5, 5, | |
| 0.8, 1.2, | |
| 0.05, 0.8, | |
| ], | |
| ], | |
| inputs=[ | |
| images[0], images[1], images[2], | |
| captions[0], captions[1], captions[2], | |
| idip_checkboxes[0], idip_checkboxes[1], idip_checkboxes[2], | |
| prompt, seed, | |
| cond_size, | |
| target_height, | |
| target_width, | |
| weight_id, | |
| weight_ip, | |
| ip_scale_str, | |
| vae_lora_scale, | |
| vae_skip_iter_s1, | |
| vae_skip_iter_s2, | |
| ], | |
| outputs=[images[3], captions[3], idip_checkboxes[3]], | |
| fn=open_accordion_on_example_selection, | |
| run_on_click=True, | |
| label="Examples" | |
| ) | |
| demo.queue() | |
| demo.launch(ssr_mode=False) |