Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
#import os
|
2 |
#!pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0 -q
|
3 |
-
|
4 |
from pydantic import BaseModel, ConfigDict
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
@@ -80,28 +79,23 @@ class BioprocessModel:
|
|
80 |
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
|
81 |
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
|
82 |
product_cols = [col for col in df.columns if col[1] == 'Producto']
|
83 |
-
|
84 |
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
|
85 |
time = df[time_col].values
|
86 |
-
|
87 |
data_biomass = [df[col].values for col in biomass_cols]
|
88 |
data_biomass = np.array(data_biomass)
|
89 |
self.datax.append(data_biomass)
|
90 |
self.dataxp.append(np.mean(data_biomass, axis=0))
|
91 |
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
92 |
-
|
93 |
data_substrate = [df[col].values for col in substrate_cols]
|
94 |
data_substrate = np.array(data_substrate)
|
95 |
self.datas.append(data_substrate)
|
96 |
self.datasp.append(np.mean(data_substrate, axis=0))
|
97 |
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
98 |
-
|
99 |
data_product = [df[col].values for col in product_cols]
|
100 |
data_product = np.array(data_product)
|
101 |
self.datap.append(data_product)
|
102 |
self.datapp.append(np.mean(data_product, axis=0))
|
103 |
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
|
104 |
-
|
105 |
self.time = time
|
106 |
|
107 |
def fit_model(self):
|
@@ -132,7 +126,6 @@ class BioprocessModel:
|
|
132 |
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev)
|
133 |
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]}
|
134 |
y_pred = self.moser(time, *popt)
|
135 |
-
|
136 |
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
|
137 |
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
|
138 |
return y_pred
|
@@ -212,7 +205,6 @@ class BioprocessModel:
|
|
212 |
|
213 |
def system(self, y, t, biomass_params, substrate_params, product_params, model_type):
|
214 |
X, S, P = y
|
215 |
-
|
216 |
if model_type == 'logistic':
|
217 |
dXdt = self.logistic_diff(X, t, biomass_params)
|
218 |
elif model_type == 'gompertz':
|
@@ -221,10 +213,8 @@ class BioprocessModel:
|
|
221 |
dXdt = self.moser_diff(X, t, biomass_params)
|
222 |
else:
|
223 |
dXdt = 0.0
|
224 |
-
|
225 |
so, p, q = substrate_params
|
226 |
po, alpha, beta = product_params
|
227 |
-
|
228 |
dSdt = -p * dXdt - q * X
|
229 |
dPdt = alpha * dXdt + beta * X
|
230 |
return [dXdt, dSdt, dPdt]
|
@@ -246,26 +236,22 @@ class BioprocessModel:
|
|
246 |
X0 = Xm*(1 - np.exp(-um*(0 - Ks)))
|
247 |
else:
|
248 |
X0 = biomass[0]
|
249 |
-
|
250 |
if 'substrate' in self.params:
|
251 |
so = self.params['substrate']['so']
|
252 |
S0 = so
|
253 |
else:
|
254 |
S0 = substrate[0]
|
255 |
-
|
256 |
if 'product' in self.params:
|
257 |
po = self.params['product']['po']
|
258 |
P0 = po
|
259 |
else:
|
260 |
P0 = product[0]
|
261 |
-
|
262 |
return [X0, S0, P0]
|
263 |
|
264 |
def solve_differential_equations(self, time, biomass, substrate, product):
|
265 |
if 'biomass' not in self.params or not self.params['biomass']:
|
266 |
print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
|
267 |
return None, None, None, time
|
268 |
-
|
269 |
if self.model_type == 'logistic':
|
270 |
biomass_params = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']]
|
271 |
elif self.model_type == 'gompertz':
|
@@ -274,26 +260,21 @@ class BioprocessModel:
|
|
274 |
biomass_params = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
|
275 |
else:
|
276 |
biomass_params = [0,0,0]
|
277 |
-
|
278 |
if 'substrate' in self.params:
|
279 |
substrate_params = [self.params['substrate']['so'], self.params['substrate']['p'], self.params['substrate']['q']]
|
280 |
else:
|
281 |
substrate_params = [0,0,0]
|
282 |
-
|
283 |
if 'product' in self.params:
|
284 |
product_params = [self.params['product']['po'], self.params['product']['alpha'], self.params['product']['beta']]
|
285 |
else:
|
286 |
product_params = [0,0,0]
|
287 |
-
|
288 |
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
|
289 |
time_fine = self.generate_fine_time_grid(time)
|
290 |
sol = odeint(self.system, initial_conditions, time_fine,
|
291 |
args=(biomass_params, substrate_params, product_params, self.model_type))
|
292 |
-
|
293 |
X = sol[:, 0]
|
294 |
S = sol[:, 1]
|
295 |
P = sol[:, 2]
|
296 |
-
|
297 |
return X, S, P, time_fine
|
298 |
|
299 |
def plot_results(self, time, biomass, substrate, product,
|
@@ -303,15 +284,11 @@ class BioprocessModel:
|
|
303 |
show_legend=True, show_params=True,
|
304 |
style='whitegrid',
|
305 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
306 |
-
use_differential=False
|
307 |
-
x_label='Tiempo', y_label_biomass='Biomasa', y_label_substrate='Sustrato', y_label_product='Producto'):
|
308 |
-
|
309 |
if y_pred_biomass is None:
|
310 |
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
311 |
return None
|
312 |
-
|
313 |
sns.set_style(style)
|
314 |
-
|
315 |
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
316 |
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
317 |
if X is not None:
|
@@ -320,36 +297,30 @@ class BioprocessModel:
|
|
320 |
time_to_plot = time
|
321 |
else:
|
322 |
time_to_plot = time
|
323 |
-
|
324 |
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
|
325 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
326 |
-
|
327 |
plots = [
|
328 |
-
(ax1, biomass, y_pred_biomass, biomass_std,
|
329 |
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
|
330 |
-
(ax2, substrate, y_pred_substrate, substrate_std,
|
331 |
