Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,1175 +1,15 @@
|
|
1 |
import pandas as pd
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
-
|
6 |
-
import seaborn as sns
|
7 |
import gradio as gr
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#DATA
|
13 |
-
|
14 |
-
cities_data = {
|
15 |
-
'Abancay': {
|
16 |
-
'desempleo_trimestral': [
|
17 |
-
["2022-Q1", 6.7, 6.8, 6.6],
|
18 |
-
["2022-Q2", 3.7, None, None], # Dato de referencia
|
19 |
-
["2022-Q3", 2.3, 2.1, 2.6], # Dato de referencia
|
20 |
-
["2022-Q4", 2.8, 2.6, 3.1], # Dato de referencia
|
21 |
-
["2023-Q1", 6.0, 6.1, 5.9],
|
22 |
-
["2023-Q2", 4.9, 4.0, 6.0],
|
23 |
-
["2023-Q3", 5.8, 5.3, 6.5],
|
24 |
-
["2023-Q4", 4.5, 3.3, 5.9],
|
25 |
-
["2024-Q1", 7.2, 5.9, 8.8],
|
26 |
-
["2024-Q2", 8.1, 8.4, 7.8],
|
27 |
-
["2024-Q3", 6.7, 5.1, 8.5],
|
28 |
-
["2024-Q4", 6.1, 5.4, 6.8],
|
29 |
-
],
|
30 |
-
'ingresos_periodo': [
|
31 |
-
["2022-04/2023-03", 1913.0, 2212.5, 1548.0],
|
32 |
-
["2022-07/2023-06", 1898.4, 2203.9, 1523.8],
|
33 |
-
["2022-10/2023-09", 1903.2, 2179.2, 1564.3],
|
34 |
-
["2023-04/2024-03", 1949.7, 2224.0, 1609.3],
|
35 |
-
["2023-07/2024-06", 1999.4, 2276.3, 1658.1],
|
36 |
-
["2023-10/2024-09", 2044.2, 2341.5, 1679.2],
|
37 |
-
["2024", 2006.5, 2274.6, 1677.6],
|
38 |
-
],
|
39 |
-
'informal_periodo': [
|
40 |
-
["2022-04/2023-03", 68.2, 71.8, 65.1],
|
41 |
-
["2023", 66.8, 68.4, 65.5],
|
42 |
-
["2023-04/2024-03", None, None, None],
|
43 |
-
["2023-07/2024-06", None, None, None],
|
44 |
-
["2023-10/2024-09", None, None, None],
|
45 |
-
["2024", None, None, None],
|
46 |
-
|
47 |
-
],
|
48 |
-
'actividad_trimestral': [
|
49 |
-
["2023-Q3", 73.1, 79.7, 66.4],
|
50 |
-
["2024-Q3", 71.9, 76.7, 67.1],
|
51 |
-
],
|
52 |
-
'poblacion_ocupada': [
|
53 |
-
["2022-Q1", 42.5, 23.2, 19.3],
|
54 |
-
["2022-Q2", 43.1, 22.9, 20.1],
|
55 |
-
["2022-Q3", 47.6, 25.4, 22.2],
|
56 |
-
["2023-Q1", 43.6, 23.7, 20.0],
|
57 |
-
["2023-Q2", 44.1, 24.0, 20.2],
|
58 |
-
["2023-Q3", 46.6, 25.6, 21.1],
|
59 |
-
["2024-Q1", 43.4, 24.5, 18.8],
|
60 |
-
["2024-Q2", 45.5, 24.6, 20.9],
|
61 |
-
["2024-Q3", 46.5, 25.2, 21.3],
|
62 |
-
]
|
63 |
-
},
|
64 |
-
'Arequipa': {
|
65 |
-
'desempleo_trimestral': [
|
66 |
-
["2022-Q1", 9.3, 8.0, 10.2],
|
67 |
-
["2022-Q2", 4.6, None, None],
|
68 |
-
["2022-Q3", 5.0, None, None],
|
69 |
-
["2022-Q4", 4.7, None, None],
|
70 |
-
["2023-Q1", 9.0, 8.0, 10.2],
|
71 |
-
["2023-Q2", 7.1, 6.4, 8.1],
|
72 |
-
["2023-Q3", 7.9, 6.1, 10.0],
|
73 |
-
["2023-Q4", 7.1, 6.2, 8.2],
|
74 |
-
["2024-Q1", 10.1, 8.9, 11.5],
|
75 |
-
["2024-Q2", 7.9, 7.4, 8.5],
|
76 |
-
