Spaces:
Sleeping
Sleeping
| # models.py | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from sentence_transformers import SentenceTransformer | |
| from config import EMBEDDING_MODEL_NAME | |
| # Cargar el modelo de embeddings | |
| def load_embedding_model(): | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME, device=device) | |
| return embedding_model | |
| # Cargar el modelo Yi-Coder | |
| def load_yi_coder_model(): | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model_path = "01-ai/Yi-Coder-9B-Chat" # Asegúrate de que esta ruta sea correcta y que el modelo esté disponible | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| yi_coder_model = AutoModelForCausalLM.from_pretrained( | |
| model_path, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True # Opcional: ayuda a reducir el uso de memoria al cargar el modelo | |
| ).to(device).eval() | |
| return tokenizer, yi_coder_model, device | |