File size: 67,858 Bytes
21df8ee 9faf081 ffa837b ccd76a9 1105522 ccd76a9 1105522 d248e5f ffa837b d248e5f 1105522 d248e5f 1105522 ffa837b 1105522 ffa837b 1105522 d248e5f 9faf081 1105522 a3b612a 9faf081 a3b612a 9faf081 1105522 d248e5f 9faf081 d248e5f 1105522 c3b2589 8d47a43 1105522 a3b612a 9faf081 d248e5f a3b612a 9faf081 8d47a43 d248e5f c3b2589 d248e5f c3b2589 ffa837b 9faf081 ffa837b a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 ffa837b 9faf081 ffa837b a3b612a 9faf081 a3b612a 9faf081 ffa837b 8d47a43 9faf081 8d47a43 9faf081 a3b612a 9faf081 ffa837b 1f60596 d248e5f ffa837b a3b612a 9faf081 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 a3b612a 9faf081 8d47a43 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 d248e5f 9faf081 a3b612a 9faf081 1f60596 ffa837b 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 a3b612a 9faf081 8d47a43 ffa837b 9faf081 ffa837b 9faf081 1f60596 14384f4 9faf081 1f60596 ffa837b 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 a3b612a 9faf081 8d47a43 ffa837b 9faf081 c3b2589 9faf081 c3b2589 14384f4 1f60596 9faf081 a3b612a ffa837b d248e5f 9faf081 a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 ffa837b 9faf081 ffa837b a3b612a 9faf081 ffa837b 1f60596 ffa837b 9faf081 d248e5f 9faf081 d248e5f 9faf081 a3b612a d248e5f 9faf081 a3b612a 9faf081 a3b612a 8d47a43 9faf081 8d47a43 9faf081 8d47a43 9faf081 d248e5f 1105522 d248e5f ffa837b d248e5f a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 ffa837b 9faf081 8d47a43 9faf081 d248e5f 9faf081 a3b612a 9faf081 ffa837b 1105522 ffa837b 1105522 ffa837b 1105522 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 ffa837b a3b612a 9faf081 ffa837b 9faf081 a3b612a 8d47a43 9faf081 a3b612a 8d47a43 9faf081 a3b612a 9faf081 1105522 9faf081 ffa837b 9faf081 ffa837b 9faf081 ffa837b 1105522 9faf081 a3b612a 9faf081 8d47a43 9faf081 a3b612a 9faf081 1105522 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 a3b612a 8d47a43 a3b612a 9faf081 1105522 9faf081 1105522 ffa837b 9faf081 a3b612a d248e5f 9faf081 d248e5f c3b2589 14384f4 1105522 ffa837b 1105522 ffa837b 1105522 a3b612a 9faf081 ffa837b 9faf081 ffa837b a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 1105522 9faf081 a3b612a 9faf081 1105522 a3b612a 8d47a43 9faf081 a3b612a 8d47a43 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 1105522 9faf081 8d47a43 9faf081 d248e5f 9faf081 d248e5f c3b2589 14384f4 9faf081 a3b612a 9faf081 a3b612a 9faf081 d248e5f 9faf081 a3b612a 9faf081 d248e5f 9faf081 ffa837b 9faf081 d248e5f 9faf081 d248e5f 9faf081 a3b612a 9faf081 d248e5f 9faf081 ffa837b 9faf081 a3b612a d248e5f 9faf081 a3b612a 9faf081 ffa837b 9faf081 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 a3b612a 9faf081 a3b612a 9faf081 8d47a43 9faf081 a3b612a 9faf081 8d47a43 9faf081 8d47a43 9faf081 8d47a43 9faf081 8d47a43 9faf081 a3b612a 9faf081 a3b612a 9faf081 ffa837b d248e5f 9faf081 d248e5f 9faf081 a3b612a d248e5f a3b612a 9faf081 1105522 9faf081 d248e5f 9faf081 c3b2589 9faf081 8d47a43 9faf081 a3b612a 9faf081 a3b612a 9faf081 8d47a43 9faf081 8d47a43 8681abe a3b612a 8d47a43 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 a3b612a 9faf081 d248e5f 9faf081 a3b612a 9faf081 8d47a43 9faf081 ffa837b 9faf081 a3b612a 9faf081 ffa837b 9faf081 a3b612a 9faf081 a3b612a 9faf081 1105522 ccd76a9 9faf081 a3b612a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 |
import os
os.system("pip install --upgrade gradio")
from pydantic import BaseModel, ConfigDict
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import gradio as gr
import io
from PIL import Image
import tempfile
class YourModel(BaseModel):
class Config:
arbitrary_types_allowed = True
class BioprocessModel:
def __init__(self, model_type='logistic', maxfev=50000):
self.params = {}
self.r2 = {}
self.rmse = {}
self.datax = []
self.datas = []
self.datap = []
self.dataxp = []
self.datasp = []
self.datapp = []
self.datax_std = []
self.datas_std = []
self.datap_std = []
self.biomass_model = None
self.biomass_diff = None
self.model_type = model_type
self.maxfev = maxfev
self.time = None # Initialize time attribute
@staticmethod
def logistic(time, xo, xm, um):
if xm == 0 or (xo / xm == 1 and np.any(um * time > 0)):
return np.full_like(time, np.nan)
denominator = (1 - (xo / xm) * (1 - np.exp(um * time)))
denominator = np.where(denominator == 0, 1e-9, denominator)
return (xo * np.exp(um * time)) / denominator
@staticmethod
def gompertz(time, xm, um, lag):
if xm == 0:
return np.full_like(time, np.nan)
return xm * np.exp(-np.exp((um * np.e / xm) * (lag - time) + 1))
@staticmethod
def moser(time, Xm, um, Ks):
return Xm * (1 - np.exp(-um * (time - Ks)))
@staticmethod
def logistic_diff(X, t, params):
xo, xm, um = params
if xm == 0:
return 0
return um * X * (1 - X / xm)
@staticmethod
def gompertz_diff(X, t, params):
xm, um, lag = params
if xm == 0:
return 0
return X * (um * np.e / xm) * np.exp((um * np.e / xm) * (lag - t) + 1)
@staticmethod
def moser_diff(X, t, params):
Xm, um, Ks = params
return um * (Xm - X)
def substrate(self, time, so, p, q, biomass_params):
if self.biomass_model is None or not biomass_params:
return np.full_like(time, np.nan)
X_t = self.biomass_model(time, *biomass_params)
if np.any(np.isnan(X_t)):
return np.full_like(time, np.nan)
integral_X = np.zeros_like(X_t)
if len(time) > 1:
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1))
integral_X = np.cumsum(X_t * dt)
if self.model_type == 'logistic':
X0 = biomass_params[0]
elif self.model_type == 'gompertz':
X0 = self.gompertz(0, *biomass_params)
elif self.model_type == 'moser':
X0 = self.moser(0, *biomass_params)
else:
X0 = X_t[0]
return so - p * (X_t - X0) - q * integral_X
def product(self, time, po, alpha, beta, biomass_params):
if self.biomass_model is None or not biomass_params:
return np.full_like(time, np.nan)
X_t = self.biomass_model(time, *biomass_params)
if np.any(np.isnan(X_t)):
return np.full_like(time, np.nan)
integral_X = np.zeros_like(X_t)
if len(time) > 1:
dt = np.diff(time, prepend=time[0] - (time[1]-time[0] if len(time)>1 else 1))
integral_X = np.cumsum(X_t * dt)
if self.model_type == 'logistic':
X0 = biomass_params[0]
elif self.model_type == 'gompertz':
X0 = self.gompertz(0, *biomass_params)
elif self.model_type == 'moser':
X0 = self.moser(0, *biomass_params)
else:
X0 = X_t[0]
return po + alpha * (X_t - X0) + beta * integral_X
def process_data(self, df):
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
product_cols = [col for col in df.columns if col[1] == 'Producto']
if not any(col[1] == 'Tiempo' for col in df.columns):
raise ValueError("La columna 'Tiempo' no se encuentra en el DataFrame.")