["2024-Q3", 8.0, 6.2, 10.2],
|
77 |
-
["2024-Q4", 6.3, 5.4, 7.4],
|
78 |
-
],
|
79 |
-
'ingresos_periodo': [
|
80 |
-
["2022-04/2023-03", 2136.2, 2538.1, 1638.5],
|
81 |
-
["2022-07/2023-06", 2165.4, 2582.9, 1642.8],
|
82 |
-
["2023-04/2024-03", 2221.4, 2570.1, 1765.6],
|
83 |
-
["2023-07/2024-06", 2277.5, 2634.4, 1810.4],
|
84 |
-
["2023-10/2024-09", 2322.4, 2708.2, 1813.3],
|
85 |
-
["2024", 2298.6, 2698.8, 1773.9]
|
86 |
-
],
|
87 |
-
'informal_periodo': [
|
88 |
-
["2022-04/2023-03", 59.0, 57.3, 61.2],
|
89 |
-
["2022-07/2023-06", 58.3, 56.0, 61.1],
|
90 |
-
["2023", 56.0, 53.4, 59.2],
|
91 |
-
["2023-04/2024-03", 55.6, 53.2, 58.7],
|
92 |
-
["2023-07/2024-06", 55.1, 52.9, 57.9],
|
93 |
-
["2023-10/2024-09", 54.9, 52.7, 57.8],
|
94 |
-
["2024", None, None, None]
|
95 |
-
],
|
96 |
-
'actividad_trimestral': [
|
97 |
-
["2023-Q1",58.3,None, None],
|
98 |
-
["2023-Q2",58.7,None, None],
|
99 |
-
["2023-Q3",58.0,None, None],
|
100 |
-
["2024-Q1",56.3,None, None],
|
101 |
-
["2024-Q2",58.6,None, None],
|
102 |
-
["2024-Q3",58.8,None, None],
|
103 |
-
["2024-Q4",57.9,None, None],
|
104 |
-
],
|
105 |
-
'poblacion_ocupada': [
|
106 |
-
["2022-Q1", 510.8, 273.5, 237.3],
|
107 |
-
["2023-Q1", 479.3, 266.6, 212.8],
|
108 |
-
]
|
109 |
-
},
|
110 |
-
'Ayacucho': {
|
111 |
-
'desempleo_trimestral': [
|
112 |
-
["2022-Q1", 8.6, None, None],
|
113 |
-
["2022-Q2", 5.5, None, None],
|
114 |
-
["2022-Q3", 3.6, None, None],
|
115 |
-
["2022-Q4", 5.1, None, None],
|
116 |
-
["2023-Q1", 9.3, 7.1, 11.8],
|
117 |
-
["2023-Q2", 7.4, 7.6, 7.2],
|
118 |
-
["2023-Q3", 7.0, 5.1, 9.1],
|
119 |
-
["2023-Q4", 4.7, 3.9, 5.6],
|
120 |
-
["2024-Q1", 6.5, 6.0, 7.0],
|
121 |
-
["2024-Q2", 9.0, 9.1, 8.9],
|
122 |
-
["2024-Q3", 5.4, 4.3, 6.7],
|
123 |
-
["2024-Q4", 5.7, 4.3, 7.3],
|
124 |
-
],
|
125 |
-
'ingresos_periodo': [
|
126 |
-
["2022-04/2023-03", 1565.1, 1778.2, 1297.6],
|
127 |
-
["2022-07/2023-06", 1591.9, 1816.0, 1315.6],
|
128 |
-
["2022-10/2023-09", 1605.3, 1850.7, 1306.1],
|
129 |
-
["2023-04/2024-03", 1670.0, 1932.4, 1351.8],
|
130 |
-
["2023-07/2024-06", 1715.0, 1977.5, 1399.3],
|
131 |
-
["2023-10/2024-09", 1750.7, 2008.7, 1439.4],
|
132 |
-
["2024", 1764.4, 2003.6, 1472.2]
|
133 |
-
],
|
134 |
-
'informal_periodo': [
|
135 |
-
["2023-04/2024-03", 59.6, 56.0, 64.0],
|
136 |
-
["2023-07/2024-06", 58.7, 55.3, 63.3],
|
137 |
-
["2023-10/2024-09", 59.5, 56.1, 64.0],
|
138 |
-
],
|
139 |
-
'actividad_trimestral': [
|
140 |
-
["2023-Q1", 68.3, None, None],
|
141 |
-
["2023-Q3", 72.0, None, None],
|
142 |
-
["2024-Q1", 70.3, None, None],
|
143 |
-
["2024-Q3", 70.9, None, None],