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
|
332 |
-
(ax3, product, y_pred_product, product_std,
|
333 |
self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
|
334 |
]
|
335 |
-
|
336 |
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
|
337 |
if data_std is not None:
|
338 |
ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color,
|
339 |
-
label='
|
340 |
else:
|
341 |
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
|
342 |
-
label='
|
343 |
-
|
344 |
if y_pred is not None:
|
345 |
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
|
346 |
-
|
347 |
-
ax.set_xlabel(x_label)
|
348 |
ax.set_ylabel(ylabel)
|
349 |
if show_legend:
|
350 |
ax.legend(loc=legend_position)
|
351 |
ax.set_title(f'{ylabel}')
|
352 |
-
|
353 |
if show_params and params and all(np.isfinite(list(map(float, params.values())))):
|
354 |
param_text = '\n'.join([f"{k} = {v:.3f}" for k, v in params.items()])
|
355 |
text = f"{param_text}\nR² = {r2:.3f}\nRMSE = {rmse:.3f}"
|
@@ -364,26 +335,21 @@ class BioprocessModel:
|
|
364 |
else:
|
365 |
text_x = 0.05
|
366 |
ha = 'left'
|
367 |
-
|
368 |
if params_position in ['upper right', 'upper left']:
|
369 |
text_y = 0.95
|
370 |
va = 'top'
|
371 |
else:
|
372 |
text_y = 0.05
|
373 |
va = 'bottom'
|
374 |
-
|
375 |
ax.text(text_x, text_y, text, transform=ax.transAxes,
|
376 |
verticalalignment=va, horizontalalignment=ha,
|
377 |
bbox={'boxstyle': 'round', 'facecolor':'white', 'alpha':0.5})
|
378 |
-
|
379 |
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
380 |
-
|
381 |
buf = io.BytesIO()
|
382 |
fig.savefig(buf, format='png')
|
383 |
buf.seek(0)
|
384 |
image = Image.open(buf).convert("RGB")
|
385 |
plt.close(fig)
|
386 |
-
|
387 |
return image
|
388 |
|
389 |
def plot_combined_results(self, time, biomass, substrate, product,
|
@@ -393,15 +359,11 @@ class BioprocessModel:
|
|
393 |
show_legend=True, show_params=True,
|
394 |
style='whitegrid',
|
395 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
396 |
-
use_differential=False
|
397 |
-
x_label='Tiempo', y_label_biomass='Biomasa', y_label_substrate='Sustrato', y_label_product='Producto'):
|
398 |
-
|
399 |
if y_pred_biomass is None:
|
400 |
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
401 |
return None
|
402 |
-
|
403 |
sns.set_style(style)
|
404 |
-
|
405 |
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
406 |
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
407 |
if X is not None:
|
@@ -410,79 +372,67 @@ class BioprocessModel:
|
|
410 |
time_to_plot = time
|
411 |
else:
|
412 |
time_to_plot = time
|
413 |
-
|
414 |
fig, ax1 = plt.subplots(figsize=(10, 7))
|
415 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
ax1.set_xlabel(x_label)
|
420 |
-
ax1.set_ylabel(y_label_biomass, color=colors['Biomasa'])
|
421 |
if biomass_std is not None:
|
422 |
-
ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['
|
423 |
-
label='
|
424 |
else:
|
425 |
-
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['
|
426 |
-
label='
|
427 |
-
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['
|
428 |
-
label='
|
429 |
-
ax1.tick_params(axis='y', labelcolor=colors['
|
430 |
-
|
431 |
ax2 = ax1.twinx()
|
432 |
-
ax2.set_ylabel(
|
433 |
if substrate_std is not None:
|
434 |
-
ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['
|
435 |
-
label='
|
436 |
else:
|
437 |
-
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['
|
438 |
-
label='
|
439 |
if y_pred_substrate is not None:
|
440 |
-
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['
|
441 |
-
label='
|
442 |
-
ax2.tick_params(axis='y', labelcolor=colors['
|
443 |
-
|
444 |
ax3 = ax1.twinx()
|
445 |
ax3.spines["right"].set_position(("axes", 1.2))
|
446 |
ax3.set_frame_on(True)
|
447 |
ax3.patch.set_visible(False)
|
448 |
for sp in ax3.spines.values():
|
449 |
sp.set_visible(True)
|
450 |
-
|
451 |
-
ax3.set_ylabel(y_label_product, color=colors['Producto'])
|
452 |
if product_std is not None:
|
453 |
-
ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['
|
454 |
-
label='
|
455 |
else:
|
456 |
-
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['
|
457 |
-
label='
|
458 |
if y_pred_product is not None:
|
459 |
-
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['
|
460 |
-
label='
|
461 |
-
ax3.tick_params(axis='y', labelcolor=colors['
|
462 |
-
|
463 |
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
|
464 |
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
465 |
if show_legend:
|
466 |
ax1.legend(lines, labels, loc=legend_position)
|
467 |
-
|
468 |
if show_params:
|
469 |
param_text_biomass = ''
|
470 |
if 'biomass' in self.params:
|
471 |
param_text_biomass = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['biomass'].items()])
|
472 |
-
text_biomass = f"
|
473 |
-
|
474 |
param_text_substrate = ''
|
475 |
if 'substrate' in self.params:
|
476 |
param_text_substrate = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['substrate'].items()])
|
477 |
-
text_substrate = f"
|
478 |
-
|
479 |
param_text_product = ''
|
480 |
if 'product' in self.params:
|
481 |
param_text_product = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['product'].items()])
|
482 |
-
text_product = f"
|
483 |
-
|
484 |
-
total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"
|
485 |
-
|
486 |
if params_position == 'outside right':
|
487 |
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
|
488 |
ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction',
|
@@ -494,55 +444,44 @@ class BioprocessModel:
|
|
494 |
else:
|
495 |
text_x = 0.05
|
496 |
ha = 'left'
|
497 |
-
|
498 |
if params_position in ['upper right', 'upper left']:
|
499 |
text_y = 0.95
