File size: 51,347 Bytes
1f60596
 
1105522
1f60596
ccd76a9
 
 
1105522
 
 
 
 
ccd76a9
1105522
d248e5f
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
d248e5f
 
1105522
 
d248e5f
1105522
 
 
 
 
 
1f60596
1105522
 
1f60596
1105522
 
1f60596
 
 
 
 
 
d248e5f
 
 
 
1f60596
1105522
 
 
1f60596
 
 
1105522
 
d248e5f
 
1105522
 
c3b2589
1f60596
1105522
 
 
 
d248e5f
 
 
 
 
1f60596
d248e5f
 
c3b2589
d248e5f
c3b2589
 
1f60596
 
 
 
 
 
 
 
 
 
c3b2589
1f60596
 
 
 
 
d248e5f
1f60596
 
 
 
 
d248e5f
1105522
1f60596
 
 
 
 
 
 
 
 
1105522
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
d248e5f
 
 
 
 
 
 
 
 
 
1f60596
 
d248e5f
1f60596
 
 
 
c3b2589
1f60596
 
c3b2589
 
1f60596
 
 
 
 
 
 
 
c3b2589
d248e5f
 
14384f4
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b2589
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d248e5f
1f60596
 
d248e5f
 
1f60596
 
 
 
 
c3b2589
1f60596
 
 
 
c3b2589
1f60596
 
 
 
 
 
 
 
14384f4
1f60596
 
 
c3b2589
1f60596
 
c3b2589
1f60596
 
14384f4
1f60596
 
c3b2589
1f60596
 
 
 
 
c3b2589
1f60596
 
c3b2589
14384f4
1f60596
 
 
 
1105522
1f60596
 
 
 
d248e5f
1f60596
 
 
 
 
d248e5f
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b2589
d248e5f
 
 
 
 
1f60596
 
 
 
 
 
 
 
 
 
14384f4
 
d248e5f
1f60596
d248e5f
1f60596
 
d248e5f
1f60596
 
 
14384f4
1f60596
c3b2589
1f60596
 
d248e5f
 
1105522
d248e5f
1f60596
 
d248e5f
 
1105522
1f60596
 
 
d248e5f
 
1f60596
 
 
c3b2589
 
14384f4
 
1f60596
 
 
14384f4
 
 
1105522
 
 
1f60596
1105522
1f60596
1105522
14384f4
1f60596
 
c3b2589
d248e5f
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
c3b2589
1105522
1f60596
c3b2589
1f60596
 
 
 
 
 
 
 
 
1105522
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b2589
1f60596
 
c3b2589
d248e5f
1f60596
 
d248e5f
1f60596
1105522
 
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105522
 
1f60596
 
1105522
14384f4
d248e5f
1f60596
d248e5f
 
 
c3b2589
14384f4
1105522
 
1f60596
1105522
1f60596
1105522
14384f4
1f60596
 
d248e5f
1f60596
 
 
 
 
 
 
d248e5f
1f60596
 
 
 
 
 
1105522
1f60596
 
 
 
 
 
 
1105522
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105522
 
 
1f60596
 
 
 
1105522
1f60596
1105522
1f60596
 
 
 
 
 
 
1105522
 
1f60596
 
 
 
 
 
 
 
 
 
1105522
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
1f60596
 
 
1105522
14384f4
1f60596
 
1105522
1f60596
d248e5f
1f60596
d248e5f
 
 
c3b2589
14384f4
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
1f60596
 
d248e5f
 
 
1f60596
d248e5f
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
1105522
 
d248e5f
1f60596
 
 
 
 
 
 
d248e5f
 
 
1105522
1f60596
14384f4
 
d248e5f
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d248e5f
1f60596
 
 
1105522
1f60596
 
 
 
 
 
 
c3b2589
1f60596
 
 
c3b2589
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
1105522
1f60596
d248e5f
 
1f60596
 
d248e5f
 
1f60596
14384f4
 
 
1f60596
1105522
 
1f60596
 
d248e5f
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b2589
14384f4
 
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
1f60596
14384f4
1f60596
 
 
 
14384f4
1f60596
 
 
 
 
14384f4
 
1f60596
 
 
 
 
 
14384f4
1f60596
 
 
14384f4
1f60596
 
 
 
 
 
 
 
 
 
c3b2589
1f60596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14384f4
1f60596
14384f4
 
1f60596
 
 
 
 
 
 
 
 
 
d248e5f
 
1f60596
14384f4
1f60596
 
14384f4
1f60596
 
 
 
 
 
c3b2589
1105522
ccd76a9
14384f4
1f60596
4d0ec3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
# import os # No parece usarse directamente, se puede quitar si no hay un uso oculto
# !pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0 -q # Ejecutar en el entorno

from pydantic import BaseModel # ConfigDict ya no es necesario en Pydantic V2 si solo usas arbitrary_types_allowed
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import gradio as gr
import io
from PIL import Image
import tempfile

# --- Constantes para nombres de columnas y etiquetas ---
COL_TIME = 'Tiempo'
COL_BIOMASS = 'Biomasa'
COL_SUBSTRATE = 'Sustrato'
COL_PRODUCT = 'Producto'

LABEL_TIME = 'Tiempo'
LABEL_BIOMASS = 'Biomasa'
LABEL_SUBSTRATE = 'Sustrato'
LABEL_PRODUCT = 'Producto'
# --- Fin Constantes ---

class YourModel(BaseModel): # Esto parece ser un vestigio, no se usa. Se puede quitar si es así.
    class Config:
        arbitrary_types_allowed = True

class BioprocessModel:
    def __init__(self, model_type='logistic', maxfev=50000):
        self.params = {}
        self.r2 = {}
        self.rmse = {}
        self.datax = []
        self.datas = []
        self.datap = []
        self.dataxp = [] # Promedios
        self.datasp = []
        self.datapp = []
        self.datax_std = [] # Desviaciones estándar
        self.datas_std = []
        self.datap_std = []
        self.datax_sem = [] # Errores estándar de la media
        self.datas_sem = []
        self.datap_sem = []
        self.n_reps_x = []  # Número de réplicas para biomasa
        self.n_reps_s = []  # Número de réplicas para sustrato
        self.n_reps_p = []  # Número de réplicas para producto
        self.biomass_model = None
        self.biomass_diff = None
        self.model_type = model_type
        self.maxfev = maxfev
        self.time = np.array([])

