Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,25 @@
|
|
| 1 |
-
#
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
# Instalación de librerías necesarias
|
| 5 |
-
#!pip install gradio seaborn scipy -q
|
| 6 |
-
import os
|
| 7 |
-
os.system('pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0')
|
| 8 |
|
| 9 |
from pydantic import BaseModel, ConfigDict
|
| 10 |
-
|
| 11 |
-
class YourModel(BaseModel):
|
| 12 |
-
class Config:
|
| 13 |
-
arbitrary_types_allowed = True
|
| 14 |
-
|
| 15 |
import numpy as np
|
| 16 |
import pandas as pd
|
| 17 |
import matplotlib.pyplot as plt
|
| 18 |
import seaborn as sns
|
| 19 |
from scipy.integrate import odeint
|
| 20 |
-
from scipy.interpolate import interp1d
|
| 21 |
from scipy.optimize import curve_fit
|
| 22 |
from sklearn.metrics import mean_squared_error
|
| 23 |
import gradio as gr
|
| 24 |
import io
|
| 25 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# Definición de la clase BioprocessModel
|
| 28 |
class BioprocessModel:
|
| 29 |
-
def __init__(self):
|
| 30 |
self.params = {}
|
| 31 |
self.r2 = {}
|
| 32 |
self.rmse = {}
|
|
@@ -39,69 +32,70 @@ class BioprocessModel:
|
|
| 39 |
self.datax_std = []
|
| 40 |
self.datas_std = []
|
| 41 |
self.datap_std = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
# Funciones modelo analíticas
|
| 44 |
@staticmethod
|
| 45 |
def logistic(time, xo, xm, um):
|
| 46 |
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
|
| 47 |
|
| 48 |
@staticmethod
|
| 49 |
-
def
|
| 50 |
-
return
|
| 51 |
-
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 52 |
|
| 53 |
@staticmethod
|
| 54 |
-
def
|
| 55 |
-
return
|
| 56 |
-
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 57 |
|
| 58 |
-
# Funciones modelo diferenciales
|
| 59 |
@staticmethod
|
| 60 |
def logistic_diff(X, t, params):
|
| 61 |
xo, xm, um = params
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
X_t =
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def process_data(self, df):
|
| 81 |
-
# Obtener todas las columnas que contengan "Biomasa", "Sustrato", y "Producto"
|
| 82 |
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
|
| 83 |
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
|
| 84 |
product_cols = [col for col in df.columns if col[1] == 'Producto']
|
| 85 |
|
| 86 |
-
# Procesar los datos de tiempo
|
| 87 |
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
|
| 88 |
time = df[time_col].values
|
| 89 |
|
| 90 |
-
# Procesar los datos de biomasa
|
| 91 |
data_biomass = [df[col].values for col in biomass_cols]
|
| 92 |
-
data_biomass = np.array(data_biomass)
|
| 93 |
self.datax.append(data_biomass)
|
| 94 |
self.dataxp.append(np.mean(data_biomass, axis=0))
|
| 95 |
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
| 96 |
|
| 97 |
-
# Procesar los datos de sustrato
|
| 98 |
data_substrate = [df[col].values for col in substrate_cols]
|
| 99 |
data_substrate = np.array(data_substrate)
|
| 100 |
self.datas.append(data_substrate)
|
| 101 |
self.datasp.append(np.mean(data_substrate, axis=0))
|
| 102 |
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
| 103 |
|
| 104 |
-
# Procesar los datos de producto
|
| 105 |
data_product = [df[col].values for col in product_cols]
|
| 106 |
data_product = np.array(data_product)
|
| 107 |
self.datap.append(data_product)
|
|
@@ -110,69 +104,195 @@ class BioprocessModel:
|
|
| 110 |
|
| 111 |
self.time = time
|
| 112 |
|
| 113 |
-
def fit_model(self
|
| 114 |
-
if model_type == 'logistic':
|
| 115 |
-
self.
|
| 116 |
-
self.
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
def generate_fine_time_grid(self, time):
|
| 148 |
-
# Generar una malla temporal más fina para curvas suaves
|
| 149 |
time_fine = np.linspace(time.min(), time.max(), 500)
|
| 150 |
return time_fine
|
| 151 |
|
| 152 |
-
def
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
P0 = po
|
| 175 |
-
P = odeint(self.product_diff, P0, time_fine, args=(product_params, biomass_params, X_func)).flatten()
|
| 176 |
|
| 177 |
return X, S, P, time_fine
|
| 178 |
|
|
@@ -184,11 +304,19 @@ class BioprocessModel:
|
|
| 184 |
style='whitegrid',
|
| 185 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
| 186 |
use_differential=False):
|
| 187 |
-
sns.set_style(style) # Establecer el estilo seleccionado
|
| 188 |
|
| 189 |
-
if
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
else:
|
| 193 |
time_to_plot = time
|
| 194 |
|
|
@@ -196,12 +324,12 @@ class BioprocessModel:
|
|
| 196 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
| 197 |
|
| 198 |
plots = [
|
| 199 |
-
(ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params
|
| 200 |
-
self.r2
|
| 201 |
-
(ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params
|
| 202 |
-
self.r2
|
| 203 |
-
(ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params
|
| 204 |
-
self.r2
|
| 205 |
]
|
| 206 |
|
| 207 |
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
|
|
@@ -211,21 +339,19 @@ class BioprocessModel:
|
|
| 211 |
else:
|
| 212 |
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
|
| 213 |
label='Datos experimentales')
|
| 214 |
-
|
|
|
|
| 215 |
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
|
| 216 |
-
|
| 217 |
-
ax.plot(time, y_pred, linestyle=line_style, color=line_color, label=model_name)
|
| 218 |
ax.set_xlabel('Tiempo')
|
| 219 |
ax.set_ylabel(ylabel)
|
| 220 |
if show_legend:
|
| 221 |
ax.legend(loc=legend_position)
|
| 222 |
ax.set_title(f'{ylabel}')
|
| 223 |
|
| 224 |
-
if show_params:
|
| 225 |
-
param_text = '\n'.join([f"{k} = {v:.
|
| 226 |
-
text = f"{param_text}\nR² = {r2:.