|
144 |
-
],
|
145 |
-
'poblacion_ocupada': [
|
146 |
-
["2022-Q1", 117.5, 64.3, 53.2],
|
147 |
-
["2022-Q2", 114.8, 63.3, 51.5],
|
148 |
-
["2022-Q3", 124.6, 68.3, 56.3],
|
149 |
-
["2023-Q1", 113.3, 62.9, 50.4],
|
150 |
-
["2023-Q2", 121.6, 63.5, 58.1],
|
151 |
-
["2023-Q3", 124.1, 66.9, 57.3],
|
152 |
-
["2023-Q4", 122.1, 65.8, 56.3],
|
153 |
-
["2024-Q1", 123.6, 67.4, 56.1],
|
154 |
-
["2024-Q2", 126.4, 66.9, 59.5],
|
155 |
-
["2024-Q3", 127.6, 69.0, 58.6],
|
156 |
-
["2024-Q4", 126.0, 68.8, 57.1],
|
157 |
-
]
|
158 |
-
},
|
159 |
-
'Cajamarca': {
|
160 |
-
'desempleo_trimestral': [
|
161 |
-
["2022-Q1", 9.0, 7.2, 13.5],
|
162 |
-
["2022-Q2", 6.5, 6.5, 11.9],
|
163 |
-
["2022-Q3", 5.2, 7.2, 11.4],
|
164 |
-
["2022-Q4", 4.7, 4.9, 4.5],
|
165 |
-
["2023-Q1", 10.1, 7.2, 13.5],
|
166 |
-
["2023-Q2", 11.2, 10.6, 11.9],
|
167 |
-
["2023-Q3", 9.2, 7.2, 11.4],
|
168 |
-
["2023-Q4", 8.6, 7.4, 10.0],
|
169 |
-
["2024-Q1", 12.9, 11.8, 14.2],
|
170 |
-
["2024-Q2", 10.5, 10.1, 11.0],
|
171 |
-
["2024-Q3", 11.0, 10.7, 11.3],
|
172 |
-
["2024-Q4", 11.1, 10.8, 11.4],
|
173 |
-
],
|
174 |
-
'ingresos_periodo': [
|
175 |
-
["2022-04/2023-03", 1755.8, 2105.8, 1338.6],
|
176 |
-
["2022-07/2023-06", 1818.8, 2182.5, 1386.0],
|
177 |
-
["2022-10/2023-09", 1866.9, 2226.1, 1440.6],
|
178 |
-
["2023", 1922.4, 2294.7, 1475.5],
|
179 |
-
["2023-04/2024-03", 1958.2, 2343.5, 1490.0],
|
180 |
-
["2023-07/2024-06", 1936.7, 2295.6, 1503.6],
|
181 |
-
["2023-10/2024-09", 1942.5, 2318.6, 1493.6],
|
182 |
-
["2024", 1972.0, 2352.5, 1519.1],
|
183 |
-
],
|
184 |
-
'informal_periodo': [
|
185 |
-
# No hay datos num茅ricos espec铆ficos, solo menciones gr谩ficas.
|
186 |
-
],
|
187 |
-
'actividad_trimestral': [
|
188 |
-
["2024-Q1", 65.5, None, None],
|
189 |
-
["2024-Q2", 65.9, None, None],
|
190 |
-
["2024-Q3", 67.2, None, None],
|
191 |
-
],
|
192 |
-
'poblacion_ocupada': [
|
193 |
-
["2022-Q1", 111.4, 61.4, 50.0],
|
194 |
-
["2022-Q2", 111.3, 60.8, 50.5],
|
195 |
-
["2022-Q3", 114.2, 61.1, 53.1],
|
196 |
-
["2023-Q1", 110.1, 60.2, 49.8],
|
197 |
-
["2023-Q2", 108.1, 57.0, 51.0],
|
198 |
-
["2023-Q3", 109.7, 58.7, 51.0],
|
199 |
-
["2024-Q1", 108.5, 60.2, 48.4],
|
200 |
-
["2024-Q2", 112.7, 60.3, 52.5],
|
201 |
-
["2024-Q3", 114.9, 60.0, 54.9],
|
202 |
-
]
|
203 |
-
},
|
204 |
-
'Chachapoyas': {
|
205 |
-
'desempleo_trimestral': [
|
206 |
-
["2022-Q1", 7.2, 6.5, 10.8],
|
207 |
-
["2022-Q2", 2.9, 4.6, 6.1],
|
208 |
-
["2022-Q3", 2.6, 4.4, 7.3],
|
209 |
-
["2022-Q4", 3.3, 5.0, 4.4],
|
210 |
-
["2023-Q1", 8.5, 6.5, 10.8],
|
211 |
-
["2023-Q2", 5.3, 4.6, 6.1],
|
212 |
-
["2023-Q3", 5.8, 4.4, 7.3],