    @staticmethod
    def logistic(time, xo, xm, um):
        denominator = (1 - (xo / xm) * (1 - np.exp(um * time)))
        denominator = np.where(np.abs(denominator) < 1e-9, np.sign(denominator) * 1e-9 if np.any(denominator) else 1e-9, denominator)
        return (xo * np.exp(um * time)) / denominator

    @staticmethod
    def gompertz(time, xm, um, lag):
        return xm * np.exp(-np.exp((um * np.e / xm) * (lag - time) + 1))

    @staticmethod
    def moser(time, Xm, um, Ks):
        return Xm * (1 - np.exp(-um * (time - Ks)))

    @staticmethod
    def logistic_diff(X, t, params):
        xo, xm, um = params
        return um * X * (1 - X / xm)

    @staticmethod
    def gompertz_diff(X, t, params):
        xm, um, lag = params
        return X * (um * np.e / xm) * np.exp((um * np.e / xm) * (lag - t) + 1)

    @staticmethod
    def moser_diff(X, t, params):
        Xm, um, Ks = params
        return um * (Xm - X)

    def _get_biomass_model_params_as_list(self):
        if 'biomass' not in self.params or not self.params['biomass']:
            return None
        if self.model_type == 'logistic':
            return [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']]
        elif self.model_type == 'gompertz':
            return [self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']]
        elif self.model_type == 'moser':
            return [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
        return None

    def substrate(self, time, so, p, q, biomass_params_list):
        if biomass_params_list is None: return np.full_like(time, so)
        X_t = self.biomass_model(time, *biomass_params_list)
        integral_X = np.cumsum(X_t) * np.gradient(time)
        return so - p * (X_t - biomass_params_list[0]) - q * integral_X

    def product(self, time, po, alpha, beta, biomass_params_list):
        if biomass_params_list is None: return np.full_like(time, po)
        X_t = self.biomass_model(time, *biomass_params_list)
        integral_X = np.cumsum(X_t) * np.gradient(time)
        return po + alpha * (X_t - biomass_params_list[0]) + beta * integral_X

    def process_data(self, df):
        biomass_cols = [col for col in df.columns if col[1] == COL_BIOMASS]
        substrate_cols = [col for col in df.columns if col[1] == COL_SUBSTRATE]
        product_cols = [col for col in df.columns if col[1] == COL_PRODUCT]

        time_col_tuple = [col for col in df.columns if col[1] == COL_TIME]
        if not time_col_tuple:
            raise ValueError(f"No se encontró la columna de '{COL_TIME}' en los datos.")
        time_col = time_col_tuple[0]
        time = df[time_col].values
        self.time = time

        def _process_type(data_cols, avg_list, std_list, sem_list, n_reps_list, raw_data_list):
            if data_cols:
                valid_data_arrays = []
                for col in data_cols:
                    try:
                        numeric_col = pd.to_numeric(df[col], errors='coerce').values
                        valid_data_arrays.append(numeric_col)
                    except KeyError:
                        print(f"Advertencia: Columna {col} no encontrada, se omitirá para el promedio/std/sem.")
                        continue
                
                if not valid_data_arrays:
                    avg_list.append(np.full_like(time, np.nan))
                    std_list.append(np.full_like(time, np.nan))
                    sem_list.append(np.full_like(time, np.nan))
                    n_reps_list.append(np.zeros_like(time, dtype=int)) # Modificado para que sea un array de ceros
                    raw_data_list.append(np.array([]))
                    return

                data_reps = np.array(valid_data_arrays)
                raw_data_list.append(data_reps)

                avg_list.append(np.nanmean(data_reps, axis=0))
                current_std = np.nanstd(data_reps, axis=0, ddof=1)
                std_list.append(current_std)
                
                n_valid_reps_per_timepoint = np.sum(~np.isnan(data_reps), axis=0)
                n_reps_list.append(n_valid_reps_per_timepoint)

                current_sem = np.zeros_like(current_std) * np.nan
                valid_indices_for_sem = (n_valid_reps_per_timepoint > 1)
                current_sem[valid_indices_for_sem] = current_std[valid_indices_for_sem] / np.sqrt(n_valid_reps_per_timepoint[valid_indices_for_sem])
                sem_list.append(current_sem)
            else:
                avg_list.append(np.full_like(time, np.nan))
                std_list.append(np.full_like(time, np.nan))
                sem_list.append(np.full_like(time, np.nan))
                n_reps_list.append(np.zeros_like(time, dtype=int)) # Modificado para que sea un array de ceros
                raw_data_list.append(np.array([]))

        _process_type(biomass_cols, self.dataxp, self.datax_std, self.datax_sem, self.n_reps_x, self.datax)
        _process_type(substrate_cols, self.datasp, self.datas_std, self.datas_sem, self.n_reps_s, self.datas)
        _process_type(product_cols, self.datapp, self.datap_std, self.datap_sem, self.n_reps_p, self.datap)

    def fit_model(self):
        if self.model_type == 'logistic':
            self.biomass_model = self.logistic
            self.biomass_diff = self.logistic_diff
        elif self.model_type == 'gompertz':
            self.biomass_model = self.gompertz
            self.biomass_diff = self.gompertz_diff
        elif self.model_type == 'moser':
            self.biomass_model = self.moser
            self.biomass_diff = self.moser_diff
        else:
            raise ValueError(f"Tipo de modelo desconocido: {self.model_type}")

    def fit_biomass(self, time, biomass, bounds=None):
        p0 = None
        fit_func = None
        param_names = []

        if not np.any(np.isfinite(biomass)): # Si toda la biomasa es NaN o inf
            print(f"Error en fit_biomass_{self.model_type}: Todos los datos de biomasa son no finitos.")
            self.params['biomass'] = {}
            return None
        