|
| 227 |
-
|
| 228 |
-
# Si la posición es 'outside right', ajustar la posición del texto
|
| 229 |
if params_position == 'outside right':
|
| 230 |
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
|
| 231 |
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
|
|
@@ -247,10 +373,17 @@ class BioprocessModel:
|
|
| 247 |
|
| 248 |
ax.text(text_x, text_y, text, transform=ax.transAxes,
|
| 249 |
verticalalignment=va, horizontalalignment=ha,
|
| 250 |
-
bbox={'boxstyle': 'round', 'facecolor':
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
def plot_combined_results(self, time, biomass, substrate, product,
|
| 256 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
@@ -260,21 +393,27 @@ class BioprocessModel:
|
|
| 260 |
style='whitegrid',
|
| 261 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
| 262 |
use_differential=False):
|
| 263 |
-
sns.set_style(style) # Establecer el estilo seleccionado
|
| 264 |
|
| 265 |
-
if
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
else:
|
| 269 |
time_to_plot = time
|
| 270 |
|
| 271 |
fig, ax1 = plt.subplots(figsize=(10, 7))
|
| 272 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
| 273 |
|
| 274 |
-
# Colores específicos para cada variable
|
| 275 |
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
|
| 276 |
|
| 277 |
-
# Plot Biomasa en ax1
|
| 278 |
ax1.set_xlabel('Tiempo')
|
| 279 |
ax1.set_ylabel('Biomasa', color=colors['Biomasa'])
|
| 280 |
if biomass_std is not None:
|
|
@@ -283,15 +422,10 @@ class BioprocessModel:
|
|
| 283 |
else:
|
| 284 |
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'],
|
| 285 |
label='Biomasa (Datos)')
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
label='Biomasa (Modelo)')
|
| 289 |
-
else:
|
| 290 |
-
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
|
| 291 |
-
label='Biomasa (Modelo)')
|
| 292 |
ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])
|
| 293 |
|
| 294 |
-
# Crear segundo eje y para Sustrato
|
| 295 |
ax2 = ax1.twinx()
|
| 296 |
ax2.set_ylabel('Sustrato', color=colors['Sustrato'])
|
| 297 |
if substrate_std is not None:
|
|
@@ -300,18 +434,13 @@ class BioprocessModel:
|
|
| 300 |
else:
|
| 301 |
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'],
|
| 302 |
label='Sustrato (Datos)')
|
| 303 |
-
if
|
| 304 |
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
|
| 305 |
label='Sustrato (Modelo)')
|
| 306 |
-
else:
|
| 307 |
-
ax2.plot(time, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
|
| 308 |
-
label='Sustrato (Modelo)')
|
| 309 |
ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
|
| 310 |
|
| 311 |
-
# Crear tercer eje y para Producto
|
| 312 |
ax3 = ax1.twinx()
|
| 313 |
-
|
| 314 |
-
ax3.spines["right"].set_position(("axes", 1.1))
|
| 315 |
ax3.set_frame_on(True)
|
| 316 |
ax3.patch.set_visible(False)
|
| 317 |
for sp in ax3.spines.values():
|
|
@@ -324,30 +453,31 @@ class BioprocessModel:
|
|
| 324 |
else:
|
| 325 |
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'],
|
| 326 |
label='Producto (Datos)')
|
| 327 |
-
if
|
| 328 |
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'],
|
| 329 |
label='Producto (Modelo)')
|
| 330 |
-
else:
|
| 331 |
-
ax3.plot(time, y_pred_product, linestyle=line_style, color=colors['Producto'],
|
| 332 |
-
label='Producto (Modelo)')
|
| 333 |
ax3.tick_params(axis='y', labelcolor=colors['Producto'])
|
| 334 |
|
| 335 |
-
# Manejo de leyendas
|
| 336 |
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
|
| 337 |
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
| 338 |
if show_legend:
|
| 339 |
ax1.legend(lines, labels, loc=legend_position)
|
| 340 |
|
| 341 |
-
# Mostrar parámetros y estadísticas en el gráfico
|
| 342 |
if show_params:
|
| 343 |
-
param_text_biomass = '
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
| 346 |
-
param_text_substrate = '
|
| 347 |
-
|
|
|
|
|
|
|
| 348 |
|
| 349 |
-
param_text_product = '
|
| 350 |
-
|
|
|
|
|
|
|
| 351 |
|
| 352 |
total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"
|
| 353 |
|
|
@@ -372,47 +502,57 @@ class BioprocessModel:
|
|
| 372 |
|
| 373 |
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
|
| 374 |
verticalalignment=va, horizontalalignment=ha,
|
| 375 |
-
bbox={'boxstyle':
|
| 376 |
|
| 377 |
-
plt.tight_layout()
|
| 378 |
-
return fig
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
xls = pd.ExcelFile(file.name)
|
| 386 |
-
sheet_names = xls.sheet_names
|
| 387 |
|
| 388 |
-
|
| 389 |
-
model.fit_model(model_type)
|
| 390 |
-
figures = []
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
for sheet_name in sheet_names:
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
time =
|
| 404 |
|
| 405 |
if mode == 'independent':
|
| 406 |
-
# Modo independiente: iterar sobre cada experimento
|
| 407 |
num_experiments = len(df.columns.levels[0])
|
| 408 |
for idx in range(num_experiments):
|
| 409 |
col = df.columns.levels[0][idx]
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
-
# Si hay replicados en el experimento, calcular la desviación estándar
|
| 416 |
biomass_std = None
|
| 417 |
substrate_std = None
|
| 418 |
product_std = None
|
|
@@ -426,132 +566,202 @@ def process_data(file, legend_position, params_position, model_type, experiment_
|
|
| 426 |
product_std = np.std(product, axis=0, ddof=1)
|
| 427 |
product = np.mean(product, axis=0)
|
| 428 |
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
experiment_counter += 1
|
| 463 |
|
| 464 |
-
elif mode
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
experiment_counter += 1
|
| 510 |
|
| 511 |
-
|
| 512 |
-
# Modo combinado: combinar las gráficas en una sola
|
| 513 |
-
time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
|
| 514 |
-
biomass = model.dataxp[-1]
|
| 515 |
-
substrate = model.datasp[-1]
|
| 516 |
-
product = model.datapp[-1]
|
| 517 |
-
|
| 518 |
-
# Obtener las desviaciones estándar
|
| 519 |
-
biomass_std = model.datax_std[-1]
|
| 520 |
-
substrate_std = model.datas_std[-1]
|
| 521 |
-
product_std = model.datap_std[-1]
|
| 522 |
-
|
| 523 |
-
# Obtener límites o usar valores predeterminados
|
| 524 |
-
lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
|
| 525 |
-
upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
|
| 526 |
-
bounds = (lower_bound, upper_bound)
|
| 527 |
-
|
| 528 |
-
# Ajustar el modelo
|
| 529 |
-
y_pred_biomass = model.fit_biomass(time, biomass, bounds)
|
| 530 |
-
y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
|
| 531 |
-
y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
|
| 532 |
-
|
| 533 |
-
# Usar el nombre del experimento proporcionado o un nombre por defecto
|
| 534 |
-
experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
|
| 535 |
-
|
| 536 |
-
fig = model.plot_combined_results(time, biomass, substrate, product,
|
| 537 |
-
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 538 |
-
biomass_std, substrate_std, product_std,
|
| 539 |
-
experiment_name, legend_position, params_position,
|
| 540 |
-
show_legend, show_params,
|
| 541 |
-
style,
|
| 542 |
-
line_color, point_color, line_style, marker_style,
|
| 543 |
-
use_differential)
|
| 544 |
-
figures.append(fig)
|
| 545 |
|
