Spaces:
Sleeping
Sleeping
# --- INSTALACIÓN DE DEPENDENCIAS ADICIONALES --- | |
# Se recomienda ejecutar este comando manualmente si es necesario | |
import os | |
os.system("pip install --upgrade gradio") | |
# --- IMPORTACIONES --- | |
import os | |
import io | |
import sys | |
import json | |
import tempfile | |
import traceback | |
import zipfile | |
from typing import List, Tuple, Dict, Any, Optional, Union | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from enum import Enum | |
from unittest.mock import MagicMock | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from scipy.integrate import odeint | |
from scipy.optimize import curve_fit, differential_evolution | |
from sklearn.metrics import mean_squared_error, r2_score | |
import gradio as gr | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
from PIL import Image | |
from docx import Document | |
from docx.shared import Inches | |
from fpdf import FPDF | |
from fpdf.enums import XPos, YPos | |
from fastapi import FastAPI | |
import uvicorn | |
# --- SISTEMA DE INTERNACIONALIZACIÓN --- | |
class Language(Enum): | |
ES = "Español" | |
EN = "English" | |
PT = "Português" | |
FR = "Français" | |
DE = "Deutsch" | |
ZH = "中文" | |
JA = "日本語" | |
TRANSLATIONS = { | |
Language.ES: { | |
"title": "🔬 Analizador de Cinéticas de Bioprocesos", | |
"subtitle": "Análisis avanzado de modelos matemáticos biotecnológicos", | |
"welcome": "Bienvenido al Analizador de Cinéticas", | |
"upload": "Sube tu archivo Excel (.xlsx)", | |
"select_models": "Modelos a Probar", | |
"analysis_mode": "Modo de Análisis", | |
"analyze": "Analizar y Graficar", | |
"results": "Resultados", | |
"download": "Descargar", | |
"biomass": "Biomasa", | |
"substrate": "Sustrato", | |
"product": "Producto", | |
"time": "Tiempo", | |
"parameters": "Parámetros", | |
"model_comparison": "Comparación de Modelos", | |
"dark_mode": "Modo Oscuro", | |
"light_mode": "Modo Claro", | |
"language": "Idioma", | |
"theory": "Teoría y Modelos", | |
"guide": "Guía de Uso", | |
"api_docs": "Documentación API" | |
}, | |
Language.EN: { | |
"title": "🔬 Bioprocess Kinetics Analyzer", | |
"subtitle": "Advanced analysis of biotechnological mathematical models", | |
"welcome": "Welcome to the Kinetics Analyzer", | |
"upload": "Upload your Excel file (.xlsx)", | |
"select_models": "Models to Test", | |
"analysis_mode": "Analysis Mode", | |
"analyze": "Analyze and Plot", | |
"results": "Results", | |
"download": "Download", | |
"biomass": "Biomass", | |
"substrate": "Substrate", | |
"product": "Product", | |
"time": "Time", | |
"parameters": "Parameters", | |
"model_comparison": "Model Comparison", | |
"dark_mode": "Dark Mode", | |
"light_mode": "Light Mode", | |
"language": "Language", | |
"theory": "Theory and Models", | |
"guide": "User Guide", | |
"api_docs": "API Documentation" | |
}, | |
# Se pueden agregar más idiomas aquí | |
} | |
# --- CONSTANTES MEJORADAS --- | |
C_TIME = 'tiempo' | |
C_BIOMASS = 'biomass' | |
C_SUBSTRATE = 'substrate' | |
C_PRODUCT = 'product' | |
C_OXYGEN = 'oxygen' | |
C_CO2 = 'co2' | |
C_PH = 'ph' | |
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT] | |
# --- SISTEMA DE TEMAS --- | |
THEMES = { | |
"light": gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="sky", | |
neutral_hue="gray", | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"] | |
), | |
"dark": gr.themes.Base( | |
primary_hue="blue", | |
secondary_hue="cyan", | |
neutral_hue="slate", | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"] | |
).set( | |
body_background_fill="*neutral_950", | |
body_background_fill_dark="*neutral_950", | |
button_primary_background_fill="*primary_600", | |
button_primary_background_fill_hover="*primary_700", | |
) | |
} | |
# --- MODELOS CINÉTICOS COMPLETOS --- | |
class KineticModel(ABC): | |
def __init__(self, name: str, display_name: str, param_names: List[str], | |
description: str = "", equation: str = "", reference: str = ""): | |
self.name = name | |
self.display_name = display_name | |
self.param_names = param_names | |
self.num_params = len(param_names) | |
self.description = description | |
self.equation = equation | |
self.reference = reference | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
pass | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
return 0.0 | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
pass | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
pass | |
# Modelo Logístico | |
class LogisticModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"logistic", | |
"Logístico", | |
["X0", "Xm", "μm"], | |
"Modelo de crecimiento logístico clásico para poblaciones limitadas", | |
r"X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}}", | |
"Verhulst (1838)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
X0, Xm, um = params | |
if Xm <= 0 or X0 <= 0 or Xm < X0: | |
return np.full_like(t, np.nan) | |
exp_arg = np.clip(um * t, -700, 700) | |
term_exp = np.exp(exp_arg) | |
denominator = Xm - X0 + X0 * term_exp | |
denominator = np.where(denominator == 0, 1e-9, denominator) | |