        # Filtrar NaNs de biomasa y tiempo correspondiente para el ajuste
        finite_mask = np.isfinite(biomass)
        time_fit = time[finite_mask]
        biomass_fit = biomass[finite_mask]

        if len(time_fit) < 2 : # No suficientes puntos para ajustar
            print(f"Error en fit_biomass_{self.model_type}: No hay suficientes puntos de datos finitos para el ajuste ({len(time_fit)}).")
            self.params['biomass'] = {}
            return None


        if self.model_type == 'logistic':
            p0 = [max(1e-6,min(biomass_fit)), max(biomass_fit)*1.5 if max(biomass_fit)>0 else 1.0, 0.1]
            fit_func = self.logistic
            param_names = ['xo', 'xm', 'um']
        elif self.model_type == 'gompertz':
            grad_b = np.gradient(biomass_fit)
            lag_guess = time_fit[np.argmax(grad_b)] if len(time_fit) > 1 and np.any(grad_b > 1e-3) else time_fit[0]
            p0 = [max(biomass_fit) if max(biomass_fit)>0 else 1.0, 0.1, lag_guess]
            fit_func = self.gompertz
            param_names = ['xm', 'um', 'lag']
        elif self.model_type == 'moser':
            p0 = [max(biomass_fit) if max(biomass_fit)>0 else 1.0, 0.1, time_fit[0]]
            fit_func = self.moser
            param_names = ['Xm', 'um', 'Ks']
        
        if fit_func is None:
            print(f"Modelo de biomasa no configurado para {self.model_type}")
            return None
            
        try:
            if bounds:
                p0_bounded = []
                for i, val in enumerate(p0):
                    low = bounds[0][i] if bounds[0] and i < len(bounds[0]) else -np.inf
                    high = bounds[1][i] if bounds[1] and i < len(bounds[1]) else np.inf
                    p0_bounded.append(np.clip(val, low, high))
                p0 = p0_bounded
            
            popt, _ = curve_fit(fit_func, time_fit, biomass_fit, p0=p0, maxfev=self.maxfev, bounds=bounds or (-np.inf, np.inf))
            self.params['biomass'] = dict(zip(param_names, popt))
            y_pred_fit = fit_func(time_fit, *popt) # Predicción solo para datos ajustados
            
            # Para R2 y RMSE, usar solo los datos que se usaron para el ajuste
            if np.sum((biomass_fit - np.mean(biomass_fit)) ** 2) < 1e-9:
                 self.r2['biomass'] = 1.0 if np.sum((biomass_fit - y_pred_fit) ** 2) < 1e-9 else 0.0
            else:
                self.r2['biomass'] = 1 - (np.sum((biomass_fit - y_pred_fit) ** 2) / np.sum((biomass_fit - np.mean(biomass_fit)) ** 2))
            self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass_fit, y_pred_fit))
            
            # Devolver predicción para el 'time' original, no solo time_fit
            y_pred_full = fit_func(time, *popt)
            return y_pred_full
        except Exception as e:
            print(f"Error en fit_biomass_{self.model_type}: {e}")
            self.params['biomass'] = {}
            return None

    def _fit_consumption_production(self, time, data, fit_type, p0_values, param_names):
        biomass_params_list = self._get_biomass_model_params_as_list()
        if biomass_params_list is None:
            print(f"Parámetros de biomasa no disponibles para ajustar {fit_type}.")
            return None

        if not np.any(np.isfinite(data)):
            print(f"Error en fit_{fit_type}_{self.model_type}: Todos los datos de {fit_type} son no finitos.")
            self.params[fit_type] = {}
            return None

        finite_mask = np.isfinite(data)
        time_fit = time[finite_mask]
        data_fit = data[finite_mask]
        
        if len(time_fit) < 2:
            print(f"Error en fit_{fit_type}_{self.model_type}: No hay suficientes puntos de datos finitos para el ajuste ({len(time_fit)}).")
            self.params[fit_type] = {}
            return None

        model_func = self.substrate if fit_type == 'substrate' else self.product

        try:
            popt, _ = curve_fit(
                lambda t, *params_fit: model_func(t, *params_fit, biomass_params_list),
                time_fit, data_fit, p0=p0_values, maxfev=self.maxfev
            )
            self.params[fit_type] = dict(zip(param_names, popt))
            y_pred_fit = model_func(time_fit, *popt, biomass_params_list)

            if np.sum((data_fit - np.mean(data_fit)) ** 2) < 1e-9:
                 self.r2[fit_type] = 1.0 if np.sum((data_fit - y_pred_fit) ** 2) < 1e-9 else 0.0
            else:
                self.r2[fit_type] = 1 - (np.sum((data_fit - y_pred_fit) ** 2) / np.sum((data_fit - np.mean(data_fit)) ** 2))
            self.rmse[fit_type] = np.sqrt(mean_squared_error(data_fit, y_pred_fit))
            
            y_pred_full = model_func(time, *popt, biomass_params_list)
            return y_pred_full
        except Exception as e:
            print(f"Error en fit_{fit_type}_{self.model_type}: {e}")
            self.params[fit_type] = {}
            return None

    def fit_substrate(self, time, substrate):
        p0_s = [max(1e-6, np.nanmin(substrate)) if np.any(np.isfinite(substrate)) else 1.0, 0.01, 0.01]
        param_names_s = ['so', 'p', 'q']
        return self._fit_consumption_production(time, substrate, 'substrate', p0_s, param_names_s)

    def fit_product(self, time, product):
        p0_p = [max(1e-6, np.nanmin(product)) if np.any(np.isfinite(product)) else 0.0, 0.01, 0.01]
        param_names_p = ['po', 'alpha', 'beta']
        return self._fit_consumption_production(time, product, 'product', p0_p, param_names_p)

    def generate_fine_time_grid(self, time):
        if len(time) < 2: return time
        time_min, time_max = np.nanmin(time), np.nanmax(time)
        if np.isnan(time_min) or np.isnan(time_max) or time_min == time_max : return time
        return np.linspace(time_min, time_max, 500)

    def system(self, y, t, biomass_params_list, substrate_params_dict, product_params_dict):
        X, S, P = y
        dXdt = 0.0
        if self.model_type == 'logistic':
            dXdt = self.logistic_diff(X, t, biomass_params_list)
        elif self.model_type == 'gompertz':
            dXdt = self.gompertz_diff(X, t, biomass_params_list)
        elif self.model_type == 'moser':
            dXdt = self.moser_diff(X, t, biomass_params_list)
        
        p = substrate_params_dict.get('p', 0)
        q = substrate_params_dict.get('q', 0)
        alpha = product_params_dict.get('alpha', 0)
        beta = product_params_dict.get('beta', 0)

        dSdt = -p * dXdt - q * X
        dPdt = alpha * dXdt + beta * X
        return [dXdt, dSdt, dPdt]

    def get_initial_conditions(self, time, biomass, substrate, product):
        # Default a los primeros datos finitos
        def get_first_finite(arr, default_val=0.0):
            finite_arr = arr[np.isfinite(arr)]
            return finite_arr[0] if len(finite_arr) > 0 else default_val