|
500 |
va = 'top'
|
501 |
else:
|
502 |
text_y = 0.05
|
503 |
va = 'bottom'
|
504 |
-
|
505 |
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
|
506 |
verticalalignment=va, horizontalalignment=ha,
|
507 |
bbox={'boxstyle':'round', 'facecolor':'white', 'alpha':0.5})
|
508 |
-
|
509 |
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
510 |
-
|
511 |
buf = io.BytesIO()
|
512 |
fig.savefig(buf, format='png')
|
513 |
buf.seek(0)
|
514 |
image = Image.open(buf).convert("RGB")
|
515 |
plt.close(fig)
|
516 |
-
|
517 |
return image
|
518 |
|
519 |
def process_all_data(file, legend_position, params_position, model_types, experiment_names, lower_bounds, upper_bounds,
|
520 |
mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
|
521 |
-
line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False, maxfev_val=50000
|
522 |
-
x_label='Tiempo', y_label_biomass='Biomasa', y_label_substrate='Sustrato', y_label_product='Producto'):
|
523 |
-
|
524 |
try:
|
525 |
xls = pd.ExcelFile(file.name)
|
526 |
except Exception as e:
|
527 |
print(f"Error al leer el archivo Excel: {e}")
|
528 |
return [], pd.DataFrame()
|
529 |
-
|
530 |
sheet_names = xls.sheet_names
|
531 |
figures = []
|
532 |
comparison_data = []
|
533 |
experiment_counter = 0
|
534 |
-
|
535 |
for sheet_name in sheet_names:
|
536 |
try:
|
537 |
df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])
|
538 |
except Exception as e:
|
539 |
print(f"Error al leer la hoja '{sheet_name}': {e}")
|
540 |
continue
|
541 |
-
|
542 |
model_dummy = BioprocessModel()
|
543 |
model_dummy.process_data(df)
|
544 |
time = model_dummy.time
|
545 |
-
|
546 |
if mode == 'independent':
|
547 |
num_experiments = len(df.columns.levels[0])
|
548 |
for idx in range(num_experiments):
|
@@ -555,7 +494,6 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
555 |
except KeyError as e:
|
556 |
print(f"Error al procesar el experimento '{col}': {e}")
|
557 |
continue
|
558 |
-
|
559 |
biomass_std = None
|
560 |
substrate_std = None
|
561 |
product_std = None
|
@@ -568,14 +506,11 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
568 |
if product.ndim > 1:
|
569 |
product_std = np.std(product, axis=0, ddof=1)
|
570 |
product = np.mean(product, axis=0)
|
571 |
-
|
572 |
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
573 |
else f"Tratamiento {experiment_counter + 1}")
|
574 |
-
|
575 |
for model_type in model_types:
|
576 |
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
577 |
model.fit_model()
|
578 |
-
|
579 |
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
580 |
if y_pred_biomass is None:
|
581 |
comparison_data.append({
|
@@ -596,7 +531,6 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
596 |
else:
|
597 |
y_pred_substrate = None
|
598 |
y_pred_product = None
|
599 |
-
|
600 |
comparison_data.append({
|
601 |
'Experimento': experiment_name,
|
602 |
'Modelo': model_type.capitalize(),
|
@@ -607,7 +541,6 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
607 |
'R² Producto': model.r2.get('product', np.nan),
|
608 |
'RMSE Producto': model.rmse.get('product', np.nan)
|
609 |
})
|
610 |
-
|
611 |
if mode == 'combinado':
|
612 |
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
613 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
@@ -617,8 +550,7 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
617 |
show_legend, show_params,
|
618 |
style,
|
619 |
line_color, point_color, line_style, marker_style,
|
620 |
-
use_differential
|
621 |
-
x_label, y_label_biomass, y_label_substrate, y_label_product)
|
622 |
else:
|
623 |
fig = model.plot_results(time_exp, biomass, substrate, product,
|
624 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
@@ -628,13 +560,10 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
628 |
show_legend, show_params,
|
629 |
style,
|
630 |
line_color, point_color, line_style, marker_style,
|
631 |
-
use_differential
|
632 |
-
x_label, y_label_biomass, y_label_substrate, y_label_product)
|
633 |
if fig is not None:
|
634 |
figures.append(fig)
|
635 |
-
|
636 |
experiment_counter += 1
|
637 |
-
|
638 |
elif mode in ['average', 'combinado']:
|
639 |
try:
|
640 |
time_exp = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
|
@@ -644,18 +573,14 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
644 |
except IndexError as e:
|
645 |
print(f"Error al obtener los datos promedio de la hoja '{sheet_name}': {e}")
|
646 |
continue
|
647 |
-
|
648 |
biomass_std = model_dummy.datax_std[-1]
|
649 |
substrate_std = model_dummy.datas_std[-1]
|
650 |
product_std = model_dummy.datap_std[-1]
|
651 |
-
|
652 |
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
653 |
else f"Tratamiento {experiment_counter + 1}")
|
654 |
-
|
655 |
for model_type in model_types:
|
656 |
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
657 |
model.fit_model()
|
658 |
-
|
659 |
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
660 |
if y_pred_biomass is None:
|
661 |
comparison_data.append({
|
@@ -676,7 +601,6 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
676 |
else:
|
677 |
y_pred_substrate = None
|
678 |
y_pred_product = None
|
679 |
-
|
680 |
comparison_data.append({
|
681 |
'Experimento': experiment_name,
|
682 |
'Modelo': model_type.capitalize(),
|
@@ -687,7 +611,6 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
687 |
'R² Producto': model.r2.get('product', np.nan),
|
688 |
'RMSE Producto': model.rmse.get('product', np.nan)
|
689 |
})
|
690 |
-
|
691 |
if mode == 'combinado':
|
692 |
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
693 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
@@ -697,8 +620,7 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
