Spaces:
Sleeping
Sleeping
| # pinecone_utils.py | |
| import pinecone | |
| from config import PINECONE_API_KEY, PINECONE_ENVIRONMENT, INDEX_NAME, CONTEXT_FIELDS | |
| import torch | |
| # Conectar a Pinecone | |
| def connect_to_pinecone(): | |
| pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) | |
| index = pinecone.Index(INDEX_NAME) | |
| return index | |
| # Realizar búsqueda vectorial | |
| def vector_search(query, embedding_model, index): | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Generar el embedding utilizando el modelo de embeddings | |
| xq = embedding_model.encode(query, convert_to_tensor=True, device=device) | |
| # Convertir el tensor a lista | |
| xq = xq.cpu().tolist() | |
| # Realizar búsqueda vectorial en el índice de Pinecone | |
| res = index.query(vector=xq, top_k=3, include_metadata=True) | |
| if res and res['matches']: | |
| return [ | |
| { | |
| 'content': ' '.join(f"{k}: {v}" for k, v in match['metadata'].items() if k in CONTEXT_FIELDS and k != 'Tag'), | |
| 'metadata': match['metadata'], | |
| 'score': match.get('score', 0) | |
| } | |
| for match in res['matches'] | |
| if 'metadata' in match | |
| ] | |
| return [] | |