return (X0 * term_exp * Xm) / denominator | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
_, Xm, um = params | |
return um * X * (1 - X / Xm) if Xm > 0 else 0.0 | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.1 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9 | |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 | |
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf]) | |
# Modelo Gompertz | |
class GompertzModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"gompertz", | |
"Gompertz", | |
["Xm", "μm", "λ"], | |
"Modelo de crecimiento asimétrico con fase lag", | |
r"X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right)", | |
"Gompertz (1825)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
Xm, um, lag = params | |
if Xm <= 0 or um <= 0: | |
return np.full_like(t, np.nan) | |
exp_term = (um * np.e / Xm) * (lag - t) + 1 | |
exp_term_clipped = np.clip(exp_term, -700, 700) | |
return Xm * np.exp(-np.exp(exp_term_clipped)) | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
Xm, um, lag = params | |
k_val = um * np.e / Xm | |
u_val = k_val * (lag - t) + 1 | |
u_val_clipped = np.clip(u_val, -np.inf, 700) | |
return X * k_val * np.exp(u_val_clipped) if Xm > 0 and X > 0 else 0.0 | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.1, | |
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9 | |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 | |
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1]) | |
# Modelo Moser | |
class MoserModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"moser", | |
"Moser", | |
["Xm", "μm", "Ks"], | |
"Modelo exponencial simple de Moser", | |
r"X(t) = X_m (1 - e^{-\mu_m (t - K_s)})", | |
"Moser (1958)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
Xm, um, Ks = params | |
return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan) | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
Xm, um, _ = params | |
return um * (Xm - X) if Xm > 0 else 0.0 | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9 | |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 | |
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf]) | |
# Modelo Baranyi | |
class BaranyiModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"baranyi", | |
"Baranyi", | |
["X0", "Xm", "μm", "λ"], | |
"Modelo de Baranyi con fase lag explícita", | |
r"X(t) = X_m / [1 + ((X_m/X_0) - 1) \exp(-\mu_m A(t))]", | |
"Baranyi & Roberts (1994)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
X0, Xm, um, lag = params | |
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0: | |
return np.full_like(t, np.nan) | |
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag))) | |
exp_um_At = np.exp(np.clip(um * A_t, -700, 700)) | |
numerator = Xm | |
denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At) | |
return numerator / np.where(denominator == 0, 1e-9, denominator) | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.1, | |
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9 | |
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 | |
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1]) | |
# Modelo Monod | |
class MonodModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"monod", | |
"Monod", | |
["μmax", "Ks", "Y", "m"], | |
"Modelo de Monod con mantenimiento celular", | |
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S} - m", | |
"Monod (1949)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
# Implementación simplificada para ajuste | |
μmax, Ks, Y, m = params | |
# Este es un modelo más complejo que requiere integración numérica | |
return np.full_like(t, np.nan) # Se usa solo con EDO | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
μmax, Ks, Y, m = params | |
S = 10.0 # Valor placeholder, necesita integrarse con sustrato | |
μ = (μmax * S / (Ks + S)) - m | |
return μ * X | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [0.5, 0.1, 0.5, 0.01] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1]) | |
# Modelo Contois | |
class ContoisModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"contois", | |
"Contois", | |
["μmax", "Ksx", "Y", "m"], | |
"Modelo de Contois para alta densidad celular", | |
r"\mu = \frac{\mu_{max} \cdot S}{K_{sx} \cdot X + S} - m", | |
"Contois (1959)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
return np.full_like(t, np.nan) # Requiere EDO | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
μmax, Ksx, Y, m = params | |
S = 10.0 # Placeholder | |
μ = (μmax * S / (Ksx * X + S)) - m | |
return μ * X | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [0.5, 0.5, 0.5, 0.01] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1]) | |
# Modelo Andrews | |
class AndrewsModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"andrews", | |
"Andrews (Haldane)", | |
["μmax", "Ks", "Ki", "Y", "m"], | |
"Modelo de inhibición por sustrato", | |
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S + \frac{S^2}{K_i}} - m", | |
"Andrews (1968)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