697 |
show_legend, show_params,
|
698 |
style,
|
699 |
line_color, point_color, line_style, marker_style,
|
700 |
-
use_differential
|
701 |
-
x_label, y_label_biomass, y_label_substrate, y_label_product)
|
702 |
else:
|
703 |
fig = model.plot_results(time_exp, biomass, substrate, product,
|
704 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
@@ -708,15 +630,11 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
708 |
show_legend, show_params,
|
709 |
style,
|
710 |
line_color, point_color, line_style, marker_style,
|
711 |
-
use_differential
|
712 |
-
x_label, y_label_biomass, y_label_substrate, y_label_product)
|
713 |
if fig is not None:
|
714 |
figures.append(fig)
|
715 |
-
|
716 |
experiment_counter += 1
|
717 |
-
|
718 |
comparison_df = pd.DataFrame(comparison_data)
|
719 |
-
|
720 |
if not comparison_df.empty:
|
721 |
comparison_df_sorted = comparison_df.sort_values(
|
722 |
by=['R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
|
@@ -724,54 +642,42 @@ def process_all_data(file, legend_position, params_position, model_types, experi
|
|
724 |
).reset_index(drop=True)
|
725 |
else:
|
726 |
comparison_df_sorted = comparison_df
|
727 |
-
|
728 |
return figures, comparison_df_sorted
|
729 |
|
730 |
def create_interface():
|
731 |
with gr.Blocks() as demo:
|
732 |
gr.Markdown("# Modelos de Bioproceso: Logístico, Gompertz, Moser y Luedeking-Piret")
|
733 |
-
|
734 |
gr.Markdown(r"""
|
735 |
## Ecuaciones Diferenciales Utilizadas
|
736 |
-
|
737 |
**Biomasa:**
|
738 |
-
|
739 |
- Logístico:
|
740 |
$$
|
741 |
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right)
|
742 |
$$
|
743 |
-
|
744 |
- Gompertz:
|
745 |
$$
|
746 |
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right)
|
747 |
$$
|
748 |
-
|
749 |
Ecuación diferencial:
|
750 |
$$
|
751 |
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)
|
752 |
$$
|
753 |
-
|
754 |
- Moser (simplificado):
|
755 |
$$
|
756 |
X(t)=X_m(1-e^{-\mu_m(t-K_s)})
|
757 |
$$
|
758 |
-
|
759 |
$$
|
760 |
\frac{dX}{dt}=\mu_m(X_m - X)
|
761 |
$$
|
762 |
-
|
763 |
**Sustrato y Producto (Luedeking-Piret):**
|
764 |
$$
|
765 |
\frac{dS}{dt} = -p \frac{dX}{dt} - q X
|
766 |
$$
|
767 |
-
|
768 |
$$
|
769 |
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X
|
770 |
$$
|
771 |
""")
|
772 |
-
|
773 |
file_input = gr.File(label="Subir archivo Excel")
|
774 |
-
|
775 |
with gr.Row():
|
776 |
with gr.Column():
|
777 |
legend_position = gr.Radio(
|
@@ -780,7 +686,6 @@ $$
|
|
780 |
value="best"
|
781 |
)
|
782 |
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
|
783 |
-
|
784 |
with gr.Column():
|
785 |
params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"]
|
786 |
params_position = gr.Radio(
|
@@ -789,7 +694,6 @@ $$
|
|
789 |
value="upper right"
|
790 |
)
|
791 |
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
|
792 |
-
|
793 |
model_types = gr.CheckboxGroup(
|
794 |
choices=["logistic", "gompertz", "moser"],
|
795 |
label="Tipo(s) de Modelo",
|
@@ -797,19 +701,11 @@ $$
|
|
797 |
)
|
798 |
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
|
799 |
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
|
800 |
-
|
801 |
experiment_names = gr.Textbox(
|
802 |
label="Nombres de los experimentos (uno por línea)",
|
803 |
placeholder="Experimento 1\nExperimento 2\n...",
|
804 |
lines=5
|
805 |
)
|
806 |
-
|
807 |
-
with gr.Row():
|
808 |
-
x_label = gr.Textbox(label="Etiqueta del eje X", value="Tiempo")
|
809 |
-
y_label_biomass = gr.Textbox(label="Etiqueta del eje Y (Biomasa)", value="Biomasa")
|
810 |
-
y_label_substrate = gr.Textbox(label="Etiqueta del eje Y (Sustrato)", value="Sustrato")
|
811 |
-
y_label_product = gr.Textbox(label="Etiqueta del eje Y (Producto)", value="Producto")
|
812 |
-
|
813 |
with gr.Row():
|
814 |
with gr.Column():
|
815 |
lower_bounds = gr.Textbox(
|
@@ -817,30 +713,22 @@ $$
|
|
817 |
placeholder="0,0,0\n0,0,0\n...",
|
818 |
lines=5
|
819 |
)
|
820 |
-
|
821 |
with gr.Column():
|
822 |
upper_bounds = gr.Textbox(
|
823 |
label="Upper Bounds (uno por línea, formato: param1,param2,param3)",
|
824 |
placeholder="inf,inf,inf\ninf,inf,inf\n...",
|
825 |
lines=5
|
826 |
)
|
827 |
-
|
828 |
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
|
829 |
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
|
830 |
-
|
831 |
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
|
832 |
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
|
833 |
-
|
834 |
line_style_options = ['-', '--', '-.', ':']
|
835 |
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
|
836 |
-
|
837 |
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
|
838 |
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
|
839 |
-
|
840 |
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000)
|
841 |
-
|
842 |
simulate_btn = gr.Button("Simular")
|
843 |
-
|
844 |
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
|
845 |
output_table = gr.Dataframe(
|
846 |
label="Tabla Comparativa de Modelos",
|
@@ -848,15 +736,12 @@ $$
|
|
848 |
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
|
849 |
interactive=False
|
850 |
)
|
851 |
-
|
852 |
state_df = gr.State()
|
853 |
|
854 |
def process_and_plot(file, legend_position, params_position, model_types, mode, experiment_names,
|
855 |
lower_bounds, upper_bounds, style,
|
856 |
line_color, point_color, line_style, marker_style,
|
857 |
-
show_legend, show_params, use_differential, maxfev_input
|
858 |
-
x_label, y_label_biomass, y_label_substrate, y_label_product):
|
859 |
-
|
860 |
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
|
861 |
lower_bounds_list = []
|
862 |
if lower_bounds.strip():