        X0 = get_first_finite(biomass, 0.1) # Default a 0.1 si no hay datos finitos
        S0 = get_first_finite(substrate, 0.0)
        P0 = get_first_finite(product, 0.0)

        time_min_val = np.nanmin(time) if len(time)>0 and np.any(np.isfinite(time)) else 0

        if 'biomass' in self.params and self.params['biomass']:
            if self.model_type == 'logistic':
                X0 = self.params['biomass']['xo']
            elif self.model_type == 'gompertz':
                xm, um, lag = self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']
                X0 = xm * np.exp(-np.exp((um * np.e / xm)*(lag - time_min_val)+1))
            elif self.model_type == 'moser':
                Xm, um, Ks = self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']
                X0 = Xm*(1 - np.exp(-um*(time_min_val - Ks)))
        
        if 'substrate' in self.params and self.params['substrate']:
            S0 = self.params['substrate']['so']
        
        if 'product' in self.params and self.params['product']:
            P0 = self.params['product']['po']

        return [X0, S0, P0]

    def solve_differential_equations(self, time, biomass, substrate, product):
        biomass_params_list = self._get_biomass_model_params_as_list()
        if biomass_params_list is None:
            print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
            return None, None, None, time

        substrate_params_dict = self.params.get('substrate', {})
        product_params_dict = self.params.get('product', {})
        
        initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
        time_fine = self.generate_fine_time_grid(time)
        
        if len(time_fine) < 2 : # Si generate_fine_time_grid devolvió el time original y era muy corto
            print("No hay suficiente rango de tiempo para resolver EDOs.")
            return None, None, None, time

        try:
            sol = odeint(self.system, initial_conditions, time_fine,
                         args=(biomass_params_list, substrate_params_dict, product_params_dict))
            X, S, P = sol[:, 0], sol[:, 1], sol[:, 2]
            return X, S, P, time_fine
        except Exception as e:
            print(f"Error al resolver EDOs: {e}")
            return None, None, None, time_fine

    def plot_results(self, time, biomass, substrate, product,
                     y_pred_biomass, y_pred_substrate, y_pred_product,
                     biomass_error_values, substrate_error_values, product_error_values,
                     experiment_name='', legend_position='best', params_position='upper right',
                     show_legend=True, show_params=True, style='whitegrid',
                     line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                     use_differential=False,
                     time_unit='', biomass_unit='', substrate_unit='', product_unit='',
                     error_bar_capsize=5):

        sns.set_style(style)
        time_to_plot = time 

        if use_differential:
            X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
            if X_ode is not None:
                y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
                time_to_plot = time_fine_ode
            else: 
                print(f"Fallo al resolver EDOs para {experiment_name}, usando ajustes si existen.")
                if y_pred_biomass is None and not np.any(np.isfinite(biomass)): return None # No graficar si no hay nada
        elif y_pred_biomass is None and not np.any(np.isfinite(biomass)):
             print(f"No hay datos de biomasa ni ajuste para {experiment_name}. Omitiendo figura.")
             return None

        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
        fig.suptitle(f'{experiment_name} (Modelo: {self.model_type.capitalize()})', fontsize=16)

        xlabel_full = f'{LABEL_TIME} ({time_unit})' if time_unit else LABEL_TIME
        ylabel_biomass_full = f'{LABEL_BIOMASS} ({biomass_unit})' if biomass_unit else LABEL_BIOMASS
        ylabel_substrate_full = f'{LABEL_SUBSTRATE} ({substrate_unit})' if substrate_unit else LABEL_SUBSTRATE
        ylabel_product_full = f'{LABEL_PRODUCT} ({product_unit})' if product_unit else LABEL_PRODUCT
        
        plots_config = [
            (ax1, biomass, y_pred_biomass, biomass_error_values, ylabel_biomass_full, 'biomass'),
            (ax2, substrate, y_pred_substrate, substrate_error_values, ylabel_substrate_full, 'substrate'),
            (ax3, product, y_pred_product, product_error_values, ylabel_product_full, 'product')
        ]

        for ax, data, y_pred, data_error_vals, ylabel, param_key in plots_config:
            if data is not None and np.any(np.isfinite(data)):
                finite_data_mask = np.isfinite(data)
                time_finite_data = time[finite_data_mask]
                data_finite_values = data[finite_data_mask]

                if data_error_vals is not None and np.any(np.isfinite(data_error_vals)) and len(data_error_vals) == len(time):
                    plot_error_vals = np.copy(data_error_vals[finite_data_mask])
                    plot_error_vals[~np.isfinite(plot_error_vals)] = 0 
                    
                    ax.errorbar(time_finite_data, data_finite_values, 
                                yerr=plot_error_vals, 
                                fmt=marker_style, color=point_color,
                                label='Datos experimentales', capsize=error_bar_capsize,
                                elinewidth=1, markeredgewidth=1) 
                else:
                    ax.plot(time_finite_data, data_finite_values, 
                            marker=marker_style, linestyle='', color=point_color,
                            label='Datos experimentales')

            if y_pred is not None and len(y_pred) == len(time_to_plot) and np.any(np.isfinite(y_pred)):
                ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label='Modelo')

            ax.set_xlabel(xlabel_full) 
            ax.set_ylabel(ylabel)
            if show_legend:
                ax.legend(loc=legend_position)
            ax.set_title(f'{ylabel.split(" (")[0]}') 

            current_params = self.params.get(param_key, {})
            r2 = self.r2.get(param_key, np.nan)
            rmse = self.rmse.get(param_key, np.nan)

            if show_params and current_params: 
                valid_params = {k: v for k, v in current_params.items() if np.isfinite(v)}
                param_text = '\n'.join([f"{k} = {v:.3g}" for k, v in valid_params.items()])
                text = f"{param_text}\nR² = {r2:.3f}\nRMSE = {rmse:.3g}"
                
                text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
                text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
                if params_position == 'outside right': 
                    fig.subplots_adjust(right=0.75) 
                    ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
                                verticalalignment='center', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7))
                else:
                    ax.text(text_x, text_y, text, transform=ax.transAxes,
                        verticalalignment=va, horizontalalignment=ha,
                        bbox={'boxstyle': 'round', 'facecolor':'white', 'alpha':0.7})

        plt.tight_layout(rect=[0, 0.03, 1, 0.95])
        buf = io.BytesIO()
        fig.savefig(buf, format='png')
        buf.seek(0)
        image = Image.open(buf).convert("RGB")
        plt.close(fig)
        return image

