Spaces:
Running
on
Zero
Running
on
Zero
Update eval/grounded_sam/grounded_sam2_florence2_autolabel_pipeline.py
Browse files
eval/grounded_sam/grounded_sam2_florence2_autolabel_pipeline.py
CHANGED
@@ -10,7 +10,7 @@ import sys
|
|
10 |
|
11 |
from eval.grounded_sam.florence2.modeling_florence2 import Florence2ForConditionalGeneration
|
12 |
from eval.grounded_sam.florence2.processing_florence2 import Florence2Processor
|
13 |
-
from eval.grounded_sam.sam2.build_sam import build_sam2
|
14 |
from eval.grounded_sam.sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
16 |
|
@@ -61,7 +61,6 @@ class FlorenceSAM:
|
|
61 |
|
62 |
FLORENCE2_MODEL_ID = os.getenv('FLORENCE2_MODEL_PATH', "microsoft/Florence-2-large")
|
63 |
SAM2_CHECKPOINT = os.getenv('SAM2_MODEL_PATH', "facebook/sam2-hiera-large")
|
64 |
-
SAM2_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
65 |
|
66 |
self.florence2_model = Florence2ForConditionalGeneration.from_pretrained(
|
67 |
FLORENCE2_MODEL_ID,
|
@@ -70,7 +69,7 @@ class FlorenceSAM:
|
|
70 |
self.florence2_processor = Florence2Processor.from_pretrained(
|
71 |
FLORENCE2_MODEL_ID,
|
72 |
)
|
73 |
-
sam2_model =
|
74 |
self.sam2_predictor = SAM2ImagePredictor(sam2_model)
|
75 |
|
76 |
def __str__(self):
|
|
|
10 |
|
11 |
from eval.grounded_sam.florence2.modeling_florence2 import Florence2ForConditionalGeneration
|
12 |
from eval.grounded_sam.florence2.processing_florence2 import Florence2Processor
|
13 |
+
from eval.grounded_sam.sam2.build_sam import build_sam2, build_sam2_hf
|
14 |
from eval.grounded_sam.sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
16 |
|
|
|
61 |
|
62 |
FLORENCE2_MODEL_ID = os.getenv('FLORENCE2_MODEL_PATH', "microsoft/Florence-2-large")
|
63 |
SAM2_CHECKPOINT = os.getenv('SAM2_MODEL_PATH', "facebook/sam2-hiera-large")
|
|
|
64 |
|
65 |
self.florence2_model = Florence2ForConditionalGeneration.from_pretrained(
|
66 |
FLORENCE2_MODEL_ID,
|
|
|
69 |
self.florence2_processor = Florence2Processor.from_pretrained(
|
70 |
FLORENCE2_MODEL_ID,
|
71 |
)
|
72 |
+
sam2_model = build_sam2_hf(SAM2_CHECKPOINT, device=self.device)
|
73 |
self.sam2_predictor = SAM2ImagePredictor(sam2_model)
|
74 |
|
75 |
def __str__(self):
|