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
time = df[time_col].values
if len(biomass_cols) > 0:
data_biomass = [df[col].values for col in biomass_cols]
data_biomass = np.array(data_biomass)
self.datax.append(data_biomass)
self.dataxp.append(np.mean(data_biomass, axis=0))
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
else:
self.datax.append(np.array([]))
self.dataxp.append(np.array([]))
self.datax_std.append(np.array([]))
if len(substrate_cols) > 0:
data_substrate = [df[col].values for col in substrate_cols]
data_substrate = np.array(data_substrate)
self.datas.append(data_substrate)
self.datasp.append(np.mean(data_substrate, axis=0))
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
else:
self.datas.append(np.array([]))
self.datasp.append(np.array([]))
self.datas_std.append(np.array([]))
if len(product_cols) > 0:
data_product = [df[col].values for col in product_cols]
data_product = np.array(data_product)
self.datap.append(data_product)
self.datapp.append(np.mean(data_product, axis=0))
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
else:
self.datap.append(np.array([]))
self.datapp.append(np.array([]))
self.datap_std.append(np.array([]))
self.time = time
def fit_model(self):
if self.model_type == 'logistic':
self.biomass_model = self.logistic
self.biomass_diff = self.logistic_diff
elif self.model_type == 'gompertz':
self.biomass_model = self.gompertz
self.biomass_diff = self.gompertz_diff
elif self.model_type == 'moser':
self.biomass_model = self.moser
self.biomass_diff = self.moser_diff
def fit_biomass(self, time, biomass):
try:
if len(np.unique(biomass)) < 2 :
print(f"Biomasa constante para {self.model_type}, no se puede ajustar el modelo.")
return None
if self.model_type == 'logistic':
xo_guess = biomass[biomass > 1e-6][0] if np.any(biomass > 1e-6) else 1e-3
xm_guess = max(biomass) * 1.1 if max(biomass) > xo_guess else xo_guess * 2
if xm_guess <= xo_guess: xm_guess = xo_guess + 1e-3
p0 = [xo_guess, xm_guess, 0.1]
bounds = ([1e-9, 1e-9, 1e-9], [np.inf, np.inf, np.inf])
popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
if popt[1] <= popt[0]:
print(f"Advertencia: En modelo logístico, Xm ({popt[1]:.2f}) no es mayor que Xo ({popt[0]:.2f}). Ajuste puede no ser válido.")
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
y_pred = self.logistic(time, *popt)
elif self.model_type == 'gompertz':
xm_guess = max(biomass) if max(biomass) > 0 else 1.0
um_guess = 0.1
lag_guess = time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 and np.any(np.gradient(biomass) > 1e-6) else time[0]
p0 = [xm_guess, um_guess, lag_guess]
bounds = ([1e-9, 1e-9, 0], [np.inf, np.inf, max(time) if len(time)>0 else 100])
popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
self.params['biomass'] = {'xm': popt[0], 'um': popt[1], 'lag': popt[2]}
y_pred = self.gompertz(time, *popt)
elif self.model_type == 'moser':
Xm_guess = max(biomass) if max(biomass) > 0 else 1.0
um_guess = 0.1
Ks_guess = time[0]
p0 = [Xm_guess, um_guess, Ks_guess]
bounds = ([1e-9, 1e-9, -np.inf], [np.inf, np.inf, max(time) if len(time)>0 else 100])
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9)
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]}
y_pred = self.moser(time, *popt)
else:
return None
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
print(f"Predicción de biomasa contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
self.r2['biomass'] = np.nan
self.rmse['biomass'] = np.nan
return None
ss_res = np.sum((biomass - y_pred) ** 2)
ss_tot = np.sum((biomass - np.mean(biomass)) ** 2)
if ss_tot == 0:
self.r2['biomass'] = 1.0 if ss_res == 0 else 0.0
else:
self.r2['biomass'] = 1 - (ss_res / ss_tot)
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
return y_pred
except RuntimeError as e:
print(f"Error de Runtime en fit_biomass_{self.model_type} (probablemente no se pudo ajustar): {e}")
self.params['biomass'] = {}
self.r2['biomass'] = np.nan
self.rmse['biomass'] = np.nan
return None
except Exception as e:
print(f"Error general en fit_biomass_{self.model_type}: {e}")
self.params['biomass'] = {}
self.r2['biomass'] = np.nan
self.rmse['biomass'] = np.nan
return None
def fit_substrate(self, time, substrate, biomass_params_dict):
if not biomass_params_dict:
print(f"Error en fit_substrate_{self.model_type}: Parámetros de biomasa no disponibles.")
return None
try:
if self.model_type == 'logistic':
biomass_params_values = [biomass_params_dict['xo'], biomass_params_dict['xm'], biomass_params_dict['um']]
elif self.model_type == 'gompertz':
biomass_params_values = [biomass_params_dict['xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
elif self.model_type == 'moser':
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']]
else:
return None
so_guess = substrate[0] if len(substrate) > 0 else 1.0
p_guess = 0.1
q_guess = 0.01
p0 = [so_guess, p_guess, q_guess]
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf])
popt, _ = curve_fit(
lambda t, so, p, q: self.substrate(t, so, p, q, biomass_params_values),
time, substrate, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9
)
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
y_pred = self.substrate(time, *popt, biomass_params_values)
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
print(f"Predicción de sustrato contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
self.r2['substrate'] = np.nan
self.rmse['substrate'] = np.nan
return None
ss_res = np.sum((substrate - y_pred) ** 2)
ss_tot = np.sum((substrate - np.mean(substrate)) ** 2)
if ss_tot == 0:
self.r2['substrate'] = 1.0 if ss_res == 0 else 0.0
else:
self.r2['substrate'] = 1 - (ss_res / ss_tot)
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
return y_pred
except RuntimeError as e:
print(f"Error de Runtime en fit_substrate_{self.model_type} (probablemente no se pudo ajustar): {e}")
self.params['substrate'] = {}
self.r2['substrate'] = np.nan
self.rmse['substrate'] = np.nan
return None
except Exception as e:
print(f"Error general en fit_substrate_{self.model_type}: {e}")
self.params['substrate'] = {}
self.r2['substrate'] = np.nan
self.rmse['substrate'] = np.nan
return None
def fit_product(self, time, product, biomass_params_dict):
if not biomass_params_dict:
print(f"Error en fit_product_{self.model_type}: Parámetros de biomasa no disponibles.")