    def plot_combined_results(self, time, biomass, substrate, product,
                              y_pred_biomass, y_pred_substrate, y_pred_product,
                              biomass_error_values, substrate_error_values, product_error_values,
                              experiment_name='', legend_position='best', params_position='upper right',
                              show_legend=True, show_params=True, style='whitegrid',
                              line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                              use_differential=False,
                              time_unit='', biomass_unit='', substrate_unit='', product_unit='',
                              error_bar_capsize=5):
        sns.set_style(style)
        time_to_plot = time

        if use_differential:
            X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
            if X_ode is not None:
                y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
                time_to_plot = time_fine_ode
            else:
                print(f"Fallo al resolver EDOs para {experiment_name} (combinado), usando ajustes si existen.")
                if y_pred_biomass is None and not np.any(np.isfinite(biomass)): return None
        elif y_pred_biomass is None and not np.any(np.isfinite(biomass)):
             print(f"No hay datos de biomasa ni ajuste para {experiment_name}. Omitiendo figura combinada.")
             return None


        fig, ax1 = plt.subplots(figsize=(12, 7))
        fig.suptitle(f'{experiment_name} (Modelo: {self.model_type.capitalize()})', fontsize=16)

        xlabel_full = f'{LABEL_TIME} ({time_unit})' if time_unit else LABEL_TIME
        ylabel_biomass_full = f'{LABEL_BIOMASS} ({biomass_unit})' if biomass_unit else LABEL_BIOMASS
        ylabel_substrate_full = f'{LABEL_SUBSTRATE} ({substrate_unit})' if substrate_unit else LABEL_SUBSTRATE
        ylabel_product_full = f'{LABEL_PRODUCT} ({product_unit})' if product_unit else LABEL_PRODUCT
        colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}

        def plot_data_with_errors(ax, t, data, error_vals, color, label_prefix, marker, cap_size):
            if data is not None and np.any(np.isfinite(data)):
                t_finite = t[np.isfinite(data)]
                data_finite = data[np.isfinite(data)]

                if error_vals is not None and np.any(np.isfinite(error_vals)) and len(error_vals) == len(t):
                    error_vals_finite = np.copy(error_vals[np.isfinite(data)])
                    error_vals_finite[~np.isfinite(error_vals_finite)] = 0
                    ax.errorbar(t_finite, data_finite, yerr=error_vals_finite, fmt=marker, color=color,
                                label=f'{label_prefix} (Datos)', capsize=cap_size, elinewidth=1, markeredgewidth=1)
                else:
                    ax.plot(t_finite, data_finite, marker=marker, linestyle='', color=color,
                            label=f'{label_prefix} (Datos)')
        
        ax1.set_xlabel(xlabel_full)
        ax1.set_ylabel(ylabel_biomass_full, color=colors['Biomasa'])
        plot_data_with_errors(ax1, time, biomass, biomass_error_values, colors['Biomasa'], LABEL_BIOMASS, marker_style, error_bar_capsize)
        if y_pred_biomass is not None and len(y_pred_biomass) == len(time_to_plot) and np.any(np.isfinite(y_pred_biomass)):
            ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'], label=f'{LABEL_BIOMASS} (Modelo)')
        ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])

        ax2 = ax1.twinx()
        ax2.set_ylabel(ylabel_substrate_full, color=colors['Sustrato'])
        plot_data_with_errors(ax2, time, substrate, substrate_error_values, colors['Sustrato'], LABEL_SUBSTRATE, marker_style, error_bar_capsize)
        if y_pred_substrate is not None and len(y_pred_substrate) == len(time_to_plot) and np.any(np.isfinite(y_pred_substrate)):
            ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'], label=f'{LABEL_SUBSTRATE} (Modelo)')
        ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
        
        ax3 = ax1.twinx()
        ax3.spines["right"].set_position(("axes", 1.15)) 
        ax3.set_frame_on(True)
        ax3.patch.set_visible(False)
        ax3.set_ylabel(ylabel_product_full, color=colors['Producto'])
        plot_data_with_errors(ax3, time, product, product_error_values, colors['Producto'], LABEL_PRODUCT, marker_style, error_bar_capsize)
        if y_pred_product is not None and len(y_pred_product) == len(time_to_plot) and np.any(np.isfinite(y_pred_product)):
            ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'], label=f'{LABEL_PRODUCT} (Modelo)')
        ax3.tick_params(axis='y', labelcolor=colors['Producto'])

        if show_legend:
            handles, labels = [], []
            for ax_leg in [ax1, ax2, ax3]:
                h, l = ax_leg.get_legend_handles_labels()
                handles.extend(h); labels.extend(l)
            unique_labels_dict = {}
            for h, l in zip(handles, labels):
                if l not in unique_labels_dict: unique_labels_dict[l] = h
            if unique_labels_dict:
                ax1.legend(unique_labels_dict.values(), unique_labels_dict.keys(), loc=legend_position)

        if show_params:
            texts = []
            for param_key, param_label_text in [('biomass', LABEL_BIOMASS), ('substrate', LABEL_SUBSTRATE), ('product', LABEL_PRODUCT)]:
                current_params_dict = self.params.get(param_key, {})
                r2_val = self.r2.get(param_key, np.nan)
                rmse_val = self.rmse.get(param_key, np.nan)
                if current_params_dict: 
                    valid_params_dict = {k: v for k, v in current_params_dict.items() if np.isfinite(v)}
                    param_text_ind = '\n'.join([f"{k} = {v:.3g}" for k, v in valid_params_dict.items()])
                    texts.append(f"{param_label_text}:\n{param_text_ind}\nR² = {r2_val:.3f}\nRMSE = {rmse_val:.3g}")
            total_text = "\n\n".join(texts)

            if total_text: 
                text_x, ha_align = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
                text_y, va_align = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
                if params_position == 'outside right':
                    fig.subplots_adjust(right=0.70) 
                    ax3.annotate(total_text, xy=(1.25, 0.5), xycoords='axes fraction', 
                                 fontsize=8, verticalalignment='center', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7))
                else:
                    ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
                             fontsize=8, verticalalignment=va_align, horizontalalignment=ha_align,
                             bbox={'boxstyle':'round', 'facecolor':'white', 'alpha':0.7})

        plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
        buf = io.BytesIO()
        fig.savefig(buf, format='png')
        buf.seek(0)
        image = Image.open(buf).convert("RGB")
        plt.close(fig)
        return image

