C10X commited on
Commit
56acf32
·
verified ·
1 Parent(s): b0e3bb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -351
app.py CHANGED
@@ -1,351 +0,0 @@
1
- import os
2
- import subprocess
3
- import signal
4
- os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
5
- import gradio as gr
6
- import tempfile
7
- import torch
8
- from datasets import load_dataset
9
- from tqdm.auto import tqdm
10
- import re
11
- import numpy as np
12
- import gc
13
- import unicodedata
14
- from multiprocessing import cpu_count
15
- from transformers import LlamaTokenizerFast
16
- import fasttext
17
- from typing import Tuple, Dict, List, Generator
18
- import json
19
- import matplotlib.pyplot as plt
20
- import seaborn as sns
21
- from datetime import datetime
22
- import warnings
23
- from huggingface_hub import HfApi, create_repo, upload_file, snapshot_download, whoami
24
- from gradio_huggingfacehub_search import HuggingfaceHubSearch
25
- from pathlib import Path
26
- from textwrap import dedent
27
- from scipy import stats
28
- from apscheduler.schedulers.background import BackgroundScheduler
29
-
30
- warnings.filterwarnings('ignore')
31
-
32
- # Environment variables
33
- HF_TOKEN = os.environ.get("HF_TOKEN")
34
-
35
- # Global variables for model caching
36
- MODEL_CACHE_DIR = Path.home() / ".cache" / "ultra_fineweb"
37
- MODEL_CACHE_DIR.mkdir(parents=True, exist_ok=True)
38
- MODEL_LOADED = False
39
- fasttext_model = None
40
- tokenizer = None
41
-
42
- # CSS
43
- css = """
44
- .gradio-container {overflow-y: auto;}
45
- .gr-button-primary {
46
- background-color: #ff6b00 !important;
47
- border-color: #ff6b00 !important;
48
- }
49
- .gr-button-primary:hover {
50
- background-color: #ff8534 !important;
51
- border-color: #ff8534 !important;
52
- }
53
- """
54
-
55
- # HTML templates
56
- TITLE = """
57
- <div style="text-align: center; margin-bottom: 30px;">
58
- <h1 style="font-size: 36px; margin-bottom: 10px;">Create your own Dataset Quality Scores, blazingly fast ⚡!</h1>
59
- <p style="font-size: 16px; color: #666;">The space takes a HF dataset as input, scores it and provides statistics and quality distribution.</p>
60
- </div>
61
- """
62
-
63
- DESCRIPTION_MD = """
64
- ### 📋 How it works:
65
- 1. Choose a dataset from Hugging Face Hub.
66
- 2. The Ultra-FineWeb classifier will score each text sample.
67
- 3. View quality distribution and download the scored dataset.
68
- 4. Optionally, upload the results to a new repository on your Hugging Face account.
69
-
70
- **Note:** The first run will download the model (~347MB), which may take a moment.
71
- """
72
-
73
- # --- Helper Functions ---
74
- def escape(s: str) -> str:
75
- s = str(s)
76
- s = s.replace("&", "&")
77
- s = s.replace("<", "<")
78
- s = s.replace(">", ">")
79
- s = s.replace('"', """)
80
- s = s.replace("\n", "<br/>")
81
- return s
82
-
83
- def fasttext_preprocess(content: str, tokenizer) -> str:
84
- if not isinstance(content, str): return ""
85
- content = re.sub(r'\n{3,}', '\n\n', content).lower()
86
- content = ''.join(c for c in unicodedata.normalize('NFKD', content) if unicodedata.category(c) != 'Mn')
87
- token_ids = tokenizer.encode(content, add_special_tokens=False)
88
- content = ' '.join([tokenizer.decode([token_id]) for token_id in token_ids])
89
- content = re.sub(r'\n', ' n ', content).replace('\r', '').replace('\t', ' ')
90
- return re.sub(r' +', ' ', content).strip()
91
-
92
- def fasttext_infer(norm_content: str, model) -> Tuple[str, float]:
93
- try:
94
- pred_label_arr, pred_prob_arr = model.predict(norm_content)
95
- pred_label = pred_label_arr[0]
96
- score = float(pred_prob_arr[0])
97
-
98
- if pred_label == "__label__neg":
99
- score = 1 - score
100
-
101
- return pred_label, max(0.0, min(1.0, score))
102
- except Exception as e:
103
- print(f"Error in fasttext_infer: {e}")
104
- return "__label__neg", 0.0
105
-
106
- # ==============================================================================
107
- # --- HATAYI GİDEREN KESİN VE NİHAİ DÜZELTME BURADA ---
108
- # load_models artık sadece True veya False döndürerek kontrolü garantiliyor.