|
213 |
-
["2023-Q4", 4.7, 5.0, 4.4],
|
214 |
-
["2024-Q1", 7.8, 6.8, 8.9],
|
215 |
-
["2024-Q2", 7.0, 6.2, 7.9],
|
216 |
-
["2024-Q3", 5.6, 4.6, 6.7],
|
217 |
-
["2024-Q4", 4.6, 5.1, 4.1],
|
218 |
-
],
|
219 |
-
'ingresos_periodo': [
|
220 |
-
["2022-04/2023-03", 2100.8, 2414.0, 1738.8],
|
221 |
-
["2022-07/2023-06", 2125.8, 2456.4, 1744.5],
|
222 |
-
["2022-10/2023-09", 2180.9, 2518.0, 1784.0],
|
223 |
-
["2023", 2228.7, 2556.6, 1840.6],
|
224 |
-
["2023-04/2024-03", 2306.8, 2670.7, 1885.7],
|
225 |
-
["2023-07/2024-06", 2339.6, 2702.3, 1920.5],
|
226 |
-
["2023-10/2024-09", 2338.2, 2725.6, 1894.0],
|
227 |
-
["2024", 2323.5, 2744.6, 1847.9],
|
228 |
-
],
|
229 |
-
'informal_periodo': [
|
230 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
231 |
-
],
|
232 |
-
'actividad_trimestral': [
|
233 |
-
["2023-Q1", 68.2, None, None],
|
234 |
-
["2023-Q3", 67.8, None, None],
|
235 |
-
["2024-Q1", 67.7, None, None],
|
236 |
-
["2024-Q2", 67.1, None, None],
|
237 |
-
["2024-Q3", 66.5, None, None],
|
238 |
-
],
|
239 |
-
'poblacion_ocupada': [
|
240 |
-
["2022-Q2", 19.6, 10.3, 9.2],
|
241 |
-
["2022-Q3", 20.5, 10.6, 9.8],
|
242 |
-
["2023-Q2", 19.4, 10.3, 9.1],
|
243 |
-
["2023-Q3", 19.3, 10.4, 8.9],
|
244 |
-
["2024-Q2", 19.2, 10.2, 9.0],
|
245 |
-
["2024-Q3", 19.5, 10.2, 9.2],
|
246 |
-
]
|
247 |
-
},
|
248 |
-
'Chiclayo': {
|
249 |
-
'desempleo_trimestral': [
|
250 |
-
["2022-Q2", 5.0, None, 6.2],
|
251 |
-
["2022-Q3", 4.8, 7.0, 10.0],
|
252 |
-
["2022-Q4", 5.2, None, None],
|
253 |
-
["2023-Q1", 9.1, 7.1, 11.5],
|
254 |
-
["2023-Q2", 8.1, 6.2, 10.2],
|
255 |
-
["2023-Q3", 8.4, 7.0, 10.0],
|
256 |
-
["2023-Q4", 7.7, 6.7, 9.0],
|
257 |
-
["2024-Q1", 9.8, 7.7, 12.3],
|
258 |
-
["2024-Q2", 9.8, 9.7, 9.8],
|
259 |
-
["2024-Q3", 9.9, 8.5, 11.6],
|
260 |
-
["2024-Q4", 5.7, 5.1, 6.3],
|
261 |
-
],
|
262 |
-
'ingresos_periodo': [
|
263 |
-
["2023-04/2024-03", 1704.2, 1883.2, 1486.1],
|
264 |
-
["2023-07/2024-06", 1653.4, 1837.1, 1432.8],
|
265 |
-
["2023-10/2024-09", 1632.2, 1811.6, 1414.9],
|
266 |
-
["2024", 1636.7, 1832.9, 1400.3],
|
267 |
-
["2022-04/2023-03",1648.7,1905.1,1413.6],
|
268 |
-
["2022-10/2023-09",1718.2,1930.5,1457.5],
|
269 |
-
["2023",1714.7,1893.8,1493.9]
|
270 |
-
],
|
271 |
-
'informal_periodo': [
|
272 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
273 |
-
],
|
274 |
-
'actividad_trimestral': [
|
275 |
-
["2023-Q1", 63.8, None, None],
|
276 |
-
["2023-Q3", 63.6, None, None],
|
277 |
-
["2024-Q1", 64.6, None, None],
|
278 |
-
["2024-Q3", 65.2, None, None],
|
279 |
-
],
|
280 |
-
'poblacion_ocupada': [
|
281 |
-