|
@@ -886,13 +771,10 @@ $$
|
|
886 |
except ValueError:
|
887 |
ub_values.append(np.inf)
|
888 |
upper_bounds_list.append(tuple(ub_values))
|
889 |
-
|
890 |
figures, comparison_df = process_all_data(file, legend_position, params_position, model_types, experiment_names_list,
|
891 |
lower_bounds_list, upper_bounds_list, mode, style,
|
892 |
line_color, point_color, line_style, marker_style,
|
893 |
-
show_legend, show_params, use_differential, maxfev_val=int(maxfev_input)
|
894 |
-
x_label="Tiempo", y_label_biomass="Biomasa", y_label_substrate="Sustrato", y_label_product="Producto")
|
895 |
-
|
896 |
return figures, comparison_df, comparison_df
|
897 |
|
898 |
simulate_output = simulate_btn.click(
|
@@ -913,11 +795,7 @@ $$
|
|
913 |
show_legend,
|
914 |
show_params,
|
915 |
use_differential,
|
916 |
-
maxfev_input,
|
917 |
-
x_label,
|
918 |
-
y_label_biomass,
|
919 |
-
y_label_substrate,
|
920 |
-
y_label_product],
|
921 |
outputs=[output_gallery, output_table, state_df]
|
922 |
)
|
923 |
|
@@ -930,7 +808,6 @@ $$
|
|
930 |
|
931 |
export_btn = gr.Button("Exportar Tabla a Excel")
|
932 |
file_output = gr.File()
|
933 |
-
|
934 |
export_btn.click(
|
935 |
fn=export_excel,
|
936 |
inputs=state_df,
|
|
|
1 |
#import os
|
2 |
#!pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0 -q
|
|
|
3 |
from pydantic import BaseModel, ConfigDict
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
|
|
79 |
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
|
80 |
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
|
81 |
product_cols = [col for col in df.columns if col[1] == 'Producto']
|
|
|
82 |
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
|
83 |
time = df[time_col].values
|
|
|
84 |
data_biomass = [df[col].values for col in biomass_cols]
|
85 |
data_biomass = np.array(data_biomass)
|
86 |
self.datax.append(data_biomass)
|
87 |
self.dataxp.append(np.mean(data_biomass, axis=0))
|
88 |
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
|
|
89 |
data_substrate = [df[col].values for col in substrate_cols]
|
90 |
data_substrate = np.array(data_substrate)
|
91 |
self.datas.append(data_substrate)
|
92 |
self.datasp.append(np.mean(data_substrate, axis=0))
|
93 |
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
|
|
94 |
data_product = [df[col].values for col in product_cols]
|
95 |
data_product = np.array(data_product)
|
96 |
self.datap.append(data_product)
|
97 |
self.datapp.append(np.mean(data_product, axis=0))
|
98 |
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
|
|
|
99 |
self.time = time
|
100 |
|
101 |
def fit_model(self):
|
|
|
126 |
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev)
|
127 |
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]}
|
128 |
y_pred = self.moser(time, *popt)
|
|
|
129 |
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
|
130 |
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
|
131 |
return y_pred
|
|
|
205 |
|
206 |
def system(self, y, t, biomass_params, substrate_params, product_params, model_type):
|
207 |
X, S, P = y
|
|
|
208 |
if model_type == 'logistic':
|
209 |
dXdt = self.logistic_diff(X, t, biomass_params)
|
210 |
elif model_type == 'gompertz':
|
|
|
213 |
dXdt = self.moser_diff(X, t, biomass_params)
|
214 |
else:
|
215 |
dXdt = 0.0
|
|
|
216 |
so, p, q = substrate_params
|
217 |
po, alpha, beta = product_params
|
|
|
218 |
dSdt = -p * dXdt - q * X
|
219 |
dPdt = alpha * dXdt + beta * X
|
220 |
return [dXdt, dSdt, dPdt]
|
|
|
236 |
X0 = Xm*(1 - np.exp(-um*(0 - Ks)))
|
237 |
else:
|
238 |
X0 = biomass[0]
|
|
|
239 |
if 'substrate' in self.params:
|
240 |
so = self.params['substrate']['so']
|
241 |
S0 = so
|
242 |
else:
|
243 |
S0 = substrate[0]
|
|
|
244 |
if 'product' in self.params:
|
245 |
po = self.params['product']['po']
|
246 |
P0 = po
|
247 |
else:
|
248 |
P0 = product[0]
|
|
|
249 |
return [X0, S0, P0]
|
250 |
|
251 |
def solve_differential_equations(self, time, biomass, substrate, product):
|
252 |
if 'biomass' not in self.params or not self.params['biomass']:
|
253 |
print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
|
254 |
return None, None, None, time
|
|
|
255 |
if self.model_type == 'logistic':
|
256 |
biomass_params = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']]
|
257 |
elif self.model_type == 'gompertz':
|
|
|
260 |
biomass_params = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
|
261 |
else:
|
262 |
biomass_params = [0,0,0]
|
|
|
263 |
if 'substrate' in self.params:
|
264 |
substrate_params = [self.params['substrate']['so'], self.params['substrate']['p'], self.params['substrate']['q']]
|
265 |
else:
|
266 |
substrate_params = [0,0,0]
|
|
|
267 |
if 'product' in self.params:
|
268 |
product_params = [self.params['product']['po'], self.params['product']['alpha'], self.params['product']['beta']]
|
269 |
else:
|
270 |
product_params = [0,0,0]
|
|
|
271 |
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
|
272 |
time_fine = self.generate_fine_time_grid(time)
|
273 |
sol = odeint(self.system, initial_conditions, time_fine,
|
274 |
args=(biomass_params, substrate_params, product_params, self.model_type))
|
|
|
275 |
X = sol[:, 0]
|
276 |
S = sol[:, 1]
|
277 |
P = sol[:, 2]
|
|
|
278 |
return X, S, P, time_fine
|
279 |
|
280 |
def plot_results(self, time, biomass, substrate, product,
|
|
|
284 |
show_legend=True, show_params=True,
|
285 |
style='whitegrid',
|
286 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
287 |
+
use_differential=False):
|
|
|
|
|
288 |
if y_pred_biomass is None:
|
289 |
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
290 |
return None
|
|
|
291 |
sns.set_style(style)
|
|