| 546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
|
| 548 |
-
return figures
|
| 549 |
|
| 550 |
def create_interface():
|
| 551 |
-
with gr.Blocks(
|
| 552 |
-
gr.Markdown("# Modelos de Bioproceso: Logístico y Luedeking-Piret")
|
| 553 |
-
|
| 554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
|
| 556 |
file_input = gr.File(label="Subir archivo Excel")
|
| 557 |
|
|
@@ -573,9 +783,12 @@ def create_interface():
|
|
| 573 |
)
|
| 574 |
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
|
| 575 |
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
|
| 578 |
-
|
| 579 |
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
|
| 580 |
|
| 581 |
experiment_names = gr.Textbox(
|
|
@@ -587,72 +800,92 @@ def create_interface():
|
|
| 587 |
with gr.Row():
|
| 588 |
with gr.Column():
|
| 589 |
lower_bounds = gr.Textbox(
|
| 590 |
-
label="Lower Bounds (uno por línea, formato:
|
| 591 |
placeholder="0,0,0\n0,0,0\n...",
|
| 592 |
lines=5
|
| 593 |
)
|
| 594 |
|
| 595 |
with gr.Column():
|
| 596 |
upper_bounds = gr.Textbox(
|
| 597 |
-
label="Upper Bounds (uno por línea, formato:
|
| 598 |
placeholder="inf,inf,inf\ninf,inf,inf\n...",
|
| 599 |
lines=5
|
| 600 |
)
|
| 601 |
|
| 602 |
-
# Añadir un desplegable para seleccionar el estilo del gráfico
|
| 603 |
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
|
| 604 |
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
|
| 605 |
|
| 606 |
-
# Añadir color pickers para líneas y puntos
|
| 607 |
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
|
| 608 |
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
|
| 609 |
|
| 610 |
-
# Añadir listas desplegables para tipo de línea y tipo de punto
|
| 611 |
line_style_options = ['-', '--', '-.', ':']
|
| 612 |
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
|
| 613 |
|
| 614 |
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
|
| 615 |
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
|
| 616 |
|
|
|
|
|
|
|
| 617 |
simulate_btn = gr.Button("Simular")
|
| 618 |
|
| 619 |
-
# Definir un componente gr.Gallery para las salidas
|
| 620 |
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 621 |
|
| 622 |
-
def process_and_plot(file, legend_position, params_position,
|
| 623 |
lower_bounds, upper_bounds, style,
|
| 624 |
line_color, point_color, line_style, marker_style,
|
| 625 |
-
show_legend, show_params, use_differential):
|
| 626 |
-
|
| 627 |
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
|
| 628 |
-
lower_bounds_list = [
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
fn=process_and_plot,
|
| 652 |
inputs=[file_input,
|
| 653 |
legend_position,
|
| 654 |
params_position,
|
| 655 |
-
|
| 656 |
mode,
|
| 657 |
experiment_names,
|
| 658 |
lower_bounds,
|
|
@@ -664,12 +897,28 @@ def create_interface():
|
|
| 664 |
marker_style_dropdown,
|
| 665 |
show_legend,
|
| 666 |
show_params,
|
| 667 |
-
use_differential
|
| 668 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 669 |
)
|
| 670 |
|
| 671 |
return demo
|
| 672 |
|
| 673 |
-
# Crear y lanzar la interfaz
|
| 674 |
demo = create_interface()
|
| 675 |
demo.launch(share=True)
|
|
|
|
| 1 |
+
#import os
|
| 2 |
+
#!pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0 -q
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
from pydantic import BaseModel, ConfigDict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import seaborn as sns
|
| 9 |
from scipy.integrate import odeint
|
|
|
|
| 10 |
from scipy.optimize import curve_fit
|
| 11 |
from sklearn.metrics import mean_squared_error
|
| 12 |
import gradio as gr
|
| 13 |
import io
|
| 14 |
from PIL import Image
|
| 15 |
+
import tempfile
|
| 16 |
+
|
| 17 |
+
class YourModel(BaseModel):
|
| 18 |
+
class Config:
|
| 19 |
+
arbitrary_types_allowed = True
|
| 20 |
|
|
|
|
| 21 |
class BioprocessModel:
|
| 22 |
+
def __init__(self, model_type='logistic', maxfev=50000):
|
| 23 |
self.params = {}
|
| 24 |
self.r2 = {}
|
| 25 |
self.rmse = {}
|
|
|
|
| 32 |
self.datax_std = []
|
| 33 |
self.datas_std = []
|
| 34 |
self.datap_std = []
|
| 35 |
+
self.biomass_model = None
|
| 36 |
+
self.biomass_diff = None
|
| 37 |
+
self.model_type = model_type
|
| 38 |
+
self.maxfev = maxfev
|
| 39 |
|
|
|
|
| 40 |
@staticmethod
|
| 41 |
def logistic(time, xo, xm, um):
|
| 42 |
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
|
| 43 |
|
| 44 |
@staticmethod
|
| 45 |
+
def gompertz(time, xm, um, lag):
|
| 46 |
+
return xm * np.exp(-np.exp((um * np.e / xm) * (lag - time) + 1))
|
|
|
|
| 47 |
|
| 48 |
@staticmethod
|
| 49 |
+
def moser(time, Xm, um, Ks):
|
| 50 |
+
return Xm * (1 - np.exp(-um * (time - Ks)))
|
|
|
|
| 51 |
|
|
|
|
| 52 |
@staticmethod
|
| 53 |
def logistic_diff(X, t, params):
|
| 54 |
xo, xm, um = params
|
| 55 |
+
return um * X * (1 - X / xm)
|
| 56 |
+
|
| 57 |
+
@staticmethod
|
| 58 |
+
def gompertz_diff(X, t, params):
|
| 59 |
+
xm, um, lag = params
|
| 60 |
+
return X * (um * np.e / xm) * np.exp((um * np.e / xm) * (lag - t) + 1)
|
| 61 |
+
|
| 62 |
+
@staticmethod
|
| 63 |
+
def moser_diff(X, t, params):
|
| 64 |
+
Xm, um, Ks = params
|
| 65 |
+
return um * (Xm - X)
|
| 66 |
+
|
| 67 |
+
def substrate(self, time, so, p, q, biomass_params):
|
| 68 |
+
X_t = self.biomass_model(time, *biomass_params)
|
| 69 |
+
dXdt = np.gradient(X_t, time)
|
| 70 |
+
integral_X = np.cumsum(X_t) * np.gradient(time)
|
| 71 |
+
return so - p * (X_t - biomass_params[0]) - q * integral_X
|
| 72 |
+
|
| 73 |
+
def product(self, time, po, alpha, beta, biomass_params):
|
| 74 |
+
X_t = self.biomass_model(time, *biomass_params)
|
| 75 |
+
dXdt = np.gradient(X_t, time)
|
| 76 |
+
integral_X = np.cumsum(X_t) * np.gradient(time)
|
| 77 |
+
return po + alpha * (X_t - biomass_params[0]) + beta * integral_X
|
| 78 |
+
|
| 79 |
def process_data(self, df):
|
|
|
|
| 80 |
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
|
| 81 |
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
|
| 82 |
product_cols = [col for col in df.columns if col[1] == 'Producto']
|
| 83 |
|
|
|
|
| 84 |
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
|
| 85 |
time = df[time_col].values
|
| 86 |
|
|
|
|
| 87 |
data_biomass = [df[col].values for col in biomass_cols]
|
| 88 |
+
data_biomass = np.array(data_biomass)
|
| 89 |
self.datax.append(data_biomass)
|
| 90 |
self.dataxp.append(np.mean(data_biomass, axis=0))
|
| 91 |
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
| 92 |
|
|
|
|
| 93 |
data_substrate = [df[col].values for col in substrate_cols]
|
| 94 |
data_substrate = np.array(data_substrate)
|
| 95 |
self.datas.append(data_substrate)
|
| 96 |
self.datasp.append(np.mean(data_substrate, axis=0))
|
| 97 |
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
| 98 |
|
|
|
|
| 99 |
data_product = [df[col].values for col in product_cols]
|
| 100 |
data_product = np.array(data_product)
|
| 101 |
self.datap.append(data_product)
|
|
|
|
| 104 |
|
| 105 |
self.time = time
|
| 106 |
|
| 107 |
+
def fit_model(self):
|
| 108 |
+
if self.model_type == 'logistic':
|
| 109 |
+
self.biomass_model = self.logistic
|
| 110 |
+
self.biomass_diff = self.logistic_diff
|
| 111 |
+
elif self.model_type == 'gompertz':
|
| 112 |
+
self.biomass_model = self.gompertz
|
| 113 |