["2022-Q1", 298.4, 158.8, 139.6],
|
282 |
-
["2022-Q2", 272.0, 148.0, 124.0],
|
283 |
-
["2022-Q3", 298.4, 158.8, 139.6],
|
284 |
-
["2023-Q1", 274.5, 152.5, 122.0],
|
285 |
-
["2023-Q2", 272.0, 148.0, 124.0],
|
286 |
-
["2023-Q3", 276.7, 148.3, 128.4],
|
287 |
-
["2024-Q1", 277.3, 152.8, 124.5],
|
288 |
-
["2024-Q2", 276.6, 148.0, 128.5],
|
289 |
-
["2024-Q3", 280.4, 151.4, 129.0],
|
290 |
-
]
|
291 |
-
},
|
292 |
-
'Chimbote': {
|
293 |
-
'desempleo_trimestral': [
|
294 |
-
["2023-Q1", 7.4, 5.8, 9.3],
|
295 |
-
["2023-Q2", 5.7, 4.3, 7.3],
|
296 |
-
["2023-Q3", 7.7, 6.5, 9.1],
|
297 |
-
["2023-Q4", 8.1, 7.6, 8.8],
|
298 |
-
["2024-Q1", 7.9, 6.7, 9.3],
|
299 |
-
["2024-Q2", 7.1, 6.0, 8.4],
|
300 |
-
["2024-Q3", 7.1, 5.6, 8.9],
|
301 |
-
["2024-Q4", 6.7, 6.1, 7.4],
|
302 |
-
],
|
303 |
-
'ingresos_periodo': [
|
304 |
-
["2022-04/2023-03", 1723.4, 2033.5, 1322.7],
|
305 |
-
["2023", 1795.0, 2126.4, 1375.1],
|
306 |
-
["2023-04/2024-03", 1856.7, 2226.1, 1391.3],
|
307 |
-
["2023-07/2024-06", 1863.5, 2198.6, 1432.0],
|
308 |
-
["2023-10/2024-09", 1897.0, 2251.0, 1438.0],
|
309 |
-
["2024", 1927.5, 2236.3, 1528.9],
|
310 |
-
["2022-07/2023-06",1737.3,2049.7,1343.4],
|
311 |
-
["2022-10/2023-09",1763.2,2079.7,1362.5]
|
312 |
-
],
|
313 |
-
'informal_periodo': [
|
314 |
-
["2023-07/2024-06", 68.7, 67.6, 70.2],
|
315 |
-
],
|
316 |
-
'actividad_trimestral': [
|
317 |
-
["2023-Q3", 63.5, None, None],
|
318 |
-
["2024-Q1", 66.5, None, None],
|
319 |
-
["2024-Q3", 61.9, None, None],
|
320 |
-
],
|
321 |
-
'poblacion_ocupada': [
|
322 |
-
["2023-Q1", 184.9, 104.0, 80.9],
|
323 |
-
["2023-Q2", 180.0, 101.6, 78.3],
|
324 |
-
["2023-Q3", 186.4, 105.6, 80.8],
|
325 |
-
["2024-Q1", 191.9, 106.9, 85.1],
|
326 |
-
["2024-Q2", 187.7, 105.2, 82.4],
|
327 |
-
["2024-Q3", 181.2, 102.7, 78.5],
|
328 |
-
]
|
329 |
-
},
|
330 |
-
'Cusco': {
|
331 |
-
'desempleo_trimestral': [
|
332 |
-
["2022-Q1", 7.5, 7.5, 7.5],
|
333 |
-
["2022-Q2", 4.1, None, None],
|
334 |
-
["2022-Q3", 3.6, None, None],
|
335 |
-
["2022-Q4", 4.2, None, None],
|
336 |
-
["2023-Q1", 12.3, 11.5, 13.1],
|
337 |
-
["2023-Q2", 8.3, 8.3, 8.4],
|
338 |
-
["2023-Q3", 6.6, 4.7, 8.7],
|
339 |
-
["2023-Q4", 6.2, 4.8, 7.8],
|
340 |
-
["2024-Q1", 12.5, 10.3, 14.9],
|
341 |
-
["2024-Q2", 8.1, 8.4, 7.8],
|
342 |
-
["2024-Q3", 6.3, 4.3, 8.3],
|
343 |
-
["2024-Q4", 6.9, 6.6, 7.1],
|
344 |
-
],
|
345 |
-
'ingresos_periodo': [
|
346 |
-
["2022-04/2023-03", 1876.3, 2137.7, 1572.0],
|
347 |
-
["2023", 1960.0, 2159.4, 1724.4],
|
348 |
-
["2023-04/2024-03", 2003.4, 2226.7, 1745.8],
|
349 |
-
["2023-07/2024-06", 2009.0, 2240.7, 1748.2],
