Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# Copyright (c) Facebook, Inc. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from src.flux.pipeline_tools import tokenize_t5_prompt | |
def unpad_input_ids(input_ids, attention_mask): | |
return [input_ids[i][attention_mask[i].bool()][:-1] for i in range(input_ids.shape[0])] | |
def get_word_index(pipe, prompt, input_ids, word, word_count=1, max_length=512, verbose=True, reverse=False): | |
word_inputs = tokenize_t5_prompt(pipe, word, max_length) | |
word_ids = unpad_input_ids(word_inputs.input_ids, word_inputs.attention_mask)[0] | |
if word_ids[0] == 3: | |
word_ids = word_ids[1:] # remove prefix space | |
if verbose: | |
print(f"Trying to find {word} {word_ids.tolist()} in {input_ids.tolist()} where") | |
print([(i, pipe.tokenizer_2.decode(input_ids[i])) for i in range(input_ids.shape[0])]) | |
count = 0 | |
if reverse: | |
for i in range(input_ids.shape[0] - word_ids.shape[0],-1,-1): | |
if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids): | |
count += 1 | |
if count == word_count: | |
if verbose: | |
reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]]) | |
assert reconstructed_word == word | |
print(f"[Reverse] Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'") | |
print("Reconstructed word", reconstructed_word) | |
return i, i + word_ids.shape[0] | |
else: | |
for i in range(input_ids.shape[0] - word_ids.shape[0] + 1): | |
if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids): | |
count += 1 | |
if count == word_count: | |
if verbose: | |
reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]]) | |
assert reconstructed_word == word | |
print(f"Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'") | |
print("Reconstructed word", reconstructed_word) | |
return i, i + word_ids.shape[0] | |
print(f"[Error] Could not find '{word}' in prompt '{prompt}' with word_count {word_count}") |