return None
try:
if self.model_type == 'logistic':
biomass_params_values = [biomass_params_dict['xo'], biomass_params_dict['xm'], biomass_params_dict['um']]
elif self.model_type == 'gompertz':
biomass_params_values = [biomass_params_dict['xm'], biomass_params_dict['um'], biomass_params_dict['lag']]
elif self.model_type == 'moser':
biomass_params_values = [biomass_params_dict['Xm'], biomass_params_dict['um'], biomass_params_dict['Ks']]
else:
return None
po_guess = product[0] if len(product) > 0 else 0.0
alpha_guess = 0.1
beta_guess = 0.01
p0 = [po_guess, alpha_guess, beta_guess]
bounds = ([0, 0, 0], [np.inf, np.inf, np.inf])
popt, _ = curve_fit(
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, biomass_params_values),
time, product, p0=p0, maxfev=self.maxfev, bounds=bounds, ftol=1e-9, xtol=1e-9
)
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
y_pred = self.product(time, *popt, biomass_params_values)
if np.any(np.isnan(y_pred)) or np.any(np.isinf(y_pred)):
print(f"Predicción de producto contiene NaN/Inf para {self.model_type}. Ajuste fallido.")
self.r2['product'] = np.nan
self.rmse['product'] = np.nan
return None
ss_res = np.sum((product - y_pred) ** 2)
ss_tot = np.sum((product - np.mean(product)) ** 2)
if ss_tot == 0:
self.r2['product'] = 1.0 if ss_res == 0 else 0.0
else:
self.r2['product'] = 1 - (ss_res / ss_tot)
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
return y_pred
except RuntimeError as e:
print(f"Error de Runtime en fit_product_{self.model_type} (probablemente no se pudo ajustar): {e}")
self.params['product'] = {}
self.r2['product'] = np.nan
self.rmse['product'] = np.nan
return None
except Exception as e:
print(f"Error general en fit_product_{self.model_type}: {e}")
self.params['product'] = {}
self.r2['product'] = np.nan
self.rmse['product'] = np.nan
return None
def generate_fine_time_grid(self, time):
if time is None or len(time) == 0:
return np.array([0])
time_fine = np.linspace(time.min(), time.max(), 500)
return time_fine
def system(self, y, t, biomass_params_list, substrate_params_list, product_params_list, model_type):
X, S, P = y
if model_type == 'logistic':
dXdt = self.logistic_diff(X, t, biomass_params_list)
elif model_type == 'gompertz':
dXdt = self.gompertz_diff(X, t, biomass_params_list)
elif model_type == 'moser':
dXdt = self.moser_diff(X, t, biomass_params_list)
else:
dXdt = 0.0
p_val = substrate_params_list[1] if len(substrate_params_list) > 1 else 0
q_val = substrate_params_list[2] if len(substrate_params_list) > 2 else 0
dSdt = -p_val * dXdt - q_val * X
alpha_val = product_params_list[1] if len(product_params_list) > 1 else 0
beta_val = product_params_list[2] if len(product_params_list) > 2 else 0
dPdt = alpha_val * dXdt + beta_val * X
return [dXdt, dSdt, dPdt]
def get_initial_conditions(self, time, biomass, substrate, product):
X0_exp = biomass[0] if len(biomass) > 0 else 0
S0_exp = substrate[0] if len(substrate) > 0 else 0
P0_exp = product[0] if len(product) > 0 else 0
if 'biomass' in self.params and self.params['biomass']:
if self.model_type == 'logistic':
X0 = self.params['biomass'].get('xo', X0_exp)
elif self.model_type == 'gompertz':
xm = self.params['biomass'].get('xm', 1)
um = self.params['biomass'].get('um', 0.1)
lag = self.params['biomass'].get('lag', 0)
X0 = self.gompertz(0, xm, um, lag)
if np.isnan(X0): X0 = X0_exp
elif self.model_type == 'moser':
Xm_param = self.params['biomass'].get('Xm', 1)
um_param = self.params['biomass'].get('um', 0.1)
Ks_param = self.params['biomass'].get('Ks', 0)
X0 = self.moser(0, Xm_param, um_param, Ks_param)
if np.isnan(X0): X0 = X0_exp
else:
X0 = X0_exp
else:
X0 = X0_exp
if 'substrate' in self.params and self.params['substrate']:
S0 = self.params['substrate'].get('so', S0_exp)
else:
S0 = S0_exp
if 'product' in self.params and self.params['product']:
P0 = self.params['product'].get('po', P0_exp)
else:
P0 = P0_exp
X0 = X0 if not np.isnan(X0) else 0.0
S0 = S0 if not np.isnan(S0) else 0.0
P0 = P0 if not np.isnan(P0) else 0.0
return [X0, S0, P0]
def solve_differential_equations(self, time, biomass, substrate, product):
if 'biomass' not in self.params or not self.params['biomass']:
print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
return None, None, None, time
if time is None or len(time) == 0 :
print("Tiempo no válido para resolver EDOs.")
return None, None, None, np.array([])
if self.model_type == 'logistic':
biomass_params_list = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']]
elif self.model_type == 'gompertz':
biomass_params_list = [self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']]
elif self.model_type == 'moser':
biomass_params_list = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
else:
print(f"Tipo de modelo de biomasa desconocido: {self.model_type}")
return None, None, None, time
substrate_params_list = [
self.params.get('substrate', {}).get('so', 0),
self.params.get('substrate', {}).get('p', 0),
self.params.get('substrate', {}).get('q', 0)
]
product_params_list = [
self.params.get('product', {}).get('po', 0),
self.params.get('product', {}).get('alpha', 0),
self.params.get('product', {}).get('beta', 0)
]
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
time_fine = self.generate_fine_time_grid(time)
if len(time_fine) == 0:
print("No se pudo generar la malla de tiempo fina.")
return None, None, None, time
try:
sol = odeint(self.system, initial_conditions, time_fine,
args=(biomass_params_list, substrate_params_list, product_params_list, self.model_type),
rtol=1e-6, atol=1e-6)
except Exception as e:
print(f"Error al resolver EDOs con odeint: {e}")
try:
print("Intentando con método 'lsoda'...")
sol = odeint(self.system, initial_conditions, time_fine,
args=(biomass_params_list, substrate_params_list, product_params_list, self.model_type),
rtol=1e-6, atol=1e-6, method='lsoda')
except Exception as e_lsoda:
print(f"Error al resolver EDOs con odeint (método lsoda): {e_lsoda}")
return None, None, None, time_fine
X = sol[:, 0]
S = sol[:, 1]
P = sol[:, 2]
return X, S, P, time_fine
def plot_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid',
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
use_differential=False, axis_labels=None,
show_error_bars=True, error_cap_size=3, error_line_width=1): # Added error bar parameters
if y_pred_biomass is None and not use_differential:
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} y no se usan EDO. Omitiendo figura.")