|
350 |
-
["2023-10/2024-09", 2041.7, 2275.8, 1778.8],
|
351 |
-
["2024", 2078.0, 2321.0, 1806.7],
|
352 |
-
###
|
353 |
-
["2022-07/2023-06", 1913.9, 2147.3, 1639.0],
|
354 |
-
["2022-10/2023-09", 1932.6, 2152.5, 1676.4],
|
355 |
-
],
|
356 |
-
'informal_periodo': [
|
357 |
-
["2023", 61.5, 54.0, 71.7], # Dato del a帽o 2023
|
358 |
-
["2022-04/2023-03",None,None,None],
|
359 |
-
["2022-07/2023-06",None,None,None],
|
360 |
-
["2022-10/2023-09",None,None,None],
|
361 |
-
["2023-04/2024-03",None,None,None],
|
362 |
-
["2023-07/2024-06",None,None,None],
|
363 |
-
["2023-10/2024-09",None,None,None],
|
364 |
-
["2024",None,None,None]
|
365 |
-
],
|
366 |
-
'actividad_trimestral': [
|
367 |
-
["2023-Q1", 62.4, None, None],
|
368 |
-
["2023-Q3", 68.2, None, None],
|
369 |
-
["2024-Q1", 69.3, None, None],
|
370 |
-
["2024-Q3", 68.7, None, None],
|
371 |
-
],
|
372 |
-
'poblacion_ocupada': [
|
373 |
-
["2022-Q1", 231.9, 123.8, 108.1],
|
374 |
-
["2022-Q2", 239.3, 125.1, 114.2],
|
375 |
-
["2022-Q3", 238.5, 127.3, 111.2],
|
376 |
-
["2023-Q1", 205.0, 111.4, 93.6],
|
377 |
-
["2023-Q2", 229.1, 123.6, 105.4],
|
378 |
-
["2023-Q3", 240.1, 128.4, 111.8],
|
379 |
-
["2024-Q1", 230.3, 121.9, 108.4],
|
380 |
-
["2024-Q2", 239.3, 123.9, 115.4],
|
381 |
-
["2024-Q3", 246.0, 129.2, 116.8],
|
382 |
-
]
|
383 |
-
},
|
384 |
-
'Huancavelica': {
|
385 |
-
'desempleo_trimestral': [
|
386 |
-
["2022-Q1", 10.5, 13.5, 17.1],
|
387 |
-
["2022-Q2", 5.8, None, None],
|
388 |
-
["2022-Q3", 4.6, None, None],
|
389 |
-
["2022-Q4", 5.4, 5.2, 5.7],
|
390 |
-
["2023-Q1", 15.2, 13.5, 17.1],
|
391 |
-
["2023-Q2", 10.7, 12.3, 8.9],
|
392 |
-
["2023-Q3", 8.2, 8.9, 7.5],
|
393 |
-
["2023-Q4", 9.1, 8.9, 9.2],
|
394 |
-
["2024-Q1", 14.5, 15.1, 13.8],
|
395 |
-
["2024-Q2", 13.4, 13.1, 13.6],
|
396 |
-
["2024-Q3", 11.5, 12.1, 10.8],
|
397 |
-
["2024-Q4", 8.7, 9.3, 8.0],
|
398 |
-
],
|
399 |
-
'ingresos_periodo': [
|
400 |
-
["2022-04/2023-03", 1638.8, 1819.8, 1420.1],
|
401 |
-
["2022-07/2023-06", 1676.8, 1876.2, 1440.6],
|
402 |
-
["2022-10/2023-09", 1660.6, 1856.6, 1432.5],
|
403 |
-
["2023", 1732.1, 1954.8, 1478.8],
|
404 |
-
["2023-04/2024-03", 1776.9, 2011.0, 1509.6],
|
405 |
-
["2023-07/2024-06", 1815.6, 2050.0, 1543.0],
|
406 |
-
["2023-10/2024-09", 1861.6, 2096.7, 1590.1],
|
407 |
-
["2024", 1864.4, 2096.0, 1595.9],
|
408 |
-
],
|
409 |
-
'informal_periodo': [
|
410 |
-
["2023", 61.0, 59.5, 62.6],
|
411 |
-
],
|
412 |
-
'actividad_trimestral': [
|
413 |
-
["2022-Q3",68.9,None,None],
|
414 |
-
["2023-Q2",66.9,None,None],
|
415 |
-
["2023-Q3",68.9,None,None],
|
416 |
-
["2024-Q1",66.3,None,None],