|
292 |
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
293 |
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
294 |
if X is not None:
|
|
|
297 |
time_to_plot = time
|
298 |
else:
|
299 |
time_to_plot = time
|
|
|
300 |
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
|
301 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
|
|
302 |
plots = [
|
303 |
+
(ax1, biomass, y_pred_biomass, biomass_std, 'Biomass', 'Model', self.params.get('biomass', {}),
|
304 |
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
|
305 |
+
(ax2, substrate, y_pred_substrate, substrate_std, 'Substrate', 'Model', self.params.get('substrate', {}),
|
306 |
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
|
307 |
+
(ax3, product, y_pred_product, product_std, 'Product', 'Model', self.params.get('product', {}),
|
308 |
self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
|
309 |
]
|
|
|
310 |
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
|
311 |
if data_std is not None:
|
312 |
ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color,
|
313 |
+
label='Experimental Data', capsize=5)
|
314 |
else:
|
315 |
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
|
316 |
+
label='Experimental Data')
|
|
|
317 |
if y_pred is not None:
|
318 |
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
|
319 |
+
ax.set_xlabel('Time')
|
|
|
320 |
ax.set_ylabel(ylabel)
|
321 |
if show_legend:
|
322 |
ax.legend(loc=legend_position)
|
323 |
ax.set_title(f'{ylabel}')
|
|
|
324 |
if show_params and params and all(np.isfinite(list(map(float, params.values())))):
|
325 |
param_text = '\n'.join([f"{k} = {v:.3f}" for k, v in params.items()])
|
326 |
text = f"{param_text}\nR² = {r2:.3f}\nRMSE = {rmse:.3f}"
|
|
|
335 |
else:
|
336 |
text_x = 0.05
|
337 |
ha = 'left'
|
|
|
338 |
if params_position in ['upper right', 'upper left']:
|
339 |
text_y = 0.95
|
340 |
va = 'top'
|
341 |
else:
|
342 |
text_y = 0.05
|
343 |
va = 'bottom'
|
|
|
344 |
ax.text(text_x, text_y, text, transform=ax.transAxes,
|
345 |
verticalalignment=va, horizontalalignment=ha,
|
346 |
bbox={'boxstyle': 'round', 'facecolor':'white', 'alpha':0.5})
|
|
|
347 |
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
|
|
348 |
buf = io.BytesIO()
|
349 |
fig.savefig(buf, format='png')
|
350 |
buf.seek(0)
|
351 |
image = Image.open(buf).convert("RGB")
|
352 |
plt.close(fig)
|
|
|
353 |
return image
|
354 |
|
355 |
def plot_combined_results(self, time, biomass, substrate, product,
|
|
|
359 |
show_legend=True, show_params=True,
|
360 |
style='whitegrid',
|
361 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
362 |
+
use_differential=False):
|
|
|
|
|
363 |
if y_pred_biomass is None:
|
364 |
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
365 |
return None
|
|
|
366 |
sns.set_style(style)
|
|
|
367 |
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
368 |
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
369 |
if X is not None:
|
|
|
372 |
time_to_plot = time
|
373 |
else:
|
374 |
time_to_plot = time
|
|
|
375 |
fig, ax1 = plt.subplots(figsize=(10, 7))
|
376 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
377 |
+
colors = {'Biomass': 'blue', 'Substrate': 'green', 'Product': 'red'}
|
378 |
+
ax1.set_xlabel('Time')
|
379 |
+
ax1.set_ylabel('Biomass', color=colors['Biomass'])
|
|
|
|
|
380 |
if biomass_std is not None:
|
381 |
+
ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['Biomass'],
|
382 |
+
label='Biomass (Data)', capsize=5)
|
383 |
else:
|
384 |
+
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomass'],
|
385 |
+
label='Biomass (Data)')
|
386 |
+
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomass'],
|
387 |
+
label='Biomass (Model)')
|
388 |
+
ax1.tick_params(axis='y', labelcolor=colors['Biomass'])
|
|
|
389 |
ax2 = ax1.twinx()
|
390 |
+
ax2.set_ylabel('Substrate', color=colors['Substrate'])
|
391 |
if substrate_std is not None:
|
392 |
+
ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['Substrate'],
|
393 |
+
label='Substrate (Data)', capsize=5)
|
394 |
else:
|
395 |
+
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Substrate'],
|
396 |
+
label='Substrate (Data)')
|
397 |
if y_pred_substrate is not None:
|
398 |
+
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Substrate'],
|
399 |
+
label='Substrate (Model)')
|
400 |
+
ax2.tick_params(axis='y', labelcolor=colors['Substrate'])
|
|
|
401 |
ax3 = ax1.twinx()
|
402 |
ax3.spines["right"].set_position(("axes", 1.2))
|
403 |
ax3.set_frame_on(True)
|
404 |
ax3.patch.set_visible(False)
|
405 |
for sp in ax3.spines.values():
|
406 |
sp.set_visible(True)
|
407 |
+
ax3.set_ylabel('Product', color=colors['Product'])
|
|
|
408 |
if product_std is not None:
|
409 |
+
ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['Product'],
|
410 |
+
label='Product (Data)', capsize=5)
|
411 |
else:
|
412 |
+
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Product'],
|
413 |
+
label='Product (Data)')
|
414 |
if y_pred_product is not None:
|
415 |
+
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Product'],
|
416 |
+
label='Product (Model)')
|
417 |
+
ax3.tick_params(axis='y', labelcolor=colors['Product'])
|
|
|
418 |
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
|
419 |
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
420 |
if show_legend:
|
421 |
ax1.legend(lines, labels, loc=legend_position)
|
|
|
422 |
if show_params:
|
423 |
param_text_biomass = ''
|
424 |
if 'biomass' in self.params:
|
425 |
param_text_biomass = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['biomass'].items()])
|
426 |
+
