Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter | |
import torch.nn.functional as F | |
import torch | |
from collections import namedtuple | |
import math | |
import pdb | |
class Flatten(Module): | |
def forward(self, input): | |
return input.view(input.size(0), -1) | |
def l2_norm(input,axis=1): | |
norm = torch.norm(input,2,axis,True) | |
output = torch.div(input, norm) | |
return output | |
class SEModule(Module): | |
def __init__(self, channels, reduction): | |
super(SEModule, self).__init__() | |
self.avg_pool = AdaptiveAvgPool2d(1) | |
self.fc1 = Conv2d( | |
channels, channels // reduction, kernel_size=1, padding=0 ,bias=False) | |
self.relu = ReLU(inplace=True) | |
self.fc2 = Conv2d( | |
channels // reduction, channels, kernel_size=1, padding=0 ,bias=False) | |
self.sigmoid = Sigmoid() | |
def forward(self, x): | |
module_input = x | |
x = self.avg_pool(x) | |
x = self.fc1(x) | |
x = self.relu(x) | |
x = self.fc2(x) | |
x = self.sigmoid(x) | |
return module_input * x | |
class bottleneck_IR(Module): | |
def __init__(self, in_channel, depth, stride): | |
super(bottleneck_IR, self).__init__() | |
if in_channel == depth: | |
self.shortcut_layer = MaxPool2d(1, stride) | |
else: | |
self.shortcut_layer = Sequential( | |
Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth)) | |
self.res_layer = Sequential( | |
BatchNorm2d(in_channel), | |
Conv2d(in_channel, depth, (3, 3), (1, 1), 1 ,bias=False), PReLU(depth), | |
Conv2d(depth, depth, (3, 3), stride, 1 ,bias=False), BatchNorm2d(depth)) | |
def forward(self, x): | |
shortcut = self.shortcut_layer(x) | |
res = self.res_layer(x) | |
return res + shortcut | |
class bottleneck_IR_SE(Module): | |
def __init__(self, in_channel, depth, stride): | |
super(bottleneck_IR_SE, self).__init__() | |
if in_channel == depth: | |
self.shortcut_layer = MaxPool2d(1, stride) | |
else: | |
self.shortcut_layer = Sequential( | |
Conv2d(in_channel, depth, (1, 1), stride ,bias=False), | |
BatchNorm2d(depth)) | |
self.res_layer = Sequential( | |
BatchNorm2d(in_channel), | |
Conv2d(in_channel, depth, (3,3), (1,1),1 ,bias=False), | |
PReLU(depth), | |
Conv2d(depth, depth, (3,3), stride, 1 ,bias=False), | |
BatchNorm2d(depth), | |
SEModule(depth,16) | |
) | |
def forward(self,x): | |
shortcut = self.shortcut_layer(x) | |
res = self.res_layer(x) | |
return res + shortcut | |
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): | |
'''A named tuple describing a ResNet block.''' | |
def get_block(in_channel, depth, num_units, stride = 2): | |
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)] | |
def get_blocks(num_layers): | |
if num_layers == 50: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units = 3), | |
get_block(in_channel=64, depth=128, num_units=4), | |
get_block(in_channel=128, depth=256, num_units=14), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
elif num_layers == 100: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units=3), | |
get_block(in_channel=64, depth=128, num_units=13), | |
get_block(in_channel=128, depth=256, num_units=30), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
elif num_layers == 152: | |
blocks = [ | |
get_block(in_channel=64, depth=64, num_units=3), | |
get_block(in_channel=64, depth=128, num_units=8), | |
get_block(in_channel=128, depth=256, num_units=36), | |
get_block(in_channel=256, depth=512, num_units=3) | |
] | |
return blocks | |
class Backbone(Module): | |
def __init__(self, num_layers, drop_ratio, mode='ir'): | |
super(Backbone, self).__init__() | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_layer = Sequential(BatchNorm2d(512), | |
Dropout(drop_ratio), | |
Flatten(), | |
Linear(512 * 7 * 7, 512), | |
BatchNorm1d(512)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append( | |
unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self,x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_layer(x) | |
return l2_norm(x) | |