def _process_and_plot_single_experiment(
    time_exp, biomass, substrate, product,
    biomass_sd, substrate_sd, product_sd,
    biomass_sem, substrate_sem, product_sem,
    experiment_name, model_type_str, maxfev_val,
    legend_position, params_position, show_legend, show_params,
    style, line_color, point_color, line_style, marker_style,
    use_differential, plot_mode, bounds_biomass,
    time_unit, biomass_unit, substrate_unit, product_unit,
    error_bar_type, error_bar_capsize):

    model = BioprocessModel(model_type=model_type_str, maxfev=maxfev_val)
    model.fit_model()
    y_pred_biomass = model.fit_biomass(time_exp, biomass, bounds=bounds_biomass)
    
    current_comparison_data = {
        'Experimento': experiment_name,
        'Modelo': model_type_str.capitalize(),
        'R² Biomasa': np.nan, 'RMSE Biomasa': np.nan,
        'R² Sustrato': np.nan, 'RMSE Sustrato': np.nan,
        'R² Producto': np.nan, 'RMSE Producto': np.nan
    }
    y_pred_substrate, y_pred_product = None, None

    if y_pred_biomass is not None and 'biomass' in model.params and model.params['biomass']:
        current_comparison_data.update({
            'R² Biomasa': model.r2.get('biomass', np.nan),
            'RMSE Biomasa': model.rmse.get('biomass', np.nan)
        })
        if substrate is not None and len(substrate) > 0 and np.any(np.isfinite(substrate)): # Check for finite values
            y_pred_substrate = model.fit_substrate(time_exp, substrate)
            if y_pred_substrate is not None:
                 current_comparison_data.update({
                    'R² Sustrato': model.r2.get('substrate', np.nan),
                    'RMSE Sustrato': model.rmse.get('substrate', np.nan)
                })
        if product is not None and len(product) > 0 and np.any(np.isfinite(product)): # Check for finite values
            y_pred_product = model.fit_product(time_exp, product)
            if y_pred_product is not None:
                current_comparison_data.update({
                    'R² Producto': model.r2.get('product', np.nan),
                    'RMSE Producto': model.rmse.get('product', np.nan)
                })
    else: 
        print(f"No se pudo ajustar biomasa para {experiment_name} con {model_type_str}.")

    error_values_to_plot = {
        'biomass': biomass_sd if error_bar_type == 'sd' else biomass_sem,
        'substrate': substrate_sd if error_bar_type == 'sd' else substrate_sem,
        'product': product_sd if error_bar_type == 'sd' else product_sem,
    }
    if plot_mode == 'independent': # No error bars from replicates in independent mode
        error_values_to_plot = {'biomass': None, 'substrate': None, 'product': None}

    fig = None
    plot_args_tuple = (time_exp, biomass, substrate, product,
                       y_pred_biomass, y_pred_substrate, y_pred_product,
                       error_values_to_plot['biomass'], error_values_to_plot['substrate'], error_values_to_plot['product'],
                       experiment_name, legend_position, params_position,
                       show_legend, show_params, style,
                       line_color, point_color, line_style, marker_style,
                       use_differential,
                       time_unit, biomass_unit, substrate_unit, product_unit,
                       error_bar_capsize)

    if plot_mode == 'combinado':
        fig = model.plot_combined_results(*plot_args_tuple)
    else:
        fig = model.plot_results(*plot_args_tuple)
    
    return fig, current_comparison_data

def process_all_data(file, legend_position, params_position, model_types_selected, analysis_mode, experiment_names,
                     lower_bounds_biomass_str, upper_bounds_biomass_str,
                     style_plot, line_color_plot, point_color_plot, line_style_plot, marker_style_plot,
                     show_legend_plot, show_params_plot, use_differential_eqs, maxfev_val,
                     time_unit_str, biomass_unit_str, substrate_unit_str, product_unit_str,
                     error_bar_type_selected, error_bar_capsize_selected):
    if file is None:
        return [], pd.DataFrame(), "Por favor, sube un archivo Excel."

    try:
        xls = pd.ExcelFile(file.name)
    except Exception as e:
        return [], pd.DataFrame(), f"Error al leer el archivo Excel: {e}"

    sheet_names = xls.sheet_names
    figures_list = []
    comparison_data_list = []
    experiment_counter = 0 

    parsed_bounds_biomass = ([-np.inf]*3, [np.inf]*3) 
    try:
        if lower_bounds_biomass_str.strip():
            lb = [float(x.strip()) for x in lower_bounds_biomass_str.split(',')]
            if len(lb) == 3 : parsed_bounds_biomass = (lb, parsed_bounds_biomass[1])
        if upper_bounds_biomass_str.strip():
            ub = [float(x.strip()) for x in upper_bounds_biomass_str.split(',')]
            if len(ub) == 3 : parsed_bounds_biomass = (parsed_bounds_biomass[0], ub)
    except ValueError:
        print("Advertencia: Bounds para biomasa no son válidos.")

    for sheet_name in sheet_names:
        try:
            df = pd.read_excel(xls, sheet_name=sheet_name, header=[0, 1])
            for col_level0 in df.columns.levels[0]: # Asegurar que sean numéricas
                for col_level1 in [COL_TIME, COL_BIOMASS, COL_SUBSTRATE, COL_PRODUCT]:
                    if (col_level0, col_level1) in df.columns:
                        df[(col_level0, col_level1)] = pd.to_numeric(df[(col_level0, col_level1)], errors='coerce')
            # Eliminar filas que son completamente NaN en Tiempo y Biomasa (principales)
            df = df.dropna(how='all', subset=[(c[0], c[1]) for c in df.columns if c[1] in [COL_TIME, COL_BIOMASS]])
        except Exception as e:
            print(f"Error al leer la hoja '{sheet_name}': {e}")
            continue

        if analysis_mode == 'independent':
            unique_experiments_in_sheet = df.columns.levels[0]
            for exp_col_name in unique_experiments_in_sheet:
                try:
                    time_exp = df[(exp_col_name, COL_TIME)].dropna().values
                    if len(time_exp) == 0: continue # No hay datos de tiempo

                    biomass_exp = df[(exp_col_name, COL_BIOMASS)].values if (exp_col_name, COL_BIOMASS) in df else np.full(len(time_exp), np.nan)
                    substrate_exp = df[(exp_col_name, COL_SUBSTRATE)].values if (exp_col_name, COL_SUBSTRATE) in df else np.full(len(time_exp), np.nan)
                    product_exp = df[(exp_col_name, COL_PRODUCT)].values if (exp_col_name, COL_PRODUCT) in df else np.full(len(time_exp), np.nan)
                    