return np.full_like(t, np.nan) | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
μmax, Ks, Ki, Y, m = params | |
S = 10.0 # Placeholder | |
μ = (μmax * S / (Ks + S + S**2/Ki)) - m | |
return μ * X | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [0.5, 0.1, 50.0, 0.5, 0.01] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1]) | |
# Modelo Tessier | |
class TessierModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"tessier", | |
"Tessier", | |
["μmax", "Ks", "X0"], | |
"Modelo exponencial de Tessier", | |
r"\mu = \mu_{max} \cdot (1 - e^{-S/K_s})", | |
"Tessier (1942)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
μmax, Ks, X0 = params | |
# Implementación simplificada | |
return X0 * np.exp(μmax * t * 0.5) # Aproximación | |
def diff_function(self, X: float, t: float, params: List[float]) -> float: | |
μmax, Ks, X0 = params | |
return μmax * X * 0.5 # Simplificado | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0]) | |
# Modelo Richards | |
class RichardsModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"richards", | |
"Richards", | |
["A", "μm", "λ", "ν", "X0"], | |
"Modelo generalizado de Richards", | |
r"X(t) = A \cdot [1 + \nu \cdot e^{-\mu_m(t-\lambda)}]^{-1/\nu}", # Corregido el LaTeX | |
"Richards (1959)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
A, μm, λ, ν, X0 = params | |
if A <= 0 or μm <= 0 or ν <= 0: | |
return np.full_like(t, np.nan) | |
exp_term = np.exp(-μm * (t - λ)) | |
return A * (1 + ν * exp_term) ** (-1/ν) | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.5, | |
time[len(time)//4] if len(time) > 0 else 1.0, | |
1.0, | |
biomass[0] if len(biomass) > 0 else 0.1 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 | |
max_time = max(time) if len(time) > 0 else 100.0 | |
return ( | |
[0.1, 0.01, 0.0, 0.1, 1e-9], | |
[max_biomass * 2, 5.0, max_time, 10.0, max_biomass] | |
) | |
# Modelo Stannard | |
class StannardModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"stannard", | |
"Stannard", | |
["Xm", "μm", "λ", "α"], | |
"Modelo de Stannard modificado", | |
r"X(t) = X_m \cdot [1 - e^{-\mu_m(t-\lambda)^\alpha}]", | |
"Stannard et al. (1985)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
Xm, μm, λ, α = params | |
if Xm <= 0 or μm <= 0 or α <= 0: | |
return np.full_like(t, np.nan) | |
t_shifted = np.maximum(t - λ, 0) | |
return Xm * (1 - np.exp(-μm * t_shifted ** α)) | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.5, | |
0.0, | |
1.0 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 | |
max_time = max(time) if len(time) > 0 else 100.0 | |
return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0]) | |
# Modelo Huang | |
class HuangModel(KineticModel): | |
def __init__(self): | |
super().__init__( | |
"huang", | |
"Huang", | |
["Xm", "μm", "λ", "n", "m"], | |
"Modelo de Huang para fase lag variable", | |
r"X(t) = X_m \cdot \frac{1}{1 + e^{-\mu_m(t-\lambda-m/n)}}", | |
"Huang (2008)" | |
) | |
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: | |
Xm, μm, λ, n, m = params | |
if Xm <= 0 or μm <= 0 or n <= 0: | |
return np.full_like(t, np.nan) | |
return Xm / (1 + np.exp(-μm * (t - λ - m/n))) | |
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: | |
return [ | |
max(biomass) if len(biomass) > 0 else 1.0, | |
0.5, | |
time[len(time)//4] if len(time) > 0 else 1.0, | |
1.0, | |
0.5 | |
] | |
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: | |
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 | |
max_time = max(time) if len(time) > 0 else 100.0 | |
return ( | |
[0.1, 0.01, 0.0, 0.1, 0.0], | |
[max_biomass * 2, 5.0, max_time/2, 10.0, 5.0] | |
) | |
# --- REGISTRO ACTUALIZADO DE MODELOS --- | |
AVAILABLE_MODELS: Dict[str, KineticModel] = { | |
model.name: model for model in [ | |
LogisticModel(), | |
GompertzModel(), | |
MoserModel(), | |
BaranyiModel(), | |
MonodModel(), | |
ContoisModel(), | |
AndrewsModel(), | |
TessierModel(), | |
RichardsModel(), | |
StannardModel(), | |
HuangModel() | |
] | |
} | |
# --- CLASE MEJORADA DE AJUSTE --- | |
class BioprocessFitter: | |
def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000, | |
use_differential_evolution: bool = False): | |
self.model = kinetic_model | |
self.maxfev = maxfev | |
self.use_differential_evolution = use_differential_evolution | |
self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS} | |
self.r2: Dict[str, float] = {} | |
self.rmse: Dict[str, float] = {} | |
self.mae: Dict[str, float] = {} # Mean Absolute Error | |
self.aic: Dict[str, float] = {} # Akaike Information Criterion | |
self.bic: Dict[str, float] = {} # Bayesian Information Criterion | |
self.data_time: Optional[np.ndarray] = None | |
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} | |
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} | |
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray: | |
return self.model.model_function(t, *p) | |
def _get_initial_biomass(self, p: List[float]) -> float: | |
if not p: return 0.0 | |
if any(k in self.model.param_names for k in ["Xo", "X0"]): | |
try: | |