+
self.biomass_diff = self.gompertz_diff
|
| 114 |
+
elif self.model_type == 'moser':
|
| 115 |
+
self.biomass_model = self.moser
|
| 116 |
+
self.biomass_diff = self.moser_diff
|
| 117 |
+
|
| 118 |
+
def fit_biomass(self, time, biomass):
|
| 119 |
+
try:
|
| 120 |
+
if self.model_type == 'logistic':
|
| 121 |
+
p0 = [min(biomass), max(biomass)*1.5 if max(biomass)>0 else 1.0, 0.1]
|
| 122 |
+
popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev)
|
| 123 |
+
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
|
| 124 |
+
y_pred = self.logistic(time, *popt)
|
| 125 |
+
elif self.model_type == 'gompertz':
|
| 126 |
+
p0 = [max(biomass) if max(biomass)>0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))]]
|
| 127 |
+
popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev)
|
| 128 |
+
self.params['biomass'] = {'xm': popt[0], 'um': popt[1], 'lag': popt[2]}
|
| 129 |
+
y_pred = self.gompertz(time, *popt)
|
| 130 |
+
elif self.model_type == 'moser':
|
| 131 |
+
p0 = [max(biomass) if max(biomass)>0 else 1.0, 0.1, min(time)]
|
| 132 |
+
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev)
|
| 133 |
+
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]}
|
| 134 |
+
y_pred = self.moser(time, *popt)
|
| 135 |
+
|
| 136 |
+
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
|
| 137 |
+
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
|
| 138 |
+
return y_pred
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Error en fit_biomass_{self.model_type}: {e}")
|
| 141 |
+
return None
|
| 142 |
+
|
| 143 |
+
def fit_substrate(self, time, substrate, biomass_params):
|
| 144 |
+
try:
|
| 145 |
+
if self.model_type == 'logistic':
|
| 146 |
+
p0 = [min(substrate), 0.01, 0.01]
|
| 147 |
+
popt, _ = curve_fit(
|
| 148 |
+
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]),
|
| 149 |
+
time, substrate, p0=p0, maxfev=self.maxfev
|
| 150 |
+
)
|
| 151 |
+
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
|
| 152 |
+
y_pred = self.substrate(time, *popt, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']])
|
| 153 |
+
elif self.model_type == 'gompertz':
|
| 154 |
+
p0 = [min(substrate), 0.01, 0.01]
|
| 155 |
+
popt, _ = curve_fit(
|
| 156 |
+
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]),
|
| 157 |
+
time, substrate, p0=p0, maxfev=self.maxfev
|
| 158 |
+
)
|
| 159 |
+
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
|
| 160 |
+
y_pred = self.substrate(time, *popt, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']])
|
| 161 |
+
elif self.model_type == 'moser':
|
| 162 |
+
p0 = [min(substrate), 0.01, 0.01]
|
| 163 |
+
popt, _ = curve_fit(
|
| 164 |
+
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]),
|
| 165 |
+
time, substrate, p0=p0, maxfev=self.maxfev
|
| 166 |
+
)
|
| 167 |
+
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
|
| 168 |
+
y_pred = self.substrate(time, *popt, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']])
|
| 169 |
+
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
|
| 170 |
+
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
|
| 171 |
+
return y_pred
|
| 172 |
+
except Exception as e:
|
| 173 |
+
print(f"Error en fit_substrate_{self.model_type}: {e}")
|
| 174 |
+
return None
|
| 175 |
+
|
| 176 |
+
def fit_product(self, time, product, biomass_params):
|
| 177 |
+
try:
|
| 178 |
+
if self.model_type == 'logistic':
|
| 179 |
+
p0 = [min(product), 0.01, 0.01]
|
| 180 |
+
popt, _ = curve_fit(
|
| 181 |
+
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]),
|
| 182 |
+
time, product, p0=p0, maxfev=self.maxfev
|
| 183 |
+
)
|
| 184 |
+
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
| 185 |
+
y_pred = self.product(time, *popt, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']])
|
| 186 |
+
elif self.model_type == 'gompertz':
|
| 187 |
+
p0 = [min(product), 0.01, 0.01]
|
| 188 |
+
popt, _ = curve_fit(
|
| 189 |
+
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]),
|
| 190 |
+
time, product, p0=p0, maxfev=self.maxfev
|
| 191 |
+
)
|
| 192 |
+
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
| 193 |
+
y_pred = self.product(time, *popt, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']])
|
| 194 |
+
elif self.model_type == 'moser':
|
| 195 |
+
p0 = [min(product), 0.01, 0.01]
|
| 196 |
+
popt, _ = curve_fit(
|
| 197 |
+
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]),
|
| 198 |
+
time, product, p0=p0, maxfev=self.maxfev
|
| 199 |
+
)
|
| 200 |
+
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
| 201 |
+
y_pred = self.product(time, *popt, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']])
|
| 202 |
+
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
|
| 203 |
+
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
|
| 204 |
+
return y_pred
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Error en fit_product_{self.model_type}: {e}")
|
| 207 |
+
return None
|
| 208 |
+
|
| 209 |
def generate_fine_time_grid(self, time):
|
|
|
|
| 210 |
time_fine = np.linspace(time.min(), time.max(), 500)
|
| 211 |
return time_fine
|
| 212 |
|
| 213 |
+
def system(self, y, t, biomass_params, substrate_params, product_params, model_type):
|
| 214 |
+
X, S, P = y
|
| 215 |
+
|
| 216 |
+
if model_type == 'logistic':
|
| 217 |
+
dXdt = self.logistic_diff(X, t, biomass_params)
|
| 218 |
+
elif model_type == 'gompertz':
|
| 219 |
+
dXdt = self.gompertz_diff(X, t, biomass_params)
|
| 220 |
+
elif model_type == 'moser':
|
| 221 |
+
dXdt = self.moser_diff(X, t, biomass_params)
|
| 222 |
+
else:
|
| 223 |
+
dXdt = 0.0
|
| 224 |
+
|
| 225 |
+
so, p, q = substrate_params
|
| 226 |
+
po, alpha, beta = product_params
|
| 227 |
+
|
| 228 |
+
dSdt = -p * dXdt - q * X
|
| 229 |
+
dPdt = alpha * dXdt + beta * X
|
| 230 |
+
return [dXdt, dSdt, dPdt]
|
| 231 |
+
|
| 232 |
+
def get_initial_conditions(self, time, biomass, substrate, product):
|
| 233 |
+
if 'biomass' in self.params:
|
| 234 |
+
if self.model_type == 'logistic':
|
| 235 |
+
xo = self.params['biomass']['xo']
|
| 236 |
+
X0 = xo
|
| 237 |
+
elif self.model_type == 'gompertz':
|
| 238 |
+
xm = self.params['biomass']['xm']
|
| 239 |
+
um = self.params['biomass']['um']
|
| 240 |
+
lag = self.params['biomass']['lag']
|
| 241 |
+
X0 = xm * np.exp(-np.exp((um * np.e / xm)*(lag - 0)+1))
|
| 242 |
+
elif self.model_type == 'moser':
|
| 243 |
+
Xm = self.params['biomass']['Xm']
|
| 244 |
+
um = self.params['biomass']['um']
|
| 245 |
+
Ks = self.params['biomass']['Ks']
|
| 246 |
+
X0 = Xm*(1 - np.exp(-um*(0 - Ks)))
|
| 247 |
+
else:
|
| 248 |
+
X0 = biomass[0]
|
| 249 |
+
|
| 250 |
+
if 'substrate' in self.params:
|
| 251 |
+
so = self.params['substrate']['so']
|
| 252 |
+
S0 = so
|
| 253 |
+
else:
|
| 254 |
+
S0 = substrate[0]
|
| 255 |
+
|
| 256 |
+
if 'product' in self.params:
|
| 257 |
+
po = self.params['product']['po']
|
| 258 |
+
P0 = po
|
| 259 |
+
else:
|
| 260 |
+
P0 = product[0]
|
| 261 |
+
|
| 262 |
+
return [X0, S0, P0]
|
| 263 |
|
| 264 |
+
def solve_differential_equations(self, time, biomass, substrate, product):
|
| 265 |
+
if 'biomass' not in self.params or not self.params['biomass']:
|
| 266 |
+
print("No hay parámetros de biomasa, no se pueden resolver las EDO.")