                    def _align_data(data_array, target_len):
                        if len(data_array) == target_len: return data_array
                        if len(data_array) > target_len: return data_array[:target_len]
                        return np.pad(data_array, (0, target_len - len(data_array)), 'constant', constant_values=np.nan)

                    biomass_exp = _align_data(biomass_exp, len(time_exp))
                    substrate_exp = _align_data(substrate_exp, len(time_exp))
                    product_exp = _align_data(product_exp, len(time_exp))

                    current_exp_name_label = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
                                           else f"{sheet_name} - {exp_col_name}")

                    for model_t in model_types_selected:
                        fig, comp_data = _process_and_plot_single_experiment(
                            time_exp, biomass_exp, substrate_exp, product_exp,
                            None, None, None, # SDs
                            None, None, None, # SEMs
                            current_exp_name_label, model_t, int(maxfev_val),
                            legend_position, params_position, show_legend_plot, show_params_plot,
                            style_plot, line_color_plot, point_color_plot, line_style_plot, marker_style_plot,
                            use_differential_eqs, analysis_mode, parsed_bounds_biomass,
                            time_unit_str, biomass_unit_str, substrate_unit_str, product_unit_str,
                            error_bar_type_selected, int(error_bar_capsize_selected)
                        )
                        if fig: figures_list.append(fig)
                        comparison_data_list.append(comp_data)
                    experiment_counter += 1
                except KeyError as e:
                    print(f"Advertencia: Falta columna {e} para '{exp_col_name}' en '{sheet_name}'.")
                except Exception as e_exp:
                    print(f"Error procesando '{exp_col_name}' en '{sheet_name}': {e_exp}")

        elif analysis_mode in ['average', 'combinado']:
            model_data_loader = BioprocessModel()
            try:
                model_data_loader.process_data(df)
            except ValueError as ve:
                 print(f"Error en hoja '{sheet_name}': {ve}. Saltando.")
                 continue

            if len(model_data_loader.time) == 0:
                print(f"No hay datos de tiempo válidos en '{sheet_name}'. Saltando.")
                continue

            time_avg = model_data_loader.time
            biomass_avg = model_data_loader.dataxp[-1] if model_data_loader.dataxp else np.array([])
            substrate_avg = model_data_loader.datasp[-1] if model_data_loader.datasp else np.array([])
            product_avg = model_data_loader.datapp[-1] if model_data_loader.datapp else np.array([])

            biomass_std_avg = model_data_loader.datax_std[-1] if model_data_loader.datax_std and len(model_data_loader.datax_std[-1]) == len(time_avg) else None
            substrate_std_avg = model_data_loader.datas_std[-1] if model_data_loader.datas_std and len(model_data_loader.datas_std[-1]) == len(time_avg) else None
            product_std_avg = model_data_loader.datap_std[-1] if model_data_loader.datap_std and len(model_data_loader.datap_std[-1]) == len(time_avg) else None

            biomass_sem_avg = model_data_loader.datax_sem[-1] if model_data_loader.datax_sem and len(model_data_loader.datax_sem[-1]) == len(time_avg) else None
            substrate_sem_avg = model_data_loader.datas_sem[-1] if model_data_loader.datas_sem and len(model_data_loader.datas_sem[-1]) == len(time_avg) else None
            product_sem_avg = model_data_loader.datap_sem[-1] if model_data_loader.datap_sem and len(model_data_loader.datap_sem[-1]) == len(time_avg) else None
            
            current_exp_name_label = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
                                   else f"{sheet_name} (Promedio)")

            for model_t in model_types_selected:
                fig, comp_data = _process_and_plot_single_experiment(
                    time_avg, biomass_avg, substrate_avg, product_avg,
                    biomass_std_avg, substrate_std_avg, product_std_avg,
                    biomass_sem_avg, substrate_sem_avg, product_sem_avg,
                    current_exp_name_label, model_t, int(maxfev_val),
                    legend_position, params_position, show_legend_plot, show_params_plot,
                    style_plot, line_color_plot, point_color_plot, line_style_plot, marker_style_plot,
                    use_differential_eqs, analysis_mode, parsed_bounds_biomass,
                    time_unit_str, biomass_unit_str, substrate_unit_str, product_unit_str,
                    error_bar_type_selected, int(error_bar_capsize_selected)
                )
                if fig: figures_list.append(fig)
                comparison_data_list.append(comp_data)
            experiment_counter += 1

    comparison_df = pd.DataFrame(comparison_data_list)
    if not comparison_df.empty:
        comparison_df_sorted = comparison_df.sort_values(
            by=['R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
            ascending=[False, False, False, True, True, True]
        ).reset_index(drop=True)
    else:
        comparison_df_sorted = pd.DataFrame(columns=[
            'Experimento', 'Modelo', 'R² Biomasa', 'RMSE Biomasa',
            'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto'
        ])
    return figures_list, comparison_df_sorted, "Proceso completado."

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Modelos de Bioproceso: Logístico, Gompertz, Moser y Luedeking-Piret")
        gr.Markdown(r"""
        ## Ecuaciones Diferenciales Utilizadas

        **Biomasa:**

        - Logístico:
        $$
        \frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right)
        $$

        - Gompertz:
        $$
        X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right)
        $$
        Ecuación diferencial:
        $$
        \frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)
        $$

        - Moser (simplificado):
        $$
        X(t)=X_m(1-e^{-\mu_m(t-K_s)})
        $$
        $$
        \frac{dX}{dt}=\mu_m(X_m - X)
        $$