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0") | |
return p[idx] | |
except (ValueError, IndexError): pass | |
return float(self.model.model_function(np.array([0]), *p)[0]) | |
def _calc_integral(self, t: np.ndarray, p: List[float]) -> Tuple[np.ndarray, np.ndarray]: | |
X_t = self._get_biomass_at_t(t, p) | |
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan), np.full_like(t, np.nan) | |
integral_X = np.zeros_like(X_t) | |
if len(t) > 1: | |
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1)) | |
integral_X = np.cumsum(X_t * dt) | |
return integral_X, X_t | |
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray: | |
integral, X_t = self._calc_integral(t, bio_p) | |
X0 = self._get_initial_biomass(bio_p) | |
return so - p_c * (X_t - X0) - q * integral | |
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray: | |
integral, X_t = self._calc_integral(t, bio_p) | |
X0 = self._get_initial_biomass(bio_p) | |
return po + alpha * (X_t - X0) + beta * integral | |
def process_data_from_df(self, df: pd.DataFrame) -> None: | |
try: | |
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0] | |
self.data_time = df[time_col].dropna().to_numpy() | |
min_len = len(self.data_time) | |
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]: | |
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()] | |
if not cols: return np.array([]), np.array([]) | |
reps = [df[c].dropna().values[:min_len] for c in cols] | |
reps = [r for r in reps if len(r) == min_len] | |
if not reps: return np.array([]), np.array([]) | |
arr = np.array(reps) | |
mean = np.mean(arr, axis=0) | |
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean) | |
return mean, std | |
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa') | |
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato') | |
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto') | |
except (IndexError, KeyError) as e: | |
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}") | |
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray, | |
n_params: int) -> Dict[str, float]: | |
"""Calcula métricas adicionales de bondad de ajuste""" | |
n = len(y_true) | |
residuals = y_true - y_pred | |
ss_res = np.sum(residuals**2) | |
ss_tot = np.sum((y_true - np.mean(y_true))**2) | |
r2 = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0 | |
rmse = np.sqrt(ss_res / n) | |
mae = np.mean(np.abs(residuals)) | |
# AIC y BIC | |
if n > n_params + 1: | |
aic = n * np.log(ss_res/n) + 2 * n_params | |
bic = n * np.log(ss_res/n) + n_params * np.log(n) | |
else: | |
aic = bic = np.inf | |
return { | |
'r2': r2, | |
'rmse': rmse, | |
'mae': mae, | |
'aic': aic, | |
'bic': bic | |
} | |
def _fit_component_de(self, func, t, data, bounds, *args): | |
"""Ajuste usando evolución diferencial para optimización global""" | |
def objective(params): | |
try: | |
pred = func(t, *params, *args) | |
if np.any(np.isnan(pred)): | |
return 1e10 | |
return np.sum((data - pred)**2) | |
except: | |
return 1e10 | |
result = differential_evolution(objective, bounds=list(zip(*bounds)), | |
maxiter=1000, seed=42) | |
if result.success: | |
popt = result.x | |
pred = func(t, *popt, *args) | |
metrics = self._calculate_metrics(data, pred, len(popt)) | |
return list(popt), metrics | |
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, | |
'aic': np.nan, 'bic': np.nan} | |
def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args): | |
try: | |
if self.use_differential_evolution: | |
return self._fit_component_de(func, t, data, bounds, *args) | |
if sigma is not None: | |
sigma = np.where(sigma == 0, 1e-9, sigma) | |
popt, _ = curve_fit(func, t, data, p0, bounds=bounds, | |
maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, | |
sigma=sigma, absolute_sigma=bool(sigma is not None)) | |
pred = func(t, *popt, *args) | |
if np.any(np.isnan(pred)): | |
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, | |
'aic': np.nan, 'bic': np.nan} | |
metrics = self._calculate_metrics(data, pred, len(popt)) | |
return list(popt), metrics | |
except (RuntimeError, ValueError): | |
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, | |
'aic': np.nan, 'bic': np.nan} | |
def fit_all_models(self) -> None: | |
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] | |
if t is None or bio_m is None or len(bio_m) == 0: return | |
popt_bio = self._fit_biomass_model(t, bio_m, bio_s) | |
if popt_bio: | |
bio_p = list(self.params[C_BIOMASS].values()) | |
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0: | |
self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p) | |
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0: | |
self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p) | |
def _fit_biomass_model(self, t, data, std): | |
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data) | |
popt, metrics = self._fit_component(self.model.model_function, t, data, p0, bounds, std) | |
if popt: | |
self.params[C_BIOMASS] = dict(zip(self.model.param_names, popt)) | |
self.r2[C_BIOMASS] = metrics['r2'] | |
self.rmse[C_BIOMASS] = metrics['rmse'] | |