|
| 267 |
+
return None, None, None, time
|
| 268 |
|
| 269 |
+
if self.model_type == 'logistic':
|
| 270 |
+
biomass_params = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']]
|
| 271 |
+
elif self.model_type == 'gompertz':
|
| 272 |
+
biomass_params = [self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']]
|
| 273 |
+
elif self.model_type == 'moser':
|
| 274 |
+
biomass_params = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']]
|
| 275 |
+
else:
|
| 276 |
+
biomass_params = [0,0,0]
|
| 277 |
+
|
| 278 |
+
if 'substrate' in self.params:
|
| 279 |
+
substrate_params = [self.params['substrate']['so'], self.params['substrate']['p'], self.params['substrate']['q']]
|
| 280 |
+
else:
|
| 281 |
+
substrate_params = [0,0,0]
|
| 282 |
|
| 283 |
+
if 'product' in self.params:
|
| 284 |
+
product_params = [self.params['product']['po'], self.params['product']['alpha'], self.params['product']['beta']]
|
| 285 |
+
else:
|
| 286 |
+
product_params = [0,0,0]
|
| 287 |
+
|
| 288 |
+
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product)
|
| 289 |
+
time_fine = self.generate_fine_time_grid(time)
|
| 290 |
+
sol = odeint(self.system, initial_conditions, time_fine,
|
| 291 |
+
args=(biomass_params, substrate_params, product_params, self.model_type))
|
| 292 |
|
| 293 |
+
X = sol[:, 0]
|
| 294 |
+
S = sol[:, 1]
|
| 295 |
+
P = sol[:, 2]
|
|
|
|
|
|
|
| 296 |
|
| 297 |
return X, S, P, time_fine
|
| 298 |
|
|
|
|
| 304 |
style='whitegrid',
|
| 305 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
| 306 |
use_differential=False):
|
|
|
|
| 307 |
|
| 308 |
+
if y_pred_biomass is None:
|
| 309 |
+
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
| 310 |
+
return None
|
| 311 |
+
|
| 312 |
+
sns.set_style(style)
|
| 313 |
+
|
| 314 |
+
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
| 315 |
+
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
| 316 |
+
if X is not None:
|
| 317 |
+
y_pred_biomass, y_pred_substrate, y_pred_product = X, S, P
|
| 318 |
+
else:
|
| 319 |
+
time_to_plot = time
|
| 320 |
else:
|
| 321 |
time_to_plot = time
|
| 322 |
|
|
|
|
| 324 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
| 325 |
|
| 326 |
plots = [
|
| 327 |
+
(ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params.get('biomass', {}),
|
| 328 |
+
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)),
|
| 329 |
+
(ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params.get('substrate', {}),
|
| 330 |
+
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)),
|
| 331 |
+
(ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params.get('product', {}),
|
| 332 |
+
self.r2.get('product', np.nan), self.rmse.get('product', np.nan))
|
| 333 |
]
|
| 334 |
|
| 335 |
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
|
|
|
|
| 339 |
else:
|
| 340 |
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
|
| 341 |
label='Datos experimentales')
|
| 342 |
+
|
| 343 |
+
if y_pred is not None:
|
| 344 |
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
|
| 345 |
+
|
|
|
|
| 346 |
ax.set_xlabel('Tiempo')
|
| 347 |
ax.set_ylabel(ylabel)
|
| 348 |
if show_legend:
|
| 349 |
ax.legend(loc=legend_position)
|
| 350 |
ax.set_title(f'{ylabel}')
|
| 351 |
|
| 352 |
+
if show_params and params and all(np.isfinite(list(map(float, params.values())))):
|
| 353 |
+
param_text = '\n'.join([f"{k} = {v:.3f}" for k, v in params.items()])
|
| 354 |
+
text = f"{param_text}\nR² = {r2:.3f}\nRMSE = {rmse:.3f}"
|
|
|
|
|
|
|
| 355 |
if params_position == 'outside right':
|
| 356 |
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
|
| 357 |
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
|
|
|
|
| 373 |
|
| 374 |
ax.text(text_x, text_y, text, transform=ax.transAxes,
|
| 375 |
verticalalignment=va, horizontalalignment=ha,
|
| 376 |
+
bbox={'boxstyle': 'round', 'facecolor':'white', 'alpha':0.5})
|
| 377 |
+
|
| 378 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
| 379 |
|
| 380 |
+
buf = io.BytesIO()
|
| 381 |
+
fig.savefig(buf, format='png')
|
| 382 |
+
buf.seek(0)
|
| 383 |
+
image = Image.open(buf).convert("RGB")
|
| 384 |
+
plt.close(fig)
|
| 385 |
+
|
| 386 |
+
return image
|
| 387 |
|
| 388 |
def plot_combined_results(self, time, biomass, substrate, product,
|
| 389 |
y_pred_biomass, y_pred_substrate, y_pred_product,
|
|
|
|
| 393 |
style='whitegrid',
|
| 394 |
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
|
| 395 |
use_differential=False):
|
|
|
|
| 396 |
|
| 397 |
+
if y_pred_biomass is None:
|
| 398 |
+
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.")