109
- # ==============================================================================
110
- def load_models():
111
- """Load models into global variables, returning True on success, False on failure."""
112
- global MODEL_LOADED, fasttext_model, tokenizer
113
- if MODEL_LOADED:
114
- return True
115
-
116
- try:
117
- model_dir = MODEL_CACHE_DIR / "Ultra-FineWeb-classifier"
118
- if not model_dir.exists():
119
- print("Downloading model files...")
120
- snapshot_download(repo_id="openbmb/Ultra-FineWeb-classifier", local_dir=str(model_dir), local_dir_use_symlinks=False)
121
-
122
- tokenizer_path = model_dir / "local_tokenizer"
123
- fasttext_path = model_dir / "classifiers" / "ultra_fineweb_en.bin"
124
-
125
- print("Loading tokenizer and model...")
126
- tokenizer = LlamaTokenizerFast.from_pretrained(str(tokenizer_path))
127
- fasttext_model = fasttext.load_model(str(fasttext_path))
128
-
129
- MODEL_LOADED = True
130
- print("Models loaded successfully.")
131
- return True
132
- except Exception as e:
133
- print(f"Error loading models: {e}")
134
- gr.Warning(f"Failed to load models: {e}")
135
- return False
136
-
137
- def create_quality_plot(scores: List[float], dataset_name: str) -> str:
138
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
139
- output_path = tmpfile.name
140
- plt.figure(figsize=(10, 6))
141
- sns.histplot(scores, bins=50, kde=True, color='#6B7FD7', edgecolor='black')
142
- mean_score, median_score = np.mean(scores), np.median(scores)
143
- plt.axvline(mean_score, color='green', linestyle='--', linewidth=2, label=f'Mean: {mean_score:.3f}')
144
- plt.axvline(median_score, color='orange', linestyle=':', linewidth=2, label=f'Median: {median_score:.3f}')
145
- plt.xlabel('Quality Score'); plt.ylabel('Density')
146
- plt.title(f'Quality Score Distribution - {dataset_name}', fontweight='bold')
147
- plt.legend(); plt.grid(axis='y', alpha=0.3); plt.xlim(0, 1)
148
- plt.tight_layout(); plt.savefig(output_path, dpi=150)
149
- plt.close()
150
- return output_path
151
-
152
- def process_dataset(
153
- model_id: str,
154
- dataset_split: str,
155
- text_column: str,
156
- sample_size: int,
157
- batch_size: int,
158
- progress=gr.Progress(track_tqdm=True)
159
- ) -> Generator:
160
- log_text = ""
161
- def update_log(msg):
162
- nonlocal log_text
163
- timestamp = datetime.now().strftime('%H:%M:%S')
164
- log_text += f"[{timestamp}] {msg}\n"
165
- return (log_text, None, None, None, None, gr.update(visible=False), gr.update(visible=False))
166
-
167
- try:
168
- yield update_log("Starting process...")
169
- yield update_log("Loading scoring models...")
170
- # Düzeltilmiş kontrol mekanizması
171
- if not load_models():
172
- raise gr.Error("Failed to load scoring models. Please check logs.")
173
- yield update_log("Models loaded successfully.")
174
-
175
- yield update_log(f"Loading dataset '{model_id}' split '{dataset_split}'...")
176
- dataset = load_dataset(model_id, split=dataset_split, streaming=False)
177
- yield update_log("Dataset loaded.")
178
-
179
- if text_column not in dataset.column_names:
180
- raise gr.Error(f"Column '{text_column}' not found. Available: {', '.join(dataset.column_names)}")
181
-
182
- actual_samples = min(sample_size, len(dataset))
183
- dataset = dataset.select(range(actual_samples))
184
-
185
- yield update_log(f"Starting to score {actual_samples:,} samples...")