self.mae[C_BIOMASS] = metrics['mae'] | |
self.aic[C_BIOMASS] = metrics['aic'] | |
self.bic[C_BIOMASS] = metrics['bic'] | |
return popt | |
def _fit_substrate_model(self, t, data, std, bio_p): | |
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) | |
popt, metrics = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std) | |
if popt: | |
self.params[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]} | |
self.r2[C_SUBSTRATE] = metrics['r2'] | |
self.rmse[C_SUBSTRATE] = metrics['rmse'] | |
self.mae[C_SUBSTRATE] = metrics['mae'] | |
self.aic[C_SUBSTRATE] = metrics['aic'] | |
self.bic[C_SUBSTRATE] = metrics['bic'] | |
def _fit_product_model(self, t, data, std, bio_p): | |
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) | |
popt, metrics = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std) | |
if popt: | |
self.params[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]} | |
self.r2[C_PRODUCT] = metrics['r2'] | |
self.rmse[C_PRODUCT] = metrics['rmse'] | |
self.mae[C_PRODUCT] = metrics['mae'] | |
self.aic[C_PRODUCT] = metrics['aic'] | |
self.bic[C_PRODUCT] = metrics['bic'] | |
def system_ode(self, y, t, bio_p, sub_p, prod_p): | |
X, _, _ = y | |
dXdt = self.model.diff_function(X, t, bio_p) | |
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X] | |
def solve_odes(self, t_fine): | |
p = self.params | |
bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT] | |
if not bio_d: return None, None, None | |
try: | |
bio_p = list(bio_d.values()) | |
y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)] | |
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d)) | |
return sol[:, 0], sol[:, 1], sol[:, 2] | |
except: | |
return None, None, None | |
def _generate_fine_time_grid(self, t_exp): | |
return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([]) | |
def get_model_curves_for_plot(self, t_fine, use_diff): | |
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0: | |
return self.solve_odes(t_fine) | |
X, S, P = None, None, None | |
if self.params[C_BIOMASS]: | |
bio_p = list(self.params[C_BIOMASS].values()) | |
X = self.model.model_function(t_fine, *bio_p) | |
if self.params[C_SUBSTRATE]: | |
S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p) | |
if self.params[C_PRODUCT]: | |
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p) | |
return X, S, P | |
# --- FUNCIONES AUXILIARES --- | |
def format_number(value: Any, decimals: int) -> str: | |
"""Formatea un número para su visualización""" | |
if not isinstance(value, (int, float, np.number)) or pd.isna(value): | |
return "" if pd.isna(value) else str(value) | |
decimals = int(decimals) | |
if decimals == 0: | |
if 0 < abs(value) < 1: | |
return f"{value:.2e}" | |
else: | |
return str(int(round(value, 0))) | |
return str(round(value, decimals)) | |
# --- FUNCIONES DE PLOTEO MEJORADAS CON PLOTLY --- | |
def create_interactive_plot(plot_config: Dict, models_results: List[Dict], | |
selected_component: str = "all") -> go.Figure: | |
"""Crea un gráfico interactivo mejorado con Plotly""" | |
time_exp = plot_config['time_exp'] | |
time_fine = np.linspace(min(time_exp), max(time_exp), 500) | |
# Configuración de subplots si se muestran todos los componentes | |
if selected_component == "all": | |
fig = make_subplots( | |
rows=3, cols=1, | |
subplot_titles=('Biomasa', 'Sustrato', 'Producto'), | |
vertical_spacing=0.08, | |
shared_xaxes=True | |
) | |
components_to_plot = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT] | |
rows = [1, 2, 3] | |
else: | |
fig = go.Figure() | |
components_to_plot = [selected_component] | |
rows = [None] | |
# Colores para diferentes modelos | |
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', | |
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] | |
# Agregar datos experimentales | |
for comp, row in zip(components_to_plot, rows): | |
data_exp = plot_config.get(f'{comp}_exp') | |
data_std = plot_config.get(f'{comp}_std') | |
if data_exp is not None: | |
error_y = dict( | |
type='data', | |
array=data_std, | |
visible=True | |
) if data_std is not None and np.any(data_std > 0) else None | |
trace = go.Scatter( | |
x=time_exp, | |
y=data_exp, | |
mode='markers', | |
name=f'{comp.capitalize()} (Experimental)', | |
marker=dict(size=10, symbol='circle'), | |
error_y=error_y, | |
legendgroup=comp, | |
showlegend=True | |
) | |
if selected_component == "all": | |
fig.add_trace(trace, row=row, col=1) | |
else: | |
fig.add_trace(trace) | |
# Agregar curvas de modelos | |
for i, res in enumerate(models_results): | |
color = colors[i % len(colors)] | |
model_name = AVAILABLE_MODELS[res["name"]].display_name | |
for comp, row, key in zip(components_to_plot, rows, ['X', 'S', 'P']): | |
if res.get(key) is not None: | |
trace = go.Scatter( | |
x=time_fine, | |
y=res[key], | |
mode='lines', | |
name=f'{model_name} - {comp.capitalize()}', | |
line=dict(color=color, width=2), | |
legendgroup=f'{res["name"]}_{comp}', | |
showlegend=True | |
) | |
if selected_component == "all": | |
fig.add_trace(trace, row=row, col=1) | |
else: | |
fig.add_trace(trace) | |