return None
if use_differential and ('biomass' not in self.params or not self.params['biomass']):
print(f"Se solicitó usar EDO pero no hay parámetros de biomasa para {experiment_name}. Omitiendo EDO.")
use_differential = False
if axis_labels is None:
axis_labels = {
'x_label': 'Tiempo',
'biomass_label': 'Biomasa',
'substrate_label': 'Sustrato',
'product_label': 'Producto'
}
sns.set_style(style)
time_to_plot = time
if use_differential and 'biomass' in self.params and self.params['biomass']:
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
if X_ode is not None:
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
time_to_plot = time_fine_ode
else:
print(f"Fallo al resolver EDOs para {experiment_name}, usando resultados de curve_fit si existen.")
time_to_plot = time
else:
if not use_differential and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
time_fine_curvefit = self.generate_fine_time_grid(time)
if time_fine_curvefit is not None and len(time_fine_curvefit)>0:
biomass_params_values = list(self.params['biomass'].values())
y_pred_biomass_fine = self.biomass_model(time_fine_curvefit, *biomass_params_values)
if 'substrate' in self.params and self.params['substrate']:
substrate_params_values = list(self.params['substrate'].values())
y_pred_substrate_fine = self.substrate(time_fine_curvefit, *substrate_params_values, biomass_params_values)
else:
y_pred_substrate_fine = np.full_like(time_fine_curvefit, np.nan)
if 'product' in self.params and self.params['product']:
product_params_values = list(self.params['product'].values())
y_pred_product_fine = self.product(time_fine_curvefit, *product_params_values, biomass_params_values)
else:
y_pred_product_fine = np.full_like(time_fine_curvefit, np.nan)
if not np.all(np.isnan(y_pred_biomass_fine)):
y_pred_biomass = y_pred_biomass_fine
time_to_plot = time_fine_curvefit
if not np.all(np.isnan(y_pred_substrate_fine)):
y_pred_substrate = y_pred_substrate_fine
if not np.all(np.isnan(y_pred_product_fine)):
y_pred_product = y_pred_product_fine
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16)
plots_config = [
(ax1, biomass, y_pred_biomass, biomass_std, axis_labels['biomass_label'], 'Modelo', self.params.get('biomass', {}),
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
(ax2, substrate, y_pred_substrate, substrate_std, axis_labels['substrate_label'], 'Modelo', self.params.get('substrate', {}),
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
(ax3, product, y_pred_product, product_std, axis_labels['product_label'], 'Modelo', self.params.get('product', {}),
self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
]
for idx, (ax, data_exp, y_pred_model, data_std_exp, ylabel, model_name_legend, params_dict, r2_val, rmse_val) in enumerate(plots_config):
if data_exp is not None and len(data_exp) > 0 and not np.all(np.isnan(data_exp)):
if show_error_bars and data_std_exp is not None and len(data_std_exp) == len(data_exp) and not np.all(np.isnan(data_std_exp)):
ax.errorbar(
time, data_exp, yerr=data_std_exp,
fmt=marker_style, color=point_color,
label='Datos experimentales',
capsize=error_cap_size,
elinewidth=error_line_width,
markeredgewidth=1
)
else:
ax.plot(time, data_exp, marker=marker_style, linestyle='', color=point_color,
label='Datos experimentales')
else:
ax.text(0.5, 0.5, 'No hay datos experimentales para mostrar.',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=10, color='gray')
if y_pred_model is not None and len(y_pred_model) > 0 and not np.all(np.isnan(y_pred_model)):
ax.plot(time_to_plot, y_pred_model, linestyle=line_style, color=line_color, label=model_name_legend)
elif idx == 0 and y_pred_biomass is None:
ax.text(0.5, 0.6, 'Modelo de biomasa no ajustado.',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=10, color='red')
elif (idx == 1 and y_pred_substrate is None) or (idx == 2 and y_pred_product is None) :
if 'biomass' not in self.params or not self.params['biomass']:
ax.text(0.5, 0.4, 'Modelo no ajustado (depende de biomasa).',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=10, color='orange')
elif y_pred_model is None:
ax.text(0.5, 0.4, 'Modelo no ajustado.',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=10, color='orange')
ax.set_xlabel(axis_labels['x_label'])
ax.set_ylabel(ylabel)
if show_legend:
ax.legend(loc=legend_position)
ax.set_title(f'{ylabel}')
if show_params and params_dict and all(isinstance(v, (int, float)) and np.isfinite(v) for v in params_dict.values()):
param_text = '\n'.join([f"{k} = {v:.3g}" for k, v in params_dict.items()])
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A"
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A"
text = f"{param_text}\nR² = {r2_display}\nRMSE = {rmse_display}"
if params_position == 'outside right':
bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.5)
fig.subplots_adjust(right=0.75)
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
xytext=(10,0), textcoords='offset points',
verticalalignment='center', horizontalalignment='left',
bbox=bbox_props)
else:
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
ax.text(text_x, text_y, text, transform=ax.transAxes,
verticalalignment=va, horizontalalignment=ha,
bbox={'boxstyle': 'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.5})
elif show_params and not params_dict :
ax.text(0.5, 0.3, 'Parámetros no disponibles.',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=9, color='grey')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
image = Image.open(buf).convert("RGB")
plt.close(fig)
return image
def plot_combined_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid',
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
use_differential=False, axis_labels=None,
show_error_bars=True, error_cap_size=3, error_line_width=1): # Added error bar parameters
if y_pred_biomass is None and not use_differential:
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type} (combinado). Omitiendo figura.")
return None
if use_differential and ('biomass' not in self.params or not self.params['biomass']):
print(f"Se solicitó usar EDO (combinado) pero no hay parámetros de biomasa para {experiment_name}. Omitiendo EDO.")
use_differential = False
if axis_labels is None:
axis_labels = {
'x_label': 'Tiempo',
'biomass_label': 'Biomasa',
'substrate_label': 'Sustrato',
'product_label': 'Producto'
}
sns.set_style(style)
time_to_plot = time
if use_differential and 'biomass' in self.params and self.params['biomass']:
X_ode, S_ode, P_ode, time_fine_ode = self.solve_differential_equations(time, biomass, substrate, product)
if X_ode is not None:
y_pred_biomass, y_pred_substrate, y_pred_product = X_ode, S_ode, P_ode
time_to_plot = time_fine_ode
else:
print(f"Fallo al resolver EDOs para {experiment_name} (combinado), usando resultados de curve_fit si existen.")