186
- scores, scored_data = [], []
187
- for i in tqdm(range(0, actual_samples, batch_size), desc="Scoring batches"):
188
- batch = dataset[i:min(i + batch_size, actual_samples)]
189
- for text in batch[text_column]:
190
- norm_content = fasttext_preprocess(text, tokenizer)
191
- label, score = fasttext_infer(norm_content, fasttext_model) if norm_content else ("__label__neg", 0.0)
192
- scores.append(score)
193
- scored_data.append({'text': text, 'quality_score': score, 'predicted_label': label})
194
-
195
- yield update_log("Scoring complete. Generating results and plot...")
196
- stats_dict = {'dataset_id': model_id, 'processed_samples': actual_samples, 'statistics': {'mean': float(np.mean(scores)), 'median': float(np.median(scores))}}
197
-
198
- plot_file = create_quality_plot(scores, model_id.split('/')[-1])
199
-
200
- with tempfile.NamedTemporaryFile('w', suffix=".jsonl", delete=False, encoding='utf-8') as f:
201
- output_file_path = f.name
202
- for item in scored_data: f.write(json.dumps(item, ensure_ascii=False) + '\n')
203
-
204
- with tempfile.NamedTemporaryFile('w', suffix=".json", delete=False, encoding='utf-8') as f:
205
- stats_file_path = f.name
206
- json.dump(stats_dict, f, indent=2)
207
-
208
- summary_lines = [
209
- "#### ✅ Scoring Completed!",
210
- f"- **Dataset:** `{model_id}`",
211
- f"- **Processed Samples:** `{actual_samples:,}`",
212
- f"- **Mean Score:** `{stats_dict['statistics']['mean']:.3f}`",
213
- f"- **Median Score:** `{stats_dict['statistics']['median']:.3f}`"
214
- ]
215
- summary_md = "\n".join(summary_lines)
216
-
217
- yield update_log("Process finished successfully!")
218
-
219
- yield (log_text, summary_md, output_file_path, stats_file_path, plot_file, gr.update(visible=True), gr.update(visible=True))
220
-
221
- except Exception as e:
222
- error_log = update_log(f"ERROR: {e}")[0]
223
- error_summary_md = f"### ❌ Error\n```\n{escape(str(e))}\n```"
224
- yield (error_log, error_summary_md, None, None, None, gr.update(visible=True), gr.update(visible=False))
225
-
226
- def upload_to_hub(
227
- scored_file: str, stats_file: str, plot_file: str, new_dataset_id: str,
228
- private: bool, hf_token: str, progress=gr.Progress(track_tqdm=True)
229
- ) -> str:
230
- if not hf_token: return '❌ <span style="color: red;">Please provide your Hugging Face token.</span>'
231
- if not all([scored_file, new_dataset_id]): return '❌ <span style="color: red;">Missing scored file or new dataset ID.</span>'
232
-
233
- try:
234
- progress(0.1, desc="Connecting to Hub...")
235
- api = HfApi(token=hf_token)
236
- username = whoami(token=hf_token)["name"]
237
- repo_id = f"{username}/{new_dataset_id}" if "/" not in new_dataset_id else new_dataset_id
238
-
239
- progress(0.2, desc=f"Creating repo: {repo_id}")
240
- repo_url = create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True, private=private, token=hf_token).repo_url
241
-
242
- progress(0.4, desc="Uploading files...")
243
- upload_file(path_or_fileobj=scored_file, path_in_repo="data/scored_dataset.jsonl", repo_id=repo_id, repo_type="dataset", token=hf_token)
244
- if stats_file and os.path.exists(stats_file):
245
- upload_file(path_or_fileobj=stats_file, path_in_repo="statistics.json", repo_id=repo_id, repo_type="dataset", token=hf_token)
246
- if plot_file and os.path.exists(plot_file):
247
- upload_file(path_or_fileobj=plot_file, path_in_repo="quality_distribution.png", repo_id=repo_id, repo_type="dataset", token=hf_token)
248
-
249
- readme_lines = [
250
- "---",
251
- "license: apache-2.0",
252
- "---",
253
- f"# Quality-Scored Dataset: {repo_id.split('/')[-1]}",
254
- "This dataset was scored for quality using the [Dataset Quality Scorer Space](https://huggingface.co/spaces/ggml-org/dataset-quality-scorer).",
255
- "![Quality Distribution](quality_distribution.png)",
256
- "## Usage",
257
- "```python",
258
- "from datasets import load_dataset",
259
- f'dataset = load_dataset("{repo_id}", split="train")',
260
- "```"
261
- ]
262
- readme_content = "\n".join(readme_lines)
263
-
264
- upload_file(path_or_fileobj=readme_content.encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", token=hf_token)
265
- progress(1.0, "Done!")