# Actualizar diseño | |
theme = plot_config.get('theme', 'light') | |
template = "plotly_white" if theme == 'light' else "plotly_dark" | |
fig.update_layout( | |
title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}", | |
template=template, | |
hovermode='x unified', | |
legend=dict( | |
orientation="v", | |
yanchor="middle", | |
y=0.5, | |
xanchor="left", | |
x=1.02 | |
), | |
margin=dict(l=80, r=250, t=100, b=80) | |
) | |
# Actualizar ejes | |
if selected_component == "all": | |
fig.update_xaxes(title_text="Tiempo", row=3, col=1) | |
fig.update_yaxes(title_text="Biomasa (g/L)", row=1, col=1) | |
fig.update_yaxes(title_text="Sustrato (g/L)", row=2, col=1) | |
fig.update_yaxes(title_text="Producto (g/L)", row=3, col=1) | |
else: | |
fig.update_xaxes(title_text="Tiempo") | |
labels = { | |
C_BIOMASS: "Biomasa (g/L)", | |
C_SUBSTRATE: "Sustrato (g/L)", | |
C_PRODUCT: "Producto (g/L)" | |
} | |
fig.update_yaxes(title_text=labels.get(selected_component, "Valor")) | |
# Agregar botones para cambiar entre modos de visualización (opcional) | |
# Se eliminan por simplicidad, ya que el selector de componente hace algo similar | |
return fig | |
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS --- | |
def run_analysis(file, model_names, component, use_de, maxfev, exp_names, theme='light'): | |
if not file: return None, pd.DataFrame(), "Error: Sube un archivo Excel." | |
if not model_names: return None, pd.DataFrame(), "Error: Selecciona un modelo." | |
try: | |
xls = pd.ExcelFile(file.name) | |
except Exception as e: | |
return None, pd.DataFrame(), f"Error al leer archivo: {e}" | |
results_data, msgs = [], [] | |
models_results = [] | |
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] if exp_names else [] | |
for i, sheet in enumerate(xls.sheet_names): | |
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'" | |
try: | |
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1]) | |
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0]) | |
reader.process_data_from_df(df) | |
if reader.data_time is None: | |
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.") | |
continue | |
plot_config = { | |
'exp_name': exp_name, | |
'time_exp': reader.data_time, | |
'theme': theme | |
} | |
for c in COMPONENTS: | |
plot_config[f'{c}_exp'] = reader.data_means[c] | |
plot_config[f'{c}_std'] = reader.data_stds[c] | |
t_fine = reader._generate_fine_time_grid(reader.data_time) | |
for m_name in model_names: | |
if m_name not in AVAILABLE_MODELS: | |
msgs.append(f"WARN: Modelo '{m_name}' no disponible.") | |
continue | |
fitter = BioprocessFitter( | |
AVAILABLE_MODELS[m_name], | |
maxfev=int(maxfev), | |
use_differential_evolution=use_de | |
) | |
fitter.data_time = reader.data_time | |
fitter.data_means = reader.data_means | |
fitter.data_stds = reader.data_stds | |
fitter.fit_all_models() | |
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name} | |
for c in COMPONENTS: | |
if fitter.params[c]: | |
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()}) | |
row[f'R2_{c.capitalize()}'] = fitter.r2.get(c) | |
row[f'RMSE_{c.capitalize()}'] = fitter.rmse.get(c) | |
row[f'MAE_{c.capitalize()}'] = fitter.mae.get(c) | |
row[f'AIC_{c.capitalize()}'] = fitter.aic.get(c) | |
row[f'BIC_{c.capitalize()}'] = fitter.bic.get(c) | |
results_data.append(row) | |
X, S, P = fitter.get_model_curves_for_plot(t_fine, False) | |
models_results.append({ | |
'name': m_name, | |
'X': X, | |
'S': S, | |
'P': P, | |
'params': fitter.params, | |
'r2': fitter.r2, | |
'rmse': fitter.rmse | |
}) | |
except Exception as e: | |
msgs.append(f"ERROR en '{sheet}': {e}") | |
traceback.print_exc() | |
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "") | |
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all') | |
# Crear gráfico interactivo | |
fig = None | |
if models_results and reader.data_time is not None: | |
fig = create_interactive_plot(plot_config, models_results, component) | |
return fig, df_res, msg | |
# --- API ENDPOINTS PARA AGENTES DE IA --- | |
app = FastAPI(title="Bioprocess Kinetics API", version="2.0") | |
def read_root(): | |
return {"message": "Bioprocess Kinetics Analysis API", "version": "2.0"} | |
async def analyze_data( | |
data: Dict[str, List[float]], | |
models: List[str], | |
options: Optional[Dict[str, Any]] = None | |
): | |
"""Endpoint para análisis de datos cinéticos""" | |
try: | |
results = {} | |
for model_name in models: | |
if model_name not in AVAILABLE_MODELS: | |
continue | |
model = AVAILABLE_MODELS[model_name] | |
fitter = BioprocessFitter(model) | |
# Configurar datos | |
fitter.data_time = np.array(data['time']) | |
fitter.data_means[C_BIOMASS] = np.array(data.get('biomass', [])) | |
fitter.data_means[C_SUBSTRATE] = np.array(data.get('substrate', [])) | |
fitter.data_means[C_PRODUCT] = np.array(data.get('product', [])) | |
# Ajustar modelo | |
fitter.fit_all_models() | |
results[model_name] = { | |
'parameters': fitter.params, | |
'metrics': { | |
'r2': fitter.r2, | |
'rmse': fitter.rmse, | |
'mae': fitter.mae, | |