time_to_plot = time
else:
if not use_differential and self.biomass_model and 'biomass' in self.params and self.params['biomass']:
time_fine_curvefit = self.generate_fine_time_grid(time)
if time_fine_curvefit is not None and len(time_fine_curvefit)>0:
biomass_params_values = list(self.params['biomass'].values())
y_pred_biomass_fine = self.biomass_model(time_fine_curvefit, *biomass_params_values)
if 'substrate' in self.params and self.params['substrate']:
substrate_params_values = list(self.params['substrate'].values())
y_pred_substrate_fine = self.substrate(time_fine_curvefit, *substrate_params_values, biomass_params_values)
else:
y_pred_substrate_fine = np.full_like(time_fine_curvefit, np.nan)
if 'product' in self.params and self.params['product']:
product_params_values = list(self.params['product'].values())
y_pred_product_fine = self.product(time_fine_curvefit, *product_params_values, biomass_params_values)
else:
y_pred_product_fine = np.full_like(time_fine_curvefit, np.nan)
if not np.all(np.isnan(y_pred_biomass_fine)):
y_pred_biomass = y_pred_biomass_fine
time_to_plot = time_fine_curvefit
if not np.all(np.isnan(y_pred_substrate_fine)):
y_pred_substrate = y_pred_substrate_fine
if not np.all(np.isnan(y_pred_product_fine)):
y_pred_product = y_pred_product_fine
fig, ax1 = plt.subplots(figsize=(12, 7))
fig.suptitle(f'{experiment_name} ({self.model_type.capitalize()})', fontsize=16)
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
data_colors = {'Biomasa': 'darkblue', 'Sustrato': 'darkgreen', 'Producto': 'darkred'}
model_colors = {'Biomasa': 'cornflowerblue', 'Sustrato': 'limegreen', 'Producto': 'salmon'}
ax1.set_xlabel(axis_labels['x_label'])
ax1.set_ylabel(axis_labels['biomass_label'], color=colors['Biomasa'])
if biomass is not None and len(biomass) > 0 and not np.all(np.isnan(biomass)):
if show_error_bars and biomass_std is not None and len(biomass_std) == len(biomass) and not np.all(np.isnan(biomass_std)):
ax1.errorbar(
time, biomass, yerr=biomass_std,
fmt=marker_style, color=data_colors['Biomasa'],
label=f'{axis_labels["biomass_label"]} (Datos)',
capsize=error_cap_size,
elinewidth=error_line_width,
markersize=5
)
else:
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=data_colors['Biomasa'],
label=f'{axis_labels["biomass_label"]} (Datos)', markersize=5)
if y_pred_biomass is not None and len(y_pred_biomass) > 0 and not np.all(np.isnan(y_pred_biomass)):
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=model_colors['Biomasa'],
label=f'{axis_labels["biomass_label"]} (Modelo)')
ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])
ax2 = ax1.twinx()
ax2.set_ylabel(axis_labels['substrate_label'], color=colors['Sustrato'])
if substrate is not None and len(substrate) > 0 and not np.all(np.isnan(substrate)):
if show_error_bars and substrate_std is not None and len(substrate_std) == len(substrate) and not np.all(np.isnan(substrate_std)):
ax2.errorbar(
time, substrate, yerr=substrate_std,
fmt=marker_style, color=data_colors['Sustrato'],
label=f'{axis_labels["substrate_label"]} (Datos)',
capsize=error_cap_size,
elinewidth=error_line_width,
markersize=5
)
else:
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=data_colors['Sustrato'],
label=f'{axis_labels["substrate_label"]} (Datos)', markersize=5)
if y_pred_substrate is not None and len(y_pred_substrate) > 0 and not np.all(np.isnan(y_pred_substrate)):
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=model_colors['Sustrato'],
label=f'{axis_labels["substrate_label"]} (Modelo)')
ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
ax3 = ax1.twinx()
ax3.spines["right"].set_position(("axes", 1.15))
ax3.set_frame_on(True)
ax3.patch.set_visible(False)
ax3.set_ylabel(axis_labels['product_label'], color=colors['Producto'])
if product is not None and len(product) > 0 and not np.all(np.isnan(product)):
if show_error_bars and product_std is not None and len(product_std) == len(product) and not np.all(np.isnan(product_std)):
ax3.errorbar(
time, product, yerr=product_std,
fmt=marker_style, color=data_colors['Producto'],
label=f'{axis_labels["product_label"]} (Datos)',
capsize=error_cap_size,
elinewidth=error_line_width,
markersize=5
)
else:
ax3.plot(time, product, marker=marker_style, linestyle='', color=data_colors['Producto'],
label=f'{axis_labels["product_label"]} (Datos)', markersize=5)
if y_pred_product is not None and len(y_pred_product) > 0 and not np.all(np.isnan(y_pred_product)):
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=model_colors['Producto'],
label=f'{axis_labels["product_label"]} (Modelo)')
ax3.tick_params(axis='y', labelcolor=colors['Producto'])
lines_labels_collect = []
for ax_current in [ax1, ax2, ax3]:
h, l = ax_current.get_legend_handles_labels()
if h:
lines_labels_collect.append((h,l))
if lines_labels_collect:
lines, labels = [sum(lol, []) for lol in zip(*[(h,l) for h,l in lines_labels_collect])]
unique_labels_dict = dict(zip(labels, lines))
if show_legend:
ax1.legend(unique_labels_dict.values(), unique_labels_dict.keys(), loc=legend_position)
if show_params:
texts_to_display = []
param_categories = [
(axis_labels['biomass_label'], self.params.get('biomass', {}), self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
(axis_labels['substrate_label'], self.params.get('substrate', {}), self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
(axis_labels['product_label'], self.params.get('product', {}), self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
]
for label, params_dict, r2_val, rmse_val in param_categories:
if params_dict and all(isinstance(v, (int, float)) and np.isfinite(v) for v in params_dict.values()):
param_text = '\n'.join([f" {k} = {v:.3g}" for k, v in params_dict.items()])
r2_display = f"{r2_val:.3f}" if np.isfinite(r2_val) else "N/A"
rmse_display = f"{rmse_val:.3f}" if np.isfinite(rmse_val) else "N/A"
texts_to_display.append(f"{label}:\n{param_text}\n R² = {r2_display}\n RMSE = {rmse_display}")
elif params_dict:
texts_to_display.append(f"{label}:\n Parámetros no válidos o N/A")
total_text = "\n\n".join(texts_to_display)
if total_text:
if params_position == 'outside right':
fig.subplots_adjust(right=0.70)
bbox_props = dict(boxstyle='round,pad=0.3', facecolor='wheat', alpha=0.7)
fig.text(0.72, 0.5, total_text, transform=fig.transFigure,
verticalalignment='center', horizontalalignment='left',
bbox=bbox_props, fontsize=8)
else:
text_x, ha = (0.95, 'right') if 'right' in params_position else (0.05, 'left')
text_y, va = (0.95, 'top') if 'upper' in params_position else (0.05, 'bottom')
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
verticalalignment=va, horizontalalignment=ha,
bbox={'boxstyle':'round,pad=0.3', 'facecolor':'wheat', 'alpha':0.7}, fontsize=8)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
if params_position == 'outside right':
fig.subplots_adjust(right=0.70)
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
image = Image.open(buf).convert("RGB")
plt.close(fig)
return image
def process_all_data(file, legend_position, params_position, model_types_selected, experiment_names_str,
lower_bounds_str, upper_bounds_str,
mode, style, line_color, point_color, line_style, marker_style,
show_legend, show_params, use_differential, maxfev_val,
axis_labels_dict,
show_error_bars, error_cap_size, error_line_width): # New error bar parameters
if file is None:
return [], pd.DataFrame(), "Por favor, sube un archivo Excel."