|
417 |
-
["2024-Q2",68.7,None,None],
|
418 |
-
["2024-Q3",71.3,None,None]
|
419 |
-
],
|
420 |
-
'poblacion_ocupada': [
|
421 |
-
["2022-Q1", 26.1, 14.4, 11.7],
|
422 |
-
["2022-Q2", 40.7, 23.2, 17.5],
|
423 |
-
["2022-Q3", 27.4, 14.5, 12.8],
|
424 |
-
["2023-Q1", 23.4, 12.8, 10.7],
|
425 |
-
["2023-Q2", 26.3, 13.4, 12.9],
|
426 |
-
["2023-Q3", 28.0, 14.7, 13.3],
|
427 |
-
["2024-Q1", 26.8, 14.1, 12.6],
|
428 |
-
["2024-Q2", 26.8, 14.1, 12.6],
|
429 |
-
["2024-Q3", 28.5, 14.9, 13.6],
|
430 |
-
]
|
431 |
-
},
|
432 |
-
'Huancayo': {
|
433 |
-
'desempleo_trimestral': [
|
434 |
-
["2022-Q1", 7.4, 7.7, 13.5],
|
435 |
-
["2022-Q2", 3.9, 7.5, 8.4],
|
436 |
-
["2022-Q3", 3.5, 5.2, 6.6],
|
437 |
-
["2022-Q4", 4.1, None, None],
|
438 |
-
["2023-Q1", 10.5, 10.3, 10.1],
|
439 |
-
["2023-Q2", 7.9, 7.5, 8.4],
|
440 |
-
["2023-Q3", 5.9, 5.2, 6.6],
|
441 |
-
["2023-Q4", 7.4, 6.5, 8.4],
|
442 |
-
["2024-Q1", 10.2, 10.3, 10.1],
|
443 |
-
["2024-Q2", 8.4, 7.2, 9.6],
|
444 |
-
["2024-Q3", 7.2, 9.0, 5.4],
|
445 |
-
["2024-Q4", 6.7, 5.5, 8.1],
|
446 |
-
],
|
447 |
-
'ingresos_periodo': [
|
448 |
-
["2022-04/2023-03", 1665.5, 1927.0, 1367.5],
|
449 |
-
["2022-07/2023-06", 1702.3, 1978.8, 1387.9],
|
450 |
-
["2022-10/2023-09", 1705.7, 1992.6, 1382.4],
|
451 |
-
["2023", 1715.8, 2007.6, 1388.0],
|
452 |
-
["2023-04/2024-03", 1707.7, 2003.1, 1383.4],
|
453 |
-
["2023-07/2024-06", 1705.3, 2014.3, 1364.7],
|
454 |
-
["2023-10/2024-09", 1724.5, 2029.0, 1395.4],
|
455 |
-
["2024", 1754.2, 2061.6, 1410.3],
|
456 |
-
],
|
457 |
-
'informal_periodo': [
|
458 |
-
["2023", 66.6, 63.9, 69.6],
|
459 |
-
],
|
460 |
-
'actividad_trimestral': [
|
461 |
-
["2022-Q3", 67.0, None, None],
|
462 |
-
["2023-Q1", 66.4, None, None],
|
463 |
-
["2023-Q3", 67.0, None, None],
|
464 |
-
["2024-Q1", 65.4, None, None],
|
465 |
-
["2024-Q3", 62.9, None, None],
|
466 |
-
],
|
467 |
-
'poblacion_ocupada': [
|
468 |
-
["2022-Q1", 253.5, 128.0, 125.5],
|
469 |
-
["2022-Q2", 255.8, 130.2, 125.6],
|
470 |
-
["2022-Q3", 266.1, 142.2, 123.9],
|
471 |
-
["2023-Q1", 251.9, 134.2, 117.6],
|
472 |
-
["2023-Q2", 252.1, 129.4, 122.7],
|
473 |
-
["2023-Q3", 268.9, 142.4, 126.5],
|
474 |
-
["2023-Q4", 259.4, None, None],
|
475 |
-
["2024-Q1", 252.2, 130.1, 122.1],
|
476 |
-
["2024-Q2", 254.7, 130.2, 124.4],
|
477 |
-
["2024-Q3", 252.4, 129.0, 123.5],
|
478 |
-
["2024-Q4", 257.3, 139.5, 117.8]
|
479 |
-
]
|
480 |
-
},
|
481 |
-
'Hu谩nuco': {
|
482 |
-
'desempleo_trimestral': [
|
483 |
-
["2022-Q1", 10.2, 8.3, 12.2],
|
484 |
-
["2022-Q2", 3.9, 6.5, 10.7],
|
485 |
-
["2022-Q3", 3.8, 4.4, 7.5],
|
486 |
-