'aic': fitter.aic, | |
'bic': fitter.bic | |
} | |
} | |
return {"status": "success", "results": results} | |
except Exception as e: | |
return {"status": "error", "message": str(e)} | |
def get_available_models(): | |
"""Retorna lista de modelos disponibles con su información""" | |
models_info = {} | |
for name, model in AVAILABLE_MODELS.items(): | |
models_info[name] = { | |
"display_name": model.display_name, | |
"parameters": model.param_names, | |
"description": model.description, | |
"equation": model.equation, | |
"reference": model.reference, | |
"num_params": model.num_params | |
} | |
return {"models": models_info} | |
async def predict_kinetics( | |
model_name: str, | |
parameters: Dict[str, float], | |
time_points: List[float] | |
): | |
"""Predice valores usando un modelo y parámetros específicos""" | |
if model_name not in AVAILABLE_MODELS: | |
return {"status": "error", "message": f"Model {model_name} not found"} | |
try: | |
model = AVAILABLE_MODELS[model_name] | |
time_array = np.array(time_points) | |
params = [parameters[name] for name in model.param_names] | |
predictions = model.model_function(time_array, *params) | |
return { | |
"status": "success", | |
"predictions": predictions.tolist(), | |
"time_points": time_points | |
} | |
except Exception as e: | |
return {"status": "error", "message": str(e)} | |
# --- INTERFAZ GRADIO MEJORADA --- | |
def create_gradio_interface() -> gr.Blocks: | |
"""Crea la interfaz mejorada con soporte multiidioma y tema""" | |
def change_language(lang_key: str) -> Dict: | |
"""Cambia el idioma de la interfaz""" | |
lang = Language[lang_key] | |
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES]) | |
return trans["title"], trans["subtitle"] | |
# Obtener opciones de modelo | |
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()] | |
DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:4]] | |
with gr.Blocks(theme=THEMES["light"], css=""" | |
.gradio-container {font-family: 'Inter', sans-serif;} | |
.theory-box {background-color: #f0f9ff; padding: 20px; border-radius: 10px; margin: 10px 0;} | |
.dark .theory-box {background-color: #1e293b;} | |
.model-card {border: 1px solid #e5e7eb; padding: 15px; border-radius: 8px; margin: 10px 0;} | |
.dark .model-card {border-color: #374151;} | |
""") as demo: | |
# Estado para tema e idioma | |
current_theme = gr.State("light") | |
current_language = gr.State("ES") | |
# Header con controles de tema e idioma | |
with gr.Row(): | |
with gr.Column(scale=8): | |
title_text = gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos") | |
subtitle_text = gr.Markdown("Análisis avanzado de modelos matemáticos biotecnológicos") | |
with gr.Column(scale=2): | |
with gr.Row(): | |
theme_toggle = gr.Checkbox(label="🌙 Modo Oscuro", value=False) | |
language_select = gr.Dropdown( | |
choices=[(lang.value, lang.name) for lang in Language], | |
value="ES", | |
label="🌐 Idioma" | |
) | |
with gr.Tabs() as tabs: | |
# --- TAB 1: TEORÍA Y MODELOS --- | |
with gr.TabItem("📚 Teoría y Modelos"): | |
gr.Markdown(""" | |
## Introducción a los Modelos Cinéticos | |
Los modelos cinéticos en biotecnología describen el comportamiento dinámico | |
de los microorganismos durante su crecimiento. Estos modelos son fundamentales | |
para: | |
- **Optimización de procesos**: Determinar condiciones óptimas de operación | |
- **Escalamiento**: Predecir comportamiento a escala industrial | |
- **Control de procesos**: Diseñar estrategias de control efectivas | |
- **Análisis económico**: Evaluar viabilidad de procesos | |
""") | |
# Cards para cada modelo | |
for model_name, model in AVAILABLE_MODELS.items(): | |
with gr.Accordion(f"📊 {model.display_name}", open=False): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
gr.Markdown(f""" | |
**Descripción**: {model.description} | |
**Ecuación**: ${model.equation}$ | |
**Parámetros**: {', '.join(model.param_names)} | |
**Referencia**: {model.reference} | |
""") | |
with gr.Column(scale=1): | |
gr.Markdown(f""" | |
**Características**: | |
- Parámetros: {model.num_params} | |
- Complejidad: {'⭐' * min(model.num_params, 5)} | |
""") | |
# --- TAB 2: ANÁLISIS --- | |
with gr.TabItem("🔬 Análisis"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="📁 Sube tu archivo Excel (.xlsx)", | |
file_types=['.xlsx'] | |
) | |
exp_names_input = gr.Textbox( | |
label="🏷️ Nombres de Experimentos", | |
placeholder="Experimento 1\nExperimento 2\n...", | |
lines=3 | |
) | |
model_selection_input = gr.CheckboxGroup( | |
choices=MODEL_CHOICES, | |
label="📊 Modelos a Probar", | |
value=DEFAULT_MODELS | |
) | |
with gr.Accordion("⚙️ Opciones Avanzadas", open=False): | |
use_de_input = gr.Checkbox( | |
label="Usar Evolución Diferencial", | |
value=False, | |
info="Optimización global más robusta pero más lenta" | |
) | |
maxfev_input = gr.Number( | |
label="Iteraciones máximas", | |
value=50000 | |
) | |
with gr.Column(scale=2): | |
# Selector de componente para visualización | |
component_selector = gr.Dropdown( | |
choices=[ | |
("Todos los componentes", "all"), | |