|
| 399 |
+
return None
|
| 400 |
+
|
| 401 |
+
sns.set_style(style)
|
| 402 |
+
|
| 403 |
+
if use_differential and 'biomass' in self.params and self.params['biomass']:
|
| 404 |
+
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product)
|
| 405 |
+
if X is not None:
|
| 406 |
+
y_pred_biomass, y_pred_substrate, y_pred_product = X, S, P
|
| 407 |
+
else:
|
| 408 |
+
time_to_plot = time
|
| 409 |
else:
|
| 410 |
time_to_plot = time
|
| 411 |
|
| 412 |
fig, ax1 = plt.subplots(figsize=(10, 7))
|
| 413 |
fig.suptitle(f'{experiment_name}', fontsize=16)
|
| 414 |
|
|
|
|
| 415 |
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
|
| 416 |
|
|
|
|
| 417 |
ax1.set_xlabel('Tiempo')
|
| 418 |
ax1.set_ylabel('Biomasa', color=colors['Biomasa'])
|
| 419 |
if biomass_std is not None:
|
|
|
|
| 422 |
else:
|
| 423 |
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'],
|
| 424 |
label='Biomasa (Datos)')
|
| 425 |
+
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
|
| 426 |
+
label='Biomasa (Modelo)')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])
|
| 428 |
|
|
|
|
| 429 |
ax2 = ax1.twinx()
|
| 430 |
ax2.set_ylabel('Sustrato', color=colors['Sustrato'])
|
| 431 |
if substrate_std is not None:
|
|
|
|
| 434 |
else:
|
| 435 |
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'],
|
| 436 |
label='Sustrato (Datos)')
|
| 437 |
+
if y_pred_substrate is not None:
|
| 438 |
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
|
| 439 |
label='Sustrato (Modelo)')
|
|
|
|
|
|
|
|
|
|
| 440 |
ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
|
| 441 |
|
|
|
|
| 442 |
ax3 = ax1.twinx()
|
| 443 |
+
ax3.spines["right"].set_position(("axes", 1.2))
|
|
|
|
| 444 |
ax3.set_frame_on(True)
|
| 445 |
ax3.patch.set_visible(False)
|
| 446 |
for sp in ax3.spines.values():
|
|
|
|
| 453 |
else:
|
| 454 |
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'],
|
| 455 |
label='Producto (Datos)')
|
| 456 |
+
if y_pred_product is not None:
|
| 457 |
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'],
|
| 458 |
label='Producto (Modelo)')
|
|
|
|
|
|
|
|
|
|
| 459 |
ax3.tick_params(axis='y', labelcolor=colors['Producto'])
|
| 460 |
|
|
|
|
| 461 |
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
|
| 462 |
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
| 463 |
if show_legend:
|
| 464 |
ax1.legend(lines, labels, loc=legend_position)
|
| 465 |
|
|
|
|
| 466 |
if show_params:
|
| 467 |
+
param_text_biomass = ''
|
| 468 |
+
if 'biomass' in self.params:
|
| 469 |
+
param_text_biomass = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['biomass'].items()])
|
| 470 |
+
text_biomass = f"Biomasa:\n{param_text_biomass}\nR² = {self.r2.get('biomass', np.nan):.3f}\nRMSE = {self.rmse.get('biomass', np.nan):.3f}"
|
| 471 |
|
| 472 |
+
param_text_substrate = ''
|
| 473 |
+
if 'substrate' in self.params:
|
| 474 |
+
param_text_substrate = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['substrate'].items()])
|
| 475 |
+
text_substrate = f"Sustrato:\n{param_text_substrate}\nR² = {self.r2.get('substrate', np.nan):.3f}\nRMSE = {self.rmse.get('substrate', np.nan):.3f}"
|
| 476 |
|
| 477 |
+
param_text_product = ''
|
| 478 |
+
if 'product' in self.params:
|
| 479 |
+
param_text_product = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['product'].items()])
|
| 480 |
+
text_product = f"Producto:\n{param_text_product}\nR² = {self.r2.get('product', np.nan):.3f}\nRMSE = {self.rmse.get('product', np.nan):.3f}"
|
| 481 |
|
| 482 |
total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"
|
| 483 |
|
|
|
|
| 502 |
|
| 503 |
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
|
| 504 |
verticalalignment=va, horizontalalignment=ha,
|
| 505 |
+
bbox={'boxstyle':'round', 'facecolor':'white', 'alpha':0.5})
|
| 506 |
|
| 507 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
|
|
|
| 508 |
|
| 509 |
+
buf = io.BytesIO()
|
| 510 |
+
fig.savefig(buf, format='png')
|
| 511 |
+
buf.seek(0)
|
| 512 |
+
image = Image.open(buf).convert("RGB")
|
| 513 |
+
plt.close(fig)
|
|
|
|
|
|
|
| 514 |
|
| 515 |
+
return image
|
|
|
|
|
|
|
| 516 |
|
| 517 |
+
def process_all_data(file, legend_position, params_position, model_types, experiment_names, lower_bounds, upper_bounds,
|
| 518 |
+
mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
|
| 519 |
+
line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False, maxfev_val=50000):
|
| 520 |
|
| 521 |
+
try:
|
| 522 |
+
xls = pd.ExcelFile(file.name)
|
| 523 |
+
except Exception as e:
|
| 524 |
+
print(f"Error al leer el archivo Excel: {e}")
|
| 525 |
+
return [], pd.DataFrame()
|
| 526 |
+
|
| 527 |
+
sheet_names = xls.sheet_names
|
| 528 |
+
figures = []
|
| 529 |
+
comparison_data = []
|
| 530 |
+
experiment_counter = 0
|
| 531 |
|
| 532 |
for sheet_name in sheet_names:
|
| 533 |
+
try:
|
| 534 |
+
df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])
|
| 535 |
+
except Exception as e:
|
| 536 |
+
print(f"Error al leer la hoja '{sheet_name}': {e}")
|
| 537 |
+
continue
|
| 538 |
|
| 539 |
+
model_dummy = BioprocessModel()
|
| 540 |
+
model_dummy.process_data(df)
|
| 541 |
+
time = model_dummy.time
|
| 542 |
|
| 543 |
if mode == 'independent':
|
|
|
|
| 544 |
num_experiments = len(df.columns.levels[0])
|
| 545 |
for idx in range(num_experiments):
|
| 546 |
col = df.columns.levels[0][idx]
|
| 547 |
+
try:
|
| 548 |
+
time_exp = df[(col, 'Tiempo')].dropna().values
|
| 549 |
+
biomass = df[(col, 'Biomasa')].dropna().values
|
| 550 |
+
substrate = df[(col, 'Sustrato')].dropna().values
|
| 551 |
+
product = df[(col, 'Producto')].dropna().values
|
| 552 |
+
except KeyError as e:
|
| 553 |
+
print(f"Error al procesar el experimento '{col}': {e}")
|
| 554 |
+
continue
|
| 555 |
|
|
|
|
| 556 |
biomass_std = None
|
| 557 |
substrate_std = None
|
| 558 |
product_std = None
|
|
|
|
| 566 |
product_std = np.std(product, axis=0, ddof=1)
|
| 567 |
product = np.mean(product, axis=0)
|
| 568 |
|
| 569 |
+
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
| 570 |
+
else f"Tratamiento {experiment_counter + 1}")
|
| 571 |
+
|
| 572 |
+
for model_type in model_types:
|
| 573 |
+
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
| 574 |
+
model.fit_model()
|
| 575 |
+
|
| 576 |
+