try:
try:
xls = pd.ExcelFile(file.name)
except AttributeError:
xls = pd.ExcelFile(file)
sheet_names = xls.sheet_names
if not sheet_names:
return [], pd.DataFrame(), "El archivo Excel está vacío o no contiene hojas."
except Exception as e:
return [], pd.DataFrame(), f"Error al leer el archivo Excel: {e}"
figures = []
comparison_data = []
experiment_counter = 0
experiment_names_list = experiment_names_str.strip().split('\n') if experiment_names_str.strip() else []
all_plot_messages = []
for sheet_name_idx, sheet_name in enumerate(sheet_names):
current_experiment_name_base = (experiment_names_list[sheet_name_idx]
if sheet_name_idx < len(experiment_names_list) and experiment_names_list[sheet_name_idx]
else f"Hoja '{sheet_name}'")
try:
df = pd.read_excel(xls, sheet_name=sheet_name, header=[0, 1])
if df.empty:
all_plot_messages.append(f"Hoja '{sheet_name}' está vacía.")
continue
if not any(col_level2 == 'Tiempo' for _, col_level2 in df.columns):
all_plot_messages.append(f"Hoja '{sheet_name}' no contiene la subcolumna 'Tiempo'. Saltando hoja.")
continue
except Exception as e:
all_plot_messages.append(f"Error al leer la hoja '{sheet_name}': {e}. Saltando hoja.")
continue
model_dummy_for_sheet = BioprocessModel()
try:
model_dummy_for_sheet.process_data(df)
except ValueError as e:
all_plot_messages.append(f"Error procesando datos de la hoja '{sheet_name}': {e}. Saltando hoja.")
continue
if mode == 'independent':
grouped_cols = df.columns.get_level_values(0).unique()
for exp_idx, exp_col_name in enumerate(grouped_cols):
current_experiment_name = f"{current_experiment_name_base} - Exp {exp_idx + 1} ({exp_col_name})"
exp_df = df[exp_col_name]
try:
time_exp = exp_df['Tiempo'].dropna().values
biomass_exp = exp_df['Biomasa'].dropna().astype(float).values if 'Biomasa' in exp_df else np.array([])
substrate_exp = exp_df['Sustrato'].dropna().astype(float).values if 'Sustrato' in exp_df else np.array([])
product_exp = exp_df['Producto'].dropna().astype(float).values if 'Producto' in exp_df else np.array([])
if len(time_exp) == 0:
all_plot_messages.append(f"No hay datos de tiempo para {current_experiment_name}. Saltando.")
continue
if len(biomass_exp) == 0 :
all_plot_messages.append(f"No hay datos de biomasa para {current_experiment_name}. Saltando modelos para este experimento.")
for model_type_iter in model_types_selected:
comparison_data.append({
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
**{f'R² {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']},
**{f'RMSE {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']}
})
continue
except KeyError as e:
all_plot_messages.append(f"Faltan columnas (Tiempo, Biomasa, Sustrato, Producto) en '{current_experiment_name}': {e}. Saltando.")
continue
except Exception as e_data:
all_plot_messages.append(f"Error extrayendo datos para '{current_experiment_name}': {e_data}. Saltando.")
continue
biomass_std_exp, substrate_std_exp, product_std_exp = None, None, None
for model_type_iter in model_types_selected:
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val)
model_instance.fit_model()
y_pred_biomass = model_instance.fit_biomass(time_exp, biomass_exp)
y_pred_substrate, y_pred_product = None, None
if y_pred_biomass is not None and model_instance.params.get('biomass'):
if len(substrate_exp) > 0 :
y_pred_substrate = model_instance.fit_substrate(time_exp, substrate_exp, model_instance.params['biomass'])
if len(product_exp) > 0:
y_pred_product = model_instance.fit_product(time_exp, product_exp, model_instance.params['biomass'])
else:
all_plot_messages.append(f"Ajuste de biomasa falló para {current_experiment_name} con modelo {model_type_iter}.")
comparison_data.append({
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan),
'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan),
'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan)
})
fig = model_instance.plot_results(
time_exp, biomass_exp, substrate_exp, product_exp,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std_exp, substrate_std_exp, product_std_exp,
current_experiment_name, legend_position, params_position,
show_legend, show_params, style,
line_color, point_color, line_style, marker_style,
use_differential, axis_labels_dict,
show_error_bars=show_error_bars, # Pass new parameters
error_cap_size=error_cap_size,
error_line_width=error_line_width
)
if fig: figures.append(fig)
experiment_counter +=1
elif mode in ['average', 'combinado']:
current_experiment_name = f"{current_experiment_name_base} - Promedio"
time_avg = model_dummy_for_sheet.time
biomass_avg = model_dummy_for_sheet.dataxp[-1] if model_dummy_for_sheet.dataxp else np.array([])
substrate_avg = model_dummy_for_sheet.datasp[-1] if model_dummy_for_sheet.datasp else np.array([])
product_avg = model_dummy_for_sheet.datapp[-1] if model_dummy_for_sheet.datapp else np.array([])
biomass_std_avg = model_dummy_for_sheet.datax_std[-1] if model_dummy_for_sheet.datax_std and len(model_dummy_for_sheet.datax_std[-1]) == len(biomass_avg) else None
substrate_std_avg = model_dummy_for_sheet.datas_std[-1] if model_dummy_for_sheet.datas_std and len(model_dummy_for_sheet.datas_std[-1]) == len(substrate_avg) else None
product_std_avg = model_dummy_for_sheet.datap_std[-1] if model_dummy_for_sheet.datap_std and len(model_dummy_for_sheet.datap_std[-1]) == len(product_avg) else None
if len(time_avg) == 0:
all_plot_messages.append(f"No hay datos de tiempo para el promedio de '{sheet_name}'. Saltando.")
continue
if len(biomass_avg) == 0:
all_plot_messages.append(f"No hay datos de biomasa promedio para '{sheet_name}'. Saltando modelos.")
for model_type_iter in model_types_selected:
comparison_data.append({
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
**{f'R² {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']},
**{f'RMSE {comp}': np.nan for comp in ['Biomasa', 'Sustrato', 'Producto']}
})
continue
for model_type_iter in model_types_selected:
model_instance = BioprocessModel(model_type=model_type_iter, maxfev=maxfev_val)
model_instance.fit_model()
y_pred_biomass = model_instance.fit_biomass(time_avg, biomass_avg)
y_pred_substrate, y_pred_product = None, None
if y_pred_biomass is not None and model_instance.params.get('biomass'):
if len(substrate_avg) > 0:
y_pred_substrate = model_instance.fit_substrate(time_avg, substrate_avg, model_instance.params['biomass'])
if len(product_avg) > 0:
y_pred_product = model_instance.fit_product(time_avg, product_avg, model_instance.params['biomass'])
else:
all_plot_messages.append(f"Ajuste de biomasa promedio falló para {current_experiment_name} con modelo {model_type_iter}.")