text_biomass = f"Biomass:\n{param_text_biomass}\nR² = {self.r2.get('biomass', np.nan):.3f}\nRMSE = {self.rmse.get('biomass', np.nan):.3f}"
|
|
|
427 |
param_text_substrate = ''
|
428 |
if 'substrate' in self.params:
|
429 |
param_text_substrate = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['substrate'].items()])
|
430 |
+
text_substrate = f"Substrate:\n{param_text_substrate}\nR² = {self.r2.get('substrate', np.nan):.3f}\nRMSE = {self.rmse.get('substrate', np.nan):.3f}"
|
|
|
431 |
param_text_product = ''
|
432 |
if 'product' in self.params:
|
433 |
param_text_product = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['product'].items()])
|
434 |
+
text_product = f"Product:\n{param_text_product}\nR² = {self.r2.get('product', np.nan):.3f}\nRMSE = {self.rmse.get('product', np.nan):.3f}"
|
435 |
+
total_text = f"{text_biomass}\n{text_substrate}\n{text_product}"
|
|
|
|
|
436 |
if params_position == 'outside right':
|
437 |
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
|
438 |
ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction',
|
|
|
444 |
else:
|
445 |
text_x = 0.05
|
446 |
ha = 'left'
|
|
|
447 |
if params_position in ['upper right', 'upper left']:
|
448 |
text_y = 0.95
|
449 |
va = 'top'
|
450 |
else:
|
451 |
text_y = 0.05
|
452 |
va = 'bottom'
|
|
|
453 |
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
|
454 |
verticalalignment=va, horizontalalignment=ha,
|
455 |
bbox={'boxstyle':'round', 'facecolor':'white', 'alpha':0.5})
|
|
|
456 |
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
|
|
457 |
buf = io.BytesIO()
|
458 |
fig.savefig(buf, format='png')
|
459 |
buf.seek(0)
|
460 |
image = Image.open(buf).convert("RGB")
|
461 |
plt.close(fig)
|
|
|
462 |
return image
|
463 |
|
464 |
def process_all_data(file, legend_position, params_position, model_types, experiment_names, lower_bounds, upper_bounds,
|
465 |
mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
|
466 |
+
line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False, maxfev_val=50000):
|
|
|
|
|
467 |
try:
|
468 |
xls = pd.ExcelFile(file.name)
|
469 |
except Exception as e:
|
470 |
print(f"Error al leer el archivo Excel: {e}")
|
471 |
return [], pd.DataFrame()
|
|
|
472 |
sheet_names = xls.sheet_names
|
473 |
figures = []
|
474 |
comparison_data = []
|
475 |
experiment_counter = 0
|
|
|
476 |
for sheet_name in sheet_names:
|
477 |
try:
|
478 |
df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])
|
479 |
except Exception as e:
|
480 |
print(f"Error al leer la hoja '{sheet_name}': {e}")
|
481 |
continue
|
|
|
482 |
model_dummy = BioprocessModel()
|
483 |
model_dummy.process_data(df)
|
484 |
time = model_dummy.time
|
|
|
485 |
if mode == 'independent':
|
486 |
num_experiments = len(df.columns.levels[0])
|
487 |
for idx in range(num_experiments):
|
|
|
494 |
except KeyError as e:
|
495 |
print(f"Error al procesar el experimento '{col}': {e}")
|
496 |
continue
|
|
|
497 |
biomass_std = None
|
498 |
substrate_std = None
|
499 |
product_std = None
|
|
|
506 |
if product.ndim > 1:
|
507 |
product_std = np.std(product, axis=0, ddof=1)
|
508 |
product = np.mean(product, axis=0)
|
|
|
509 |
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
510 |
else f"Tratamiento {experiment_counter + 1}")
|
|
|
511 |
for model_type in model_types:
|
512 |
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
513 |
model.fit_model()
|
|
|
514 |
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
515 |
if y_pred_biomass is None:
|
516 |
comparison_data.append({
|
|
|
531 |
else:
|
532 |
y_pred_substrate = None
|
533 |
y_pred_product = None
|
|
|
534 |
comparison_data.append({
|
535 |
'Experimento': experiment_name,
|
536 |
'Modelo': model_type.capitalize(),
|
|
|
541 |
'R² Producto': model.r2.get('product', np.nan),
|
542 |
'RMSE Producto': model.rmse.get('product', np.nan)
|
543 |
})
|
|
|
544 |
if mode == 'combinado':
|
545 |
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
546 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
|
550 |
show_legend, show_params,
|
551 |
style,
|
552 |
line_color, point_color, line_style, marker_style,
|
553 |
+
use_differential)
|
|
|
554 |
else:
|
555 |
fig = model.plot_results(time_exp, biomass, substrate, product,
|
556 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
|
560 |
show_legend, show_params,
|
561 |
style,
|
562 |
line_color, point_color, line_style, marker_style,
|
563 |
+
use_differential)
|
|
|
564 |
if fig is not None:
|
565 |
figures.append(fig)
|
|
|
566 |
experiment_counter += 1
|
|
|
567 |
elif mode in ['average', 'combinado']:
|
568 |
try:
|
569 |
time_exp = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
|
|
|
573 |
except IndexError as e:
|
574 |
print(f"Error al obtener los datos promedio de la hoja '{sheet_name}': {e}")
|
575 |
continue
|
|
|
576 |
biomass_std = model_dummy.datax_std[-1]
|
577 |
substrate_std = model_dummy.datas_std[-1]
|
578 |
product_std = model_dummy.datap_std[-1]
|
|
|
579 |
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
580 |
else f"Tratamiento {experiment_counter + 1}")
|
|
|
581 |
for model_type in model_types:
|
582 |
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
583 |
model.fit_model()
|
|
|
584 |
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
585 |
if y_pred_biomass is None:
|
586 |
comparison_data.append({
|
|
|
601 |
else:
|
602 |
y_pred_substrate = None
|
603 |
y_pred_product = None
|
|
|
604 |
comparison_data.append({
|
605 |
'Experimento': experiment_name,
|
606 |
'Modelo': model_type.capitalize(),
|
|
|
611 |
'R² Producto': model.r2.get('product', np.nan),
|
612 |
'RMSE Producto': model.rmse.get('product', np.nan)
|
613 |
})
|
|
|
614 |
if mode == 'combinado':
|
615 |