        **Sustrato y Producto (Luedeking-Piret):**
        $$
        \frac{dS}{dt} = -p \frac{dX}{dt} - q X
        $$
        $$
        \frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X
        $$
        """)

        with gr.Tabs():
            with gr.TabItem("Configuración Principal"):
                file_input = gr.File(label="Subir archivo Excel (.xlsx)")
                experiment_names = gr.Textbox(
                    label="Nombres de los experimentos (uno por línea, opcional)",
                    placeholder="Tratamiento A\nTratamiento B\n...\nSi se deja vacío, se usarán nombres de hoja/columna.",
                    lines=3
                )
                model_types = gr.CheckboxGroup(
                    choices=["logistic", "gompertz", "moser"],
                    label="Tipo(s) de Modelo de Biomasa",
                    value=["logistic"]
                )
                analysis_mode = gr.Radio(
                    choices=[
                        ("Procesar cada réplica/columna independientemente", "independent"),
                        ("Promediar réplicas por hoja (gráficos separados)", "average"),
                        ("Promediar réplicas por hoja (gráfico combinado)", "combinado")
                    ],
                    label="Modo de Análisis de Datos del Excel", value="independent"
                )
                use_differential = gr.Checkbox(label="Usar EDOs para predecir y graficar curvas", value=False)
                maxfev_input = gr.Number(label="maxfev (Máx. iteraciones para ajuste)", value=50000, precision=0)

                with gr.Accordion("Bounds para Parámetros de Biomasa (opcional)", open=False):
                    gr.Markdown("Especificar bounds como `valor1,valor2,valor3`. Parámetros: (X0, Xm, um) Logístico, (Xm, um, lag) Gompertz, (Xm, um, Ks) Moser.")
                    lower_bounds_biomass = gr.Textbox(label="Lower Bounds Biomasa (ej: 0.01,1,0.01)")
                    upper_bounds_biomass = gr.Textbox(label="Upper Bounds Biomasa (ej: 1,10,1)")

            with gr.TabItem("Personalización de Gráficos"):
                with gr.Row():
                    show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
                    legend_position = gr.Dropdown(
                        choices=["best", "upper left", "upper right", "lower left", "lower right", "center left", "center right", "lower center", "upper center", "center"],
                        label="Posición Leyenda", value="best"
                    )
                with gr.Row():
                    show_params = gr.Checkbox(label="Mostrar Parámetros/Estadísticas", value=True)
                    params_position = gr.Dropdown(
                        choices=["upper left", "upper right", "lower left", "lower right", "outside right"],
                        label="Posición Parámetros", value="upper right"
                    )
                with gr.Row():
                    error_bar_type_radio = gr.Radio(
                        choices=[("Desviación Estándar (SD)", "sd"), ("Error Estándar de la Media (SEM)", "sem")],
                        label="Tipo de Barra de Error (para modos Promedio/Combinado)", value="sd"
                    )
                    error_bar_capsize_slider = gr.Slider(minimum=0, maximum=10, value=3, step=1, 
                                                         label="Tamaño 'Cap' Barras de Error (0 para quitar)")
                with gr.Row():
                    style_dropdown = gr.Dropdown(choices=['whitegrid', 'darkgrid', 'white', 'dark', 'ticks'], label="Estilo Seaborn", value='whitegrid')
                    line_style_dropdown = gr.Dropdown(choices=['-', '--', '-.', ':'], label="Estilo Línea Modelo", value='-')
                    marker_style_dropdown = gr.Dropdown(choices=['o', 's', '^', 'v', 'D', 'x', '+', '*'], label="Estilo Punto Datos", value='o')
                with gr.Row():
                    line_color_picker = gr.ColorPicker(label="Color Línea Modelo", value='#0000FF')
                    point_color_picker = gr.ColorPicker(label="Color Puntos Datos", value='#000000')
                
                gr.Markdown("### Unidades para los Ejes (opcional)")
                with gr.Row():
                    time_unit_input = gr.Textbox(label="Unidad de Tiempo", placeholder="ej: h")
                    biomass_unit_input = gr.Textbox(label="Unidad de Biomasa", placeholder="ej: g/L")
                with gr.Row():
                    substrate_unit_input = gr.Textbox(label="Unidad de Sustrato", placeholder="ej: g/L")
                    product_unit_input = gr.Textbox(label="Unidad de Producto", placeholder="ej: g/L")

        simulate_btn = gr.Button("Generar Modelos y Gráficos", variant="primary")
        status_message = gr.Textbox(label="Estado", interactive=False)
        
        # CORRECCIÓN AQUÍ: columns=[1,2] cambiado a columns=(1,2)
        output_gallery = gr.Gallery(label="Resultados Gráficos", columns=(1,2), height='auto', object_fit="contain")
        
        output_table = gr.Dataframe(
            label="Tabla Comparativa de Modelos",
            headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa",
                     "R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
            interactive=False, wrap=True
        )
        state_df_for_export = gr.State()

        def run_simulation_wrapper(
            file, exp_names_str, models_sel, mode_sel, use_diff_eq, maxfev,
            lb_biomass_str, ub_biomass_str, 
            show_leg, leg_pos, show_par, par_pos, 
            err_bar_type, err_bar_caps,
            style_sel, lstyle_sel, mstyle_sel, lcolor, pcolor, 
            t_unit, b_unit, s_unit, p_unit):

            exp_names_list = [name.strip() for name in exp_names_str.strip().split('\n') if name.strip()]
            figures, comparison_df, message = process_all_data(
                file, leg_pos, par_pos, models_sel, mode_sel, exp_names_list,
                lb_biomass_str, ub_biomass_str, 
                style_sel, lcolor, pcolor, lstyle_sel, mstyle_sel,
                show_leg, show_par, use_diff_eq, maxfev,
                t_unit, b_unit, s_unit, p_unit,
                err_bar_type, err_bar_caps
            )
            return figures, comparison_df, comparison_df, message

        simulate_btn.click(
            fn=run_simulation_wrapper,
            inputs=[
                file_input, experiment_names, model_types, analysis_mode, use_differential, maxfev_input,
                lower_bounds_biomass, upper_bounds_biomass, 
                show_legend, legend_position, show_params, params_position, 
                error_bar_type_radio, error_bar_capsize_slider,
                style_dropdown, line_style_dropdown, marker_style_dropdown, line_color_picker, point_color_picker, 
                time_unit_input, biomass_unit_input, substrate_unit_input, product_unit_input
            ],
            outputs=[output_gallery, output_table, state_df_for_export, status_message]
        )

        def export_excel(df_to_export):
            if df_to_export is None or df_to_export.empty:
                with tempfile.NamedTemporaryFile(prefix="no_data_", suffix=".xlsx", delete=False) as tmp:
                    pd.DataFrame({"Mensaje": ["No hay datos para exportar."]}).to_excel(tmp.name, index=False)
                    return tmp.name
            with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
                df_to_export.to_excel(tmp.name, index=False)
                return tmp.name
        export_btn = gr.Button("Exportar Tabla a Excel")
        file_output_excel = gr.File(label="Descargar Tabla Excel")
        export_btn.click(fn=export_excel, inputs=state_df_for_export, outputs=file_output_excel)

    return demo

if __name__ == '__main__':
    app_interface = create_interface()
    app_interface.launch(share=True, debug=True)