Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
from typing import List, Any, Optional, Type | |
class enable_lora: | |
def __init__(self, lora_modules: List[BaseTunerLayer], dit_activated: bool, cond_activated: bool=False, latent_sblora_weight: float=None, condition_sblora_weight: float=None) -> None: | |
self.dit_activated = dit_activated | |
self.cond_activated = cond_activated | |
self.latent_sblora_weight = latent_sblora_weight | |
self.condition_sblora_weight = condition_sblora_weight | |
# assert not (dit_activated and cond_activated) | |
self.lora_modules: List[BaseTunerLayer] = [ | |
each for each in lora_modules if isinstance(each, BaseTunerLayer) | |
] | |
self.scales = [ | |
{ | |
active_adapter: lora_module.scaling[active_adapter] if active_adapter in lora_module.scaling else 1 | |
for active_adapter in lora_module.active_adapters | |
} for lora_module in self.lora_modules | |
] | |
def __enter__(self) -> None: | |
for i, lora_module in enumerate(self.lora_modules): | |
if not isinstance(lora_module, BaseTunerLayer): | |
continue | |
for active_adapter in lora_module.active_adapters: | |
if active_adapter == "default": | |
if self.dit_activated: | |
lora_module.scaling[active_adapter] = self.scales[0]["default"] if self.latent_sblora_weight is None else self.latent_sblora_weight | |
else: | |
lora_module.scaling[active_adapter] = 0 | |
else: | |
assert active_adapter == "condition" | |
if self.cond_activated: | |
lora_module.scaling[active_adapter] = self.scales[0]["condition"] if self.condition_sblora_weight is None else self.condition_sblora_weight | |
else: | |
lora_module.scaling[active_adapter] = 0 | |
def __exit__( | |
self, | |
exc_type: Optional[Type[BaseException]], | |
exc_val: Optional[BaseException], | |
exc_tb: Optional[Any], | |
) -> None: | |
for i, lora_module in enumerate(self.lora_modules): | |
if not isinstance(lora_module, BaseTunerLayer): | |
continue | |
for active_adapter in lora_module.active_adapters: | |
lora_module.scaling[active_adapter] = self.scales[i][active_adapter] | |
class set_lora_scale: | |
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None: | |
self.lora_modules: List[BaseTunerLayer] = [ | |
each for each in lora_modules if isinstance(each, BaseTunerLayer) | |
] | |
self.scales = [ | |
{ | |
active_adapter: lora_module.scaling[active_adapter] | |
for active_adapter in lora_module.active_adapters | |
} | |
for lora_module in self.lora_modules | |
] | |
self.scale = scale | |
def __enter__(self) -> None: | |
for lora_module in self.lora_modules: | |
if not isinstance(lora_module, BaseTunerLayer): | |
continue | |
lora_module.scale_layer(self.scale) | |
def __exit__( | |
self, | |
exc_type: Optional[Type[BaseException]], | |
exc_val: Optional[BaseException], | |
exc_tb: Optional[Any], | |
) -> None: | |
for i, lora_module in enumerate(self.lora_modules): | |
if not isinstance(lora_module, BaseTunerLayer): | |
continue | |
for active_adapter in lora_module.active_adapters: | |
lora_module.scaling[active_adapter] = self.scales[i][active_adapter] | |