comparison_data.append({
'Experimento': current_experiment_name, 'Modelo': model_type_iter.capitalize(),
'R² Biomasa': model_instance.r2.get('biomass', np.nan), 'RMSE Biomasa': model_instance.rmse.get('biomass', np.nan),
'R² Sustrato': model_instance.r2.get('substrate', np.nan), 'RMSE Sustrato': model_instance.rmse.get('substrate', np.nan),
'R² Producto': model_instance.r2.get('product', np.nan), 'RMSE Producto': model_instance.rmse.get('product', np.nan)
})
plot_func = model_instance.plot_combined_results if mode == 'combinado' else model_instance.plot_results
fig = plot_func(
time_avg, biomass_avg, substrate_avg, product_avg,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std_avg, substrate_std_avg, product_std_avg,
current_experiment_name, legend_position, params_position,
show_legend, show_params, style,
line_color, point_color, line_style, marker_style,
use_differential, axis_labels_dict,
show_error_bars=show_error_bars, # Pass new parameters
error_cap_size=error_cap_size,
error_line_width=error_line_width
)
if fig: figures.append(fig)
experiment_counter +=1
comparison_df = pd.DataFrame(comparison_data)
if not comparison_df.empty:
for col in ['R² Biomasa', 'RMSE Biomasa', 'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto']:
if col in comparison_df.columns:
comparison_df[col] = pd.to_numeric(comparison_df[col], errors='coerce')
comparison_df_sorted = comparison_df.sort_values(
by=['Experimento', 'Modelo', 'R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
ascending=[True, True, False, False, False, True, True, True]
).reset_index(drop=True)
else:
comparison_df_sorted = pd.DataFrame(columns=[
'Experimento', 'Modelo', 'R² Biomasa', 'RMSE Biomasa',
'R² Sustrato', 'RMSE Sustrato', 'R² Producto', 'RMSE Producto'
])
final_message = "Procesamiento completado."
if all_plot_messages:
final_message += " Mensajes:\n" + "\n".join(all_plot_messages)
if not figures and not comparison_df_sorted.empty:
final_message += "\nNo se generaron gráficos, pero hay datos en la tabla."
elif not figures and comparison_df_sorted.empty:
final_message += "\nNo se generaron gráficos ni datos para la tabla."
return figures, comparison_df_sorted, final_message
def create_interface():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Modelos Cinéticos de Bioprocesos")
gr.Markdown(r"""
Análisis y visualización de datos de bioprocesos utilizando modelos cinéticos como Logístico, Gompertz y Moser para el crecimiento de biomasa,
y el modelo de Luedeking-Piret para el consumo de sustrato y la formación de producto.
**Instrucciones:**
1. Sube un archivo Excel. El archivo debe tener una estructura de MultiIndex en las columnas:
- Nivel 0: Nombre del experimento/tratamiento (ej: "Control", "Tratamiento A")
- Nivel 1: Tipo de dato ("Tiempo", "Biomasa", "Sustrato", "Producto")
- Si hay réplicas, deben estar como columnas separadas bajo el mismo nombre de experimento (Nivel 0) y tipo de dato (Nivel 1).
Ejemplo: (Control, Biomasa, Rep1), (Control, Biomasa, Rep2). El código promediará estas réplicas para los modos "average" y "combinado".
Para el modo "independent", se asume una sola serie de datos por (Experimento, TipoDato).
2. Selecciona el/los tipo(s) de modelo(s) de biomasa a ajustar.
3. Elige el modo de análisis:
- `independent`: Analiza cada experimento (columna de Nivel 0) individualmente.
- `average`: Promedia los datos de todos los experimentos dentro de una hoja y ajusta los modelos a estos promedios. Se grafica en subplots separados.
- `combinado`: Similar a `average`, pero grafica Biomasa, Sustrato y Producto en un solo gráfico con múltiples ejes Y.
4. Configura las opciones de graficación (leyenda, parámetros, estilos, colores, etc.).
5. (Opcional) Personaliza los nombres de los experimentos y los títulos de los ejes.
6. Haz clic en "Simular" para generar los gráficos y la tabla comparativa.
7. Puedes exportar la tabla de resultados a Excel.
""")
gr.Markdown(r"""
## Ecuaciones Diferenciales Utilizadas
**Biomasa:**
- Logístico:
$$
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right)
$$
Solución integral: $X(t) = \frac{X_0 \exp(\mu_m t)}{1 - (X_0/X_m)(1 - \exp(\mu_m t))}$
- Gompertz (Modificado):
$$
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right)
$$
Ecuación diferencial:
$$
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)
$$
- Moser (simplificado, asumiendo $S \gg K_s$ o crecimiento no limitado por sustrato modelado explícitamente aquí):
$$
X(t)=X_m(1-e^{-\mu_m(t-K_s)})
$$
Ecuación diferencial (forma simplificada, no estándar de Moser que depende de S):
$$
\frac{dX}{dt}=\mu_m(X_m - X)
$$
**Sustrato y Producto (Luedeking-Piret):**
$$
\frac{dS}{dt} = -p \frac{dX}{dt} - q X \quad \Rightarrow \quad S(t) = S_0 - p(X(t)-X_0) - q \int_0^t X(\tau)d\tau
$$
$$
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X \quad \Rightarrow \quad P(t) = P_0 + \alpha(X(t)-X_0) + \beta \int_0^t X(\tau)d\tau
$$
Donde $X_0, S_0, P_0$ son las concentraciones iniciales.
Parámetros:
- $X_m$: Máxima concentración de biomasa.
- $\mu_m$: Máxima tasa de crecimiento específico.
- $X_0$: Concentración inicial de biomasa.
- $\text{lag}$: Duración de la fase de latencia.
- $K_s$: Constante de afinidad (en el modelo de Moser simplificado, actúa como un tiempo de retardo).
- $p$: Coeficiente de rendimiento de biomasa a partir de sustrato (asociado al crecimiento). $1/Y_{X/S}^{crecimiento}$.
- $q$: Coeficiente de mantenimiento. $m_S$.
- $\alpha$: Coeficiente de formación de producto asociado al crecimiento. $Y_{P/X}^{crecimiento}$.
- $\beta$: Coeficiente de formación de producto no asociado al crecimiento. $m_P$.
""")
with gr.Row():
file_input = gr.File(label="Subir archivo Excel (.xlsx)", file_types=['.xlsx'])
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent",
info="Independent: cada experimento. Average/Combinado: promedio de la hoja.")
with gr.Accordion("Configuración de Modelos y Simulación", open=False):
model_types_selected = gr.CheckboxGroup(
choices=["logistic", "gompertz", "moser"],
label="Tipo(s) de Modelo de Biomasa",
value=["logistic"]
)
use_differential = gr.Checkbox(label="Usar Ecuaciones Diferenciales para Graficar (experimental)", value=False,
info="Si se marca, las curvas se generan resolviendo las EDOs. Si no, por ajuste directo de las formas integradas.")
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000, minimum=1000, step=1000)
experiment_names_str = gr.Textbox(
label="Nombres de los experimentos/hojas (uno por línea, opcional)",
placeholder="Nombre para Hoja 1\nNombre para Hoja 2\n...",
lines=3,
info="Si se deja vacío, se usarán los nombres de las hojas o 'Exp X'."