("Solo Biomasa", C_BIOMASS), | |
("Solo Sustrato", C_SUBSTRATE), | |
("Solo Producto", C_PRODUCT) | |
], | |
value="all", | |
label="📈 Componente a visualizar" | |
) | |
plot_output = gr.Plot(label="Visualización Interactiva") | |
analyze_button = gr.Button("🚀 Analizar y Graficar", variant="primary") | |
# --- TAB 3: RESULTADOS --- | |
with gr.TabItem("📊 Resultados"): | |
status_output = gr.Textbox( | |
label="Estado del Análisis", | |
interactive=False | |
) | |
results_table = gr.DataFrame( | |
label="Tabla de Resultados", | |
wrap=True | |
) | |
with gr.Row(): | |
download_excel = gr.Button("📥 Descargar Excel") | |
download_json = gr.Button("📥 Descargar JSON") | |
api_docs_button = gr.Button("📖 Ver Documentación API") | |
download_file = gr.File(label="Archivo descargado") | |
# --- TAB 4: API --- | |
with gr.TabItem("🔌 API"): | |
gr.Markdown(""" | |
## Documentación de la API | |
La API REST permite integrar el análisis de cinéticas en aplicaciones externas | |
y agentes de IA. | |
### Endpoints disponibles: | |
#### 1. `GET /api/models` | |
Retorna la lista de modelos disponibles con su información. | |
```python | |
import requests | |
response = requests.get("http://localhost:8000/api/models") | |
models = response.json() | |
``` | |
#### 2. `POST /api/analyze` | |
Analiza datos con los modelos especificados. | |
```python | |
data = { | |
"data": { | |
"time": [0, 1, 2, 3, 4], | |
"biomass": [0.1, 0.3, 0.8, 1.5, 2.0], | |
"substrate": [10, 8, 5, 2, 0.5] | |
}, | |
"models": ["logistic", "gompertz"], | |
"options": {"maxfev": 50000} | |
} | |
response = requests.post("http://localhost:8000/api/analyze", json=data) | |
results = response.json() | |
``` | |
#### 3. `POST /api/predict` | |
Predice valores usando un modelo y parámetros específicos. | |
```python | |
data = { | |
"model_name": "logistic", | |
"parameters": {"X0": 0.1, "Xm": 10.0, "μm": 0.5}, | |
"time_points": [0, 1, 2, 3, 4, 5] | |
} | |
response = requests.post("http://localhost:8000/api/predict", json=data) | |
predictions = response.json() | |
``` | |
### Iniciar servidor API: | |
```bash | |
uvicorn bioprocess_analyzer:app --reload --port 8000 | |
``` | |
""") | |
# Botón para copiar comando | |
gr.Textbox( | |
value="uvicorn bioprocess_analyzer:app --reload --port 8000", | |
label="Comando para iniciar API", | |
interactive=False | |
) | |
# --- EVENTOS --- | |
def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names, theme): | |
"""Wrapper para ejecutar el análisis""" | |
try: | |
return run_analysis(file, models, component, use_de, maxfev, exp_names, | |
'dark' if theme else 'light') | |
except Exception as e: | |
print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}") | |
return None, pd.DataFrame(), f"Error: {str(e)}" | |
analyze_button.click( | |
fn=run_analysis_wrapper, | |
inputs=[ | |
file_input, | |
model_selection_input, | |
component_selector, | |
use_de_input, | |
maxfev_input, | |
exp_names_input, | |
theme_toggle | |
], | |
outputs=[plot_output, results_table, status_output] | |
) | |
# Cambio de idioma | |
language_select.change( | |
fn=change_language, | |
inputs=[language_select], | |
outputs=[title_text, subtitle_text] | |
) | |
# Cambio de tema | |
def apply_theme(is_dark): | |
return gr.Info("Tema cambiado. Los gráficos nuevos usarán el tema seleccionado.") | |
theme_toggle.change( | |
fn=apply_theme, | |
inputs=[theme_toggle], | |
outputs=[] | |
) | |
# Funciones de descarga | |
def download_results_excel(df): | |
if df is None or df.empty: | |
gr.Warning("No hay datos para descargar") | |
return None | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp: | |
df.to_excel(tmp.name, index=False) | |
return tmp.name | |
def download_results_json(df): | |
if df is None or df.empty: | |
gr.Warning("No hay datos para descargar") | |
return None | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp: | |
df.to_json(tmp.name, orient='records', indent=2) | |
return tmp.name | |
download_excel.click( | |
fn=download_results_excel, | |
inputs=[results_table], | |
outputs=[download_file] | |
) | |
download_json.click( | |
fn=download_results_json, | |
inputs=[results_table], | |
outputs=[download_file] | |
) | |
return demo | |
# --- PUNTO DE ENTRADA --- | |
if __name__ == '__main__': | |
# Lanzar aplicación Gradio | |
# Nota: share=True puede mostrar advertencias en algunos entornos. | |
# Si no necesitas compartir públicamente, puedes usar share=False. | |
gradio_app = create_gradio_interface() | |
# Opciones para lanzar: | |
# Opción 1: Lanzamiento estándar local | |
# gradio_app.launch(debug=True) | |
# Opción 2: Lanzamiento local con share (puede mostrar advertencias) | |
gradio_app.launch(share=True, debug=True) | |
# Opción 3: Lanzamiento en todas las interfaces (0.0.0.0) - útil para Docker/contenedores | |
# gradio_app.launch(share=False, debug=True, server_name="0.0.0.0", server_port=7860) | |
# Opción 4: Solo servidor local (127.0.0.1) | |
# gradio_app.launch(share=False, debug=True, server_name="127.0.0.1", server_port=7777) | |