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
616 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
|
620 |
show_legend, show_params,
|
621 |
style,
|
622 |
line_color, point_color, line_style, marker_style,
|
623 |
+
use_differential)
|
|
|
624 |
else:
|
625 |
fig = model.plot_results(time_exp, biomass, substrate, product,
|
626 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
|
630 |
show_legend, show_params,
|
631 |
style,
|
632 |
line_color, point_color, line_style, marker_style,
|
633 |
+
use_differential)
|
|
|
634 |
if fig is not None:
|
635 |
figures.append(fig)
|
|
|
636 |
experiment_counter += 1
|
|
|
637 |
comparison_df = pd.DataFrame(comparison_data)
|
|
|
638 |
if not comparison_df.empty:
|
639 |
comparison_df_sorted = comparison_df.sort_values(
|
640 |
by=['R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
|
|
|
642 |
).reset_index(drop=True)
|
643 |
else:
|
644 |
comparison_df_sorted = comparison_df
|
|
|
645 |
return figures, comparison_df_sorted
|
646 |
|
647 |
def create_interface():
|
648 |
with gr.Blocks() as demo:
|
649 |
gr.Markdown("# Modelos de Bioproceso: Logístico, Gompertz, Moser y Luedeking-Piret")
|
|
|
650 |
gr.Markdown(r"""
|
651 |
## Ecuaciones Diferenciales Utilizadas
|
|
|
652 |
**Biomasa:**
|
|
|
653 |
- Logístico:
|
654 |
$$
|
655 |
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right)
|
656 |
$$
|
|
|
657 |
- Gompertz:
|
658 |
$$
|
659 |
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right)
|
660 |
$$
|
|
|
661 |
Ecuación diferencial:
|
662 |
$$
|
663 |
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)
|
664 |
$$
|
|
|
665 |
- Moser (simplificado):
|
666 |
$$
|
667 |
X(t)=X_m(1-e^{-\mu_m(t-K_s)})
|
668 |
$$
|
|
|
669 |
$$
|
670 |
\frac{dX}{dt}=\mu_m(X_m - X)
|
671 |
$$
|
|
|
672 |
**Sustrato y Producto (Luedeking-Piret):**
|
673 |
$$
|
674 |
\frac{dS}{dt} = -p \frac{dX}{dt} - q X
|
675 |
$$
|
|
|
676 |
$$
|
677 |
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X
|
678 |
$$
|
679 |
""")
|
|
|
680 |
file_input = gr.File(label="Subir archivo Excel")
|
|
|
681 |
with gr.Row():
|
682 |
with gr.Column():
|
683 |
legend_position = gr.Radio(
|
|
|
686 |
value="best"
|
687 |
)
|
688 |
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
|
|
|
689 |
with gr.Column():
|
690 |
params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"]
|
691 |
params_position = gr.Radio(
|
|
|
694 |
value="upper right"
|
695 |
)
|
696 |
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
|
|
|
697 |
model_types = gr.CheckboxGroup(
|
698 |
choices=["logistic", "gompertz", "moser"],
|
699 |
label="Tipo(s) de Modelo",
|
|
|
701 |
)
|
702 |
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
|
703 |
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
|
|
|
704 |
experiment_names = gr.Textbox(
|
705 |
label="Nombres de los experimentos (uno por línea)",
|
706 |
placeholder="Experimento 1\nExperimento 2\n...",
|
707 |
lines=5
|
708 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
709 |
with gr.Row():
|
710 |
with gr.Column():
|
711 |
lower_bounds = gr.Textbox(
|
|
|
713 |
placeholder="0,0,0\n0,0,0\n...",
|
714 |
lines=5
|
715 |
)
|
|
|
716 |
with gr.Column():
|
717 |
upper_bounds = gr.Textbox(
|
718 |
label="Upper Bounds (uno por línea, formato: param1,param2,param3)",
|
719 |
placeholder="inf,inf,inf\ninf,inf,inf\n...",
|
720 |
lines=5
|
721 |
)
|
|
|
722 |
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
|
723 |
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
|
|
|
724 |
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
|
725 |
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
|
|
|
726 |
line_style_options = ['-', '--', '-.', ':']
|
727 |
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
|
|
|
728 |
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
|
729 |
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
|
|
|
730 |
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000)
|
|
|
731 |
simulate_btn = gr.Button("Simular")
|
|
|
732 |
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
|
733 |
output_table = gr.Dataframe(
|
734 |
label="Tabla Comparativa de Modelos",
|
|
|
736 |
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
|
737 |
interactive=False
|
738 |
)
|
|
|
739 |
state_df = gr.State()
|
740 |
|
741 |
def process_and_plot(file, legend_position, params_position, model_types, mode, experiment_names,
|
742 |
lower_bounds, upper_bounds, style,
|
743 |
line_color, point_color, line_style, marker_style,
|
744 |
+
show_legend, show_params, use_differential, maxfev_input):
|
|
|
|
|
745 |
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
|
746 |
lower_bounds_list = []
|
747 |
if lower_bounds.strip():
|
|
|
771 |
except ValueError:
|
772 |
ub_values.append(np.inf)
|
773 |
upper_bounds_list.append(tuple(ub_values))
|
|
|
774 |
figures, comparison_df = process_all_data(file, legend_position, params_position, model_types, experiment_names_list,
|
775 |
lower_bounds_list, upper_bounds_list, mode, style,
|
776 |
line_color, point_color, line_style, marker_style,
|
777 |
+
show_legend, show_params, use_differential, maxfev_val=int(maxfev_input))
|
|
|
|
|
778 |
return figures, comparison_df, comparison_df
|
779 |
|
780 |
simulate_output = simulate_btn.click(
|
|
|
795 |
show_legend,
|
796 |
show_params,
|
797 |
use_differential,
|
798 |
+
maxfev_input],
|
|
|
|
|
|
|
|
|
799 |
outputs=[output_gallery, output_table, state_df]
|
800 |
)
|
801 |
|
|
|
808 |
|
809 |
export_btn = gr.Button("Exportar Tabla a Excel")
|
810 |
file_output = gr.File()
|
|
|
811 |
export_btn.click(
|
812 |
fn=export_excel,
|
813 |
inputs=state_df,
|