["2022-Q4", 4.2, None, None],
|
487 |
-
["2023-Q1", 10.0, 8.3, 12.2],
|
488 |
-
["2023-Q2", 8.5, 6.5, 10.7],
|
489 |
-
["2023-Q3", 5.8, 4.4, 7.5],
|
490 |
-
["2023-Q4", 6.8, 6.9, 6.6],
|
491 |
-
["2024-Q1", 10.1, 8.4, 12.5],
|
492 |
-
["2024-Q2", 7.0, 7.1, 7.0],
|
493 |
-
["2024-Q3", 8.7, 7.2, 10.4],
|
494 |
-
["2024-Q4", 4.1, 1.7, 7.2],
|
495 |
-
],
|
496 |
-
'ingresos_periodo': [
|
497 |
-
["2022-04/2023-03", 1733.4, 1966.6, 1415.4],
|
498 |
-
["2022-07/2023-06", 1796.7, 2027.4, 1492.1],
|
499 |
-
["2022-10/2023-09", 1864.3, 2065.9, 1592.7],
|
500 |
-
["2023", 1919.4, 2115.1, 1657.2],
|
501 |
-
["2023-04/2024-03", 1931.0, 2119.8, 1677.8],
|
502 |
-
["2023-07/2024-06", 1958.5, 2132.6, 1722.6],
|
503 |
-
["2023-10/2024-09", 1963.3, 2122.9, 1747.3],
|
504 |
-
["2024", 1957.5, 2095.7, 1766.8],
|
505 |
-
],
|
506 |
-
'informal_periodo': [
|
507 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
508 |
-
],
|
509 |
-
'actividad_trimestral': [
|
510 |
-
["2023-Q3", 66.3, None, None],
|
511 |
-
["2024-Q1", 65.3, None, None],
|
512 |
-
["2024-Q3", 62.3, None, None],
|
513 |
-
],
|
514 |
-
'poblacion_ocupada': [
|
515 |
-
["2024-Q2", 64.0, 35.0, 29.0],
|
516 |
-
["2024-Q3", 64.0, 35.6, 28.3],
|
517 |
-
]
|
518 |
-
},
|
519 |
-
'Huaraz': {
|
520 |
-
'desempleo_trimestral': [
|
521 |
-
["2022-Q1", 5.6, 4.1, 6.8],
|
522 |
-
["2022-Q2", 3.7, 4.9, 7.3],
|
523 |
-
["2022-Q3", 2.1, 3.5, 6.7],
|
524 |
-
["2022-Q4", 2.4, 2.8, 2.3],
|
525 |
-
["2023-Q1", 5.2, 4.1, 6.8],
|
526 |
-
["2023-Q2", 6.0, 4.9, 7.3],
|
527 |
-
["2023-Q3", 4.9, 3.5, 6.7],
|
528 |
-
["2023-Q4", 4.7, 5.0, 4.3],
|
529 |
-
["2024-Q1", 7.1, 5.5, 9.2],
|
530 |
-
["2024-Q2", 7.1, 8.0, 6.0],
|
531 |
-
["2024-Q3", 6.7, 8.0, 4.9],
|
532 |
-
["2024-Q4", 7.0, 7.7, 6.1],
|
533 |
-
],
|
534 |
-
'ingresos_periodo': [
|
535 |
-
["2022-04/2023-03", 1768.5, 2091.1, 1335.7],
|
536 |
-
["2022-07/2023-06", 1802.9, 2105.0, 1404.7],
|
537 |
-
["2022-10/2023-09", 1826.5, 2092.7, 1463.3],
|
538 |
-
["2023", 1862.5, 2121.2, 1497.5],
|
539 |
-
["2023-04/2024-03", 1870.7, 2119.2, 1520.4],
|
540 |
-
["2023-07/2024-06", 1909.0, 2153.3, 1565.4],
|
541 |
-
["2023-10/2024-09", 1902.1, 2114.9, 1607.4],
|
542 |
-
["2024", 1936.9, 2149.9, 1652.0],
|
543 |
-
],
|
544 |
-
'informal_periodo': [
|
545 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
546 |
-
],
|
547 |
-
'actividad_trimestral': [
|
548 |
-
["2023-Q1", 63.3, None, None],
|
549 |
-
["2023-Q3", 62.8, 71.6, 54.0],
|
550 |
-
["2024-Q1", 62.9, None, None],
|
551 |
-
["2024-Q3", 61.6, 70.0, 53.3],
|
552 |
-
],
|
553 |
-
'poblacion_ocupada': [
|
554 |
-
["2022-Q2", 62.5, 36.1, 26.4],