266
- return f'✅ <span style="color: green;">Successfully uploaded to <a href="{repo_url}" target="_blank">{repo_id}</a></span>'
267
-
268
- except Exception as e:
269
- return f'❌ <span style="color: red;">Upload failed: {escape(str(e))}</span>'
270
-
271
-
272
- def create_demo():
273
- with gr.Blocks(css=css, title="Dataset Quality Scorer") as demo:
274
- gr.HTML(TITLE)
275
- gr.Markdown(DESCRIPTION_MD)
276
-
277
- with gr.Row():
278
- with gr.Column(scale=3):
279
- gr.Markdown("### 1. Configure Dataset")
280
- dataset_search = HuggingfaceHubSearch(
281
- label="Hugging Face Dataset ID",
282
- search_type="dataset",
283
- value="roneneldan/TinyStories"
284
- )
285
- text_column = gr.Textbox(label="Text Column Name", value="text")
286
- with gr.Column(scale=2):
287
- gr.Markdown("### 2. Configure Scoring")
288
- dataset_split = gr.Dropdown(["train", "validation", "test"], label="Split", value="train")
289
- with gr.Row():
290
- sample_size = gr.Number(label="Sample Size", value=1000, minimum=100, step=100)
291
- batch_size = gr.Number(label="Batch Size", value=32, minimum=1, step=1)
292
-
293
- live_log = gr.Textbox(label="Live Log", interactive=False, lines=8, max_lines=20)
294
-
295
- with gr.Row():
296
- clear_btn = gr.Button("Clear", variant="secondary")
297
- process_btn = gr.Button("🚀 Start Scoring", variant="primary", size="lg")
298
-
299
- with gr.Group(visible=False) as results_group:
300
- gr.Markdown("--- \n ### 3. Review Results")
301
- with gr.Row():
302
- with gr.Column(scale=1):
303
- summary_output = gr.Markdown(label="Summary")
304
- scored_file_output = gr.File(label="📄 Download Scored Dataset (.jsonl)", type="filepath")
305
- stats_file_output = gr.File(label="📊 Download Statistics (.json)", type="filepath")
306
- with gr.Column(scale=1):
307
- plot_output = gr.Image(label="Quality Distribution", show_label=True)
308
-
309
- with gr.Group(visible=False) as upload_group:
310
- gr.Markdown("--- \n ### 4. (Optional) Upload to Hugging Face Hub")
311
- hf_token_input = gr.Textbox(label="Hugging Face Token", type="password", placeholder="hf_...", value=HF_TOKEN or "")
312
- new_dataset_id = gr.Textbox(label="New Dataset Name", placeholder="my-scored-dataset")
313
- private_checkbox = gr.Checkbox(label="Make dataset private", value=False)
314
- upload_btn = gr.Button("📤 Upload to Hub", variant="primary")
315
- upload_status = gr.HTML()
316
-
317
- def clear_form():
318
- return "roneneldan/TinyStories", "train", "text", 1000, 32, "", None, None, None, None, gr.update(visible=False), gr.update(visible=False), ""
319
-
320
- outputs_list = [
321
- live_log, summary_output, scored_file_output, stats_file_output, plot_output,
322
- results_group, upload_group
323
- ]
324
-
325
- process_btn.click(
326
- fn=process_dataset,
327
- inputs=[dataset_search, dataset_split, text_column, sample_size, batch_size],
328
- outputs=outputs_list
329
- )
330
-
331
- clear_btn.click(
332
- fn=clear_form,
333
- outputs=[
334
- dataset_search, dataset_split, text_column, sample_size, batch_size,
335
- live_log, summary_output, scored_file_output, stats_file_output, plot_output,
336
- results_group, upload_group, upload_status
337
- ]
338
- )
339
-
340
- upload_btn.click(
341
- fn=upload_to_hub,
342
- inputs=[scored_file_output, stats_file_output, plot_output, new_dataset_id, private_checkbox, hf_token_input],
343
- outputs=[upload_status]
344
- )
345
- return demo
346
-
347
- # --- App Execution ---
348
- demo = create_demo()
349
-
350
- if __name__ == "__main__":
351
- demo.queue().launch(debug=False, show_api=False)