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
| 577 |
+
if y_pred_biomass is None:
|
| 578 |
+
comparison_data.append({
|
| 579 |
+
'Experimento': experiment_name,
|
| 580 |
+
'Modelo': model_type.capitalize(),
|
| 581 |
+
'R² Biomasa': np.nan,
|
| 582 |
+
'RMSE Biomasa': np.nan,
|
| 583 |
+
'R² Sustrato': np.nan,
|
| 584 |
+
'RMSE Sustrato': np.nan,
|
| 585 |
+
'R² Producto': np.nan,
|
| 586 |
+
'RMSE Producto': np.nan
|
| 587 |
+
})
|
| 588 |
+
continue
|
| 589 |
+
else:
|
| 590 |
+
if 'biomass' in model.params and model.params['biomass']:
|
| 591 |
+
y_pred_substrate = model.fit_substrate(time_exp, substrate, model.params['biomass'])
|
| 592 |
+
y_pred_product = model.fit_product(time_exp, product, model.params['biomass'])
|
| 593 |
+
else:
|
| 594 |
+
y_pred_substrate = None
|
| 595 |
+
y_pred_product = None
|
| 596 |
+
|
| 597 |
+
comparison_data.append({
|
| 598 |
+
'Experimento': experiment_name,
|
| 599 |
+
'Modelo': model_type.capitalize(),
|
| 600 |
+
'R² Biomasa': model.r2.get('biomass', np.nan),
|
| 601 |
+
'RMSE Biomasa': model.rmse.get('biomass', np.nan),
|
| 602 |
+
'R² Sustrato': model.r2.get('substrate', np.nan),
|
| 603 |
+
'RMSE Sustrato': model.rmse.get('substrate', np.nan),
|
| 604 |
+
'R² Producto': model.r2.get('product', np.nan),
|
| 605 |
+
'RMSE Producto': model.rmse.get('product', np.nan)
|
| 606 |
+
})
|
| 607 |
+
|
| 608 |
+
if mode == 'combinado':
|
| 609 |
+
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
| 610 |
+
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 611 |
+
biomass_std, substrate_std, product_std,
|
| 612 |
+
experiment_name,
|
| 613 |
+
legend_position, params_position,
|
| 614 |
+
show_legend, show_params,
|
| 615 |
+
style,
|
| 616 |
+
line_color, point_color, line_style, marker_style,
|
| 617 |
+
use_differential)
|
| 618 |
+
else:
|
| 619 |
+
fig = model.plot_results(time_exp, biomass, substrate, product,
|
| 620 |
+
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 621 |
+
biomass_std, substrate_std, product_std,
|
| 622 |
+
experiment_name,
|
| 623 |
+
legend_position, params_position,
|
| 624 |
+
show_legend, show_params,
|
| 625 |
+
style,
|
| 626 |
+
line_color, point_color, line_style, marker_style,
|
| 627 |
+
use_differential)
|
| 628 |
+
if fig is not None:
|
| 629 |
+
figures.append(fig)
|
| 630 |
|
| 631 |
experiment_counter += 1
|
| 632 |
|
| 633 |
+
elif mode in ['average', 'combinado']:
|
| 634 |
+
try:
|
| 635 |
+
time_exp = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
|
| 636 |
+
biomass = model_dummy.dataxp[-1]
|
| 637 |
+
substrate = model_dummy.datasp[-1]
|
| 638 |
+
product = model_dummy.datapp[-1]
|
| 639 |
+
except IndexError as e:
|
| 640 |
+
print(f"Error al obtener los datos promedio de la hoja '{sheet_name}': {e}")
|
| 641 |
+
continue
|
| 642 |
+
|
| 643 |
+
biomass_std = model_dummy.datax_std[-1]
|
| 644 |
+
substrate_std = model_dummy.datas_std[-1]
|
| 645 |
+
product_std = model_dummy.datap_std[-1]
|
| 646 |
+
|
| 647 |
+
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names)
|
| 648 |
+
else f"Tratamiento {experiment_counter + 1}")
|
| 649 |
+
|
| 650 |
+
for model_type in model_types:
|
| 651 |
+
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val)
|
| 652 |
+
model.fit_model()
|
| 653 |
+
|
| 654 |
+
y_pred_biomass = model.fit_biomass(time_exp, biomass)
|
| 655 |
+
if y_pred_biomass is None:
|
| 656 |
+
comparison_data.append({
|
| 657 |
+
'Experimento': experiment_name,
|
| 658 |
+
'Modelo': model_type.capitalize(),
|
| 659 |
+
'R² Biomasa': np.nan,
|
| 660 |
+
'RMSE Biomasa': np.nan,
|
| 661 |
+
'R² Sustrato': np.nan,
|
| 662 |
+
'RMSE Sustrato': np.nan,
|
| 663 |
+
'R² Producto': np.nan,
|
| 664 |
+
'RMSE Producto': np.nan
|
| 665 |
+
})
|
| 666 |
+
continue
|
| 667 |
+
else:
|
| 668 |
+
if 'biomass' in model.params and model.params['biomass']:
|
| 669 |
+
y_pred_substrate = model.fit_substrate(time_exp, substrate, model.params['biomass'])
|
| 670 |
+
y_pred_product = model.fit_product(time_exp, product, model.params['biomass'])
|
| 671 |
+
else:
|
| 672 |
+
y_pred_substrate = None
|
| 673 |
+
y_pred_product = None
|
| 674 |
+
|
| 675 |
+
comparison_data.append({
|
| 676 |
+
'Experimento': experiment_name,
|
| 677 |
+
'Modelo': model_type.capitalize(),
|
| 678 |
+
'R² Biomasa': model.r2.get('biomass', np.nan),
|
| 679 |
+
'RMSE Biomasa': model.rmse.get('biomass', np.nan),
|
| 680 |
+
'R² Sustrato': model.r2.get('substrate', np.nan),
|
| 681 |
+
'RMSE Sustrato': model.rmse.get('substrate', np.nan),
|
| 682 |
+
'R² Producto': model.r2.get('product', np.nan),
|
| 683 |
+
'RMSE Producto': model.rmse.get('product', np.nan)
|
| 684 |
+
})
|
| 685 |
+
|
| 686 |
+
if mode == 'combinado':
|
| 687 |
+
fig = model.plot_combined_results(time_exp, biomass, substrate, product,
|
| 688 |
+
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 689 |
+
biomass_std, substrate_std, product_std,
|
| 690 |
+
experiment_name,
|
| 691 |
+
legend_position, params_position,
|
| 692 |
+
show_legend, show_params,
|
| 693 |
+
style,
|
| 694 |
+
line_color, point_color, line_style, marker_style,
|
| 695 |
+
use_differential)
|
| 696 |
+
else:
|
| 697 |
+
fig = model.plot_results(time_exp, biomass, substrate, product,
|
| 698 |
+
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 699 |
+
biomass_std, substrate_std, product_std,
|
| 700 |
+
experiment_name,
|
| 701 |
+
legend_position, params_position,
|
| 702 |
+
show_legend, show_params,
|
| 703 |
+
style,
|
| 704 |
+
line_color, point_color, line_style, marker_style,
|
| 705 |
+
use_differential)
|
| 706 |
+
if fig is not None:
|
| 707 |
+
figures.append(fig)
|
| 708 |
|
| 709 |
experiment_counter += 1
|
| 710 |
|
| 711 |
+
comparison_df = pd.DataFrame(comparison_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
|
| 713 |
+
if not comparison_df.empty:
|
| 714 |
+
comparison_df_sorted = comparison_df.sort_values(
|
| 715 |
+
by=['R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'],
|
| 716 |
+
ascending=[False, False, False, True, True, True]
|
| 717 |
+
).reset_index(drop=True)
|
| 718 |
+
else:
|
| 719 |
+
comparison_df_sorted = comparison_df
|
| 720 |
|
| 721 |
+
return figures, comparison_df_sorted
|
| 722 |
|
| 723 |
def create_interface():
|
| 724 |
+