)
with gr.Accordion("Configuración de Gráficos", open=False):
with gr.Row():
with gr.Column(scale=1):
legend_position = gr.Radio(
choices=["upper left", "upper right", "lower left", "lower right", "best"],
label="Posición de Leyenda", value="best"
)
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
with gr.Column(scale=1):
params_position = gr.Radio(
choices=["upper left", "upper right", "lower left", "lower right", "outside right"],
label="Posición de Parámetros", value="upper right"
)
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
with gr.Row():
style_dropdown = gr.Dropdown(choices=['white', 'dark', 'whitegrid', 'darkgrid', 'ticks'],
label="Estilo de Gráfico (Seaborn)", value='whitegrid')
line_color_picker = gr.ColorPicker(label="Color de Línea (Modelo)", value='#0072B2')
point_color_picker = gr.ColorPicker(label="Color de Puntos (Datos)", value='#D55E00')
with gr.Row():
line_style_dropdown = gr.Dropdown(choices=['-', '--', '-.', ':'], label="Estilo de Línea", value='-')
marker_style_dropdown = gr.Dropdown(choices=['o', 's', '^', 'v', 'D', 'x', '+', '*'],
label="Estilo de Marcador (Puntos)", value='o')
with gr.Row():
x_axis_label_input = gr.Textbox(label="Título Eje X", value="Tiempo (h)", placeholder="Tiempo (unidades)")
biomass_axis_label_input = gr.Textbox(label="Título Eje Y (Biomasa)", value="Biomasa (g/L)", placeholder="Biomasa (unidades)")
with gr.Row():
substrate_axis_label_input = gr.Textbox(label="Título Eje Y (Sustrato)", value="Sustrato (g/L)", placeholder="Sustrato (unidades)")
product_axis_label_input = gr.Textbox(label="Título Eje Y (Producto)", value="Producto (g/L)", placeholder="Producto (unidades)")
# ADDED ERROR BAR CONTROLS
with gr.Row():
show_error_bars_ui = gr.Checkbox(label="Mostrar barras de error", value=True)
error_cap_size_ui = gr.Slider(label="Tamaño de tapa de barras de error", minimum=1, maximum=10, step=1, value=3)
error_line_width_ui = gr.Slider(label="Grosor de línea de error", minimum=0.5, maximum=5, step=0.5, value=1.0)
with gr.Accordion("Configuración Avanzada de Ajuste (No implementado aún)", open=False):
with gr.Row():
lower_bounds_str = gr.Textbox(label="Lower Bounds (no usado actualmente)", lines=3)
upper_bounds_str = gr.Textbox(label="Upper Bounds (no usado actualmente)", lines=3)
simulate_btn = gr.Button("Simular y Graficar", variant="primary")
status_message = gr.Textbox(label="Estado del Procesamiento", interactive=False)
output_gallery = gr.Gallery(label="Resultados Gráficos", columns=[2,1], height='auto', object_fit="contain")
output_table = gr.Dataframe(
label="Tabla Comparativa de Modelos (Ordenada por R² Biomasa Descendente)",
headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa",
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
interactive=False, wrap=True
)
state_df = gr.State(pd.DataFrame())
def run_simulation_interface(file, legend_pos, params_pos, models_sel, analysis_mode, exp_names,
low_bounds, up_bounds, plot_style,
line_col, point_col, line_sty, marker_sty,
show_leg, show_par, use_diff, maxfev,
x_label, biomass_label, substrate_label, product_label,
show_error_bars_arg, error_cap_size_arg, error_line_width_arg): # New error bar args
if file is None:
return [], pd.DataFrame(), "Error: Por favor, sube un archivo Excel.", pd.DataFrame()
axis_labels = {
'x_label': x_label if x_label else 'Tiempo',
'biomass_label': biomass_label if biomass_label else 'Biomasa',
'substrate_label': substrate_label if substrate_label else 'Sustrato',
'product_label': product_label if product_label else 'Producto'
}
if not models_sel:
return [], pd.DataFrame(), "Error: Por favor, selecciona al menos un tipo de modelo de biomasa.", pd.DataFrame()
figures, comparison_df, message = process_all_data(
file, legend_pos, params_pos, models_sel, exp_names,
low_bounds, up_bounds, analysis_mode, plot_style,
line_col, point_col, line_sty, marker_sty,
show_leg, show_par, use_diff, int(maxfev),
axis_labels,
show_error_bars_arg, error_cap_size_arg, error_line_width_arg # Pass new args
)
return figures, comparison_df, message, comparison_df
simulate_btn.click(
fn=run_simulation_interface,
inputs=[
file_input, legend_position, params_position, model_types_selected, mode, experiment_names_str,
lower_bounds_str, upper_bounds_str, style_dropdown,
line_color_picker, point_color_picker, line_style_dropdown, marker_style_dropdown,
show_legend, show_params, use_differential, maxfev_input,
x_axis_label_input, biomass_axis_label_input, substrate_axis_label_input, product_axis_label_input,
show_error_bars_ui, error_cap_size_ui, error_line_width_ui # New UI inputs
],
outputs=[output_gallery, output_table, status_message, state_df]
)
def export_excel_interface(df_to_export):
if df_to_export is None or df_to_export.empty:
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp:
tmp.write(b"No hay datos para exportar.")
return tmp.name
try:
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False, mode='w+b') as tmp:
df_to_export.to_excel(tmp.name, index=False)
return tmp.name
except Exception as e:
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as tmp:
tmp.write(f"Error al exportar a Excel: {e}".encode())
return tmp.name
export_btn = gr.Button("Exportar Tabla a Excel")
download_file_output = gr.File(label="Descargar archivo Excel", interactive=False)
export_btn.click(
fn=export_excel_interface,
inputs=state_df,
outputs=download_file_output
)
gr.Examples(
examples=[
[None, "best", "upper right", ["logistic"], "independent", "Exp A\nExp B", "", "", "whitegrid", "#0072B2", "#D55E00", "-", "o", True, True, False, 50000, "Tiempo (días)", "Células (millones/mL)", "Glucosa (mM)", "Anticuerpo (mg/L)", True, 3, 1.0]
],
inputs=[
file_input, legend_position, params_position, model_types_selected, mode, experiment_names_str,
lower_bounds_str, upper_bounds_str, style_dropdown,
line_color_picker, point_color_picker, line_style_dropdown, marker_style_dropdown,
show_legend, show_params, use_differential, maxfev_input,
x_axis_label_input, biomass_axis_label_input, substrate_axis_label_input, product_axis_label_input,
show_error_bars_ui, error_cap_size_ui, error_line_width_ui # Added example values for new inputs
],
label="Ejemplo de Configuración (subir archivo manualmente)"
)
return demo
if __name__ == '__main__':
try:
import google.colab
IN_COLAB = True
except:
IN_COLAB = False
demo_instance = create_interface()
demo_instance.launch(share=True) # Use share=IN_COLAB for conditional sharing |