with gr.Blocks() as demo:
|
| 725 |
+
gr.Markdown("# Modelos de Bioproceso: Logístico, Gompertz, Moser y Luedeking-Piret")
|
| 726 |
+
|
| 727 |
+
gr.Markdown(r"""
|
| 728 |
+
## Ecuaciones Diferenciales Utilizadas
|
| 729 |
+
|
| 730 |
+
**Biomasa:**
|
| 731 |
+
|
| 732 |
+
- Logístico:
|
| 733 |
+
$$
|
| 734 |
+
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right)
|
| 735 |
+
$$
|
| 736 |
+
|
| 737 |
+
- Gompertz:
|
| 738 |
+
$$
|
| 739 |
+
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right)
|
| 740 |
+
$$
|
| 741 |
+
|
| 742 |
+
Ecuación diferencial:
|
| 743 |
+
$$
|
| 744 |
+
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)
|
| 745 |
+
$$
|
| 746 |
+
|
| 747 |
+
- Moser (simplificado):
|
| 748 |
+
$$
|
| 749 |
+
X(t)=X_m(1-e^{-\mu_m(t-K_s)})
|
| 750 |
+
$$
|
| 751 |
+
|
| 752 |
+
$$
|
| 753 |
+
\frac{dX}{dt}=\mu_m(X_m - X)
|
| 754 |
+
$$
|
| 755 |
+
|
| 756 |
+
**Sustrato y Producto (Luedeking-Piret):**
|
| 757 |
+
$$
|
| 758 |
+
\frac{dS}{dt} = -p \frac{dX}{dt} - q X
|
| 759 |
+
$$
|
| 760 |
+
|
| 761 |
+
$$
|
| 762 |
+
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X
|
| 763 |
+
$$
|
| 764 |
+
""")
|
| 765 |
|
| 766 |
file_input = gr.File(label="Subir archivo Excel")
|
| 767 |
|
|
|
|
| 783 |
)
|
| 784 |
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
|
| 785 |
|
| 786 |
+
model_types = gr.CheckboxGroup(
|
| 787 |
+
choices=["logistic", "gompertz", "moser"],
|
| 788 |
+
label="Tipo(s) de Modelo",
|
| 789 |
+
value=["logistic"]
|
| 790 |
+
)
|
| 791 |
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
|
|
|
|
| 792 |
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
|
| 793 |
|
| 794 |
experiment_names = gr.Textbox(
|
|
|
|
| 800 |
with gr.Row():
|
| 801 |
with gr.Column():
|
| 802 |
lower_bounds = gr.Textbox(
|
| 803 |
+
label="Lower Bounds (uno por línea, formato: param1,param2,param3)",
|
| 804 |
placeholder="0,0,0\n0,0,0\n...",
|
| 805 |
lines=5
|
| 806 |
)
|
| 807 |
|
| 808 |
with gr.Column():
|
| 809 |
upper_bounds = gr.Textbox(
|
| 810 |
+
label="Upper Bounds (uno por línea, formato: param1,param2,param3)",
|
| 811 |
placeholder="inf,inf,inf\ninf,inf,inf\n...",
|
| 812 |
lines=5
|
| 813 |
)
|
| 814 |
|
|
|
|
| 815 |
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
|
| 816 |
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
|
| 817 |
|
|
|
|
| 818 |
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
|
| 819 |
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
|
| 820 |
|
|
|
|
| 821 |
line_style_options = ['-', '--', '-.', ':']
|
| 822 |
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
|
| 823 |
|
| 824 |
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
|
| 825 |
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
|
| 826 |
|
| 827 |
+
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000)
|
| 828 |
+
|
| 829 |
simulate_btn = gr.Button("Simular")
|
| 830 |
|
|
|
|
| 831 |
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
|
| 832 |
+
output_table = gr.Dataframe(
|
| 833 |
+
label="Tabla Comparativa de Modelos",
|
| 834 |
+
headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa",
|
| 835 |
+
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"],
|
| 836 |
+
interactive=False
|
| 837 |
+
)
|
| 838 |
+
|
| 839 |
+
state_df = gr.State()
|
| 840 |
|
| 841 |
+
def process_and_plot(file, legend_position, params_position, model_types, mode, experiment_names,
|
| 842 |
lower_bounds, upper_bounds, style,
|
| 843 |
line_color, point_color, line_style, marker_style,
|
| 844 |
+
show_legend, show_params, use_differential, maxfev_input):
|
| 845 |
+
|
| 846 |
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
|
| 847 |
+
lower_bounds_list = []
|
| 848 |
+
if lower_bounds.strip():
|
| 849 |
+
for lb in lower_bounds.strip().split('\n'):
|
| 850 |
+
lb_values = []
|
| 851 |
+
for val in lb.split(','):
|
| 852 |
+
val = val.strip().lower()
|
| 853 |
+
if val in ['inf', 'infty', 'infinity']:
|
| 854 |
+
lb_values.append(-np.inf)
|
| 855 |
+
else:
|
| 856 |
+
try:
|
| 857 |
+
lb_values.append(float(val))
|
| 858 |
+
except ValueError:
|
| 859 |
+
lb_values.append(0.0)
|
| 860 |
+
lower_bounds_list.append(tuple(lb_values))
|
| 861 |
+
upper_bounds_list = []
|
| 862 |
+
if upper_bounds.strip():
|
| 863 |
+
for ub in upper_bounds.strip().split('\n'):
|
| 864 |
+
ub_values = []
|
| 865 |
+
for val in ub.split(','):
|
| 866 |
+
val = val.strip().lower()
|
| 867 |
+
if val in ['inf', 'infty', 'infinity']:
|
| 868 |
+
ub_values.append(np.inf)
|
| 869 |
+
else:
|
| 870 |
+
try:
|
| 871 |
+
ub_values.append(float(val))
|
| 872 |
+
except ValueError:
|
| 873 |
+
ub_values.append(np.inf)
|
| 874 |
+
upper_bounds_list.append(tuple(ub_values))
|
| 875 |
+
|
| 876 |
+
figures, comparison_df = process_all_data(file, legend_position, params_position, model_types, experiment_names_list,
|
| 877 |
+
lower_bounds_list, upper_bounds_list, mode, style,
|
| 878 |
+
line_color, point_color, line_style, marker_style,
|
| 879 |
+
show_legend, show_params, use_differential, maxfev_val=int(maxfev_input))
|
| 880 |
+
|
| 881 |
+
return figures, comparison_df, comparison_df
|
| 882 |
+
|
| 883 |
+
simulate_output = simulate_btn.click(
|
| 884 |
fn=process_and_plot,
|
| 885 |
inputs=[file_input,
|
| 886 |
legend_position,
|
| 887 |
params_position,
|
| 888 |
+
model_types,
|
| 889 |
mode,
|
| 890 |
experiment_names,
|
| 891 |
lower_bounds,
|
|
|
|
| 897 |
marker_style_dropdown,
|
| 898 |
show_legend,
|
| 899 |
show_params,
|
| 900 |
+
use_differential,
|
| 901 |
+
maxfev_input],
|
| 902 |
+
outputs=[output_gallery, output_table, state_df]
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
def export_excel(df):
|
| 906 |
+
if df.empty:
|
| 907 |
+
return None
|
| 908 |
+
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
|
| 909 |
+
df.to_excel(tmp.name, index=False)
|
| 910 |
+
return tmp.name
|
| 911 |
+
|
| 912 |
+
export_btn = gr.Button("Exportar Tabla a Excel")
|
| 913 |
+
file_output = gr.File()
|
| 914 |
+
|
| 915 |
+
export_btn.click(
|
| 916 |
+
fn=export_excel,
|
| 917 |
+
inputs=state_df,
|
| 918 |
+
outputs=file_output
|
| 919 |
)
|
| 920 |
|
| 921 |
return demo
|
| 922 |
|
|
|
|
| 923 |
demo = create_interface()
|
| 924 |
demo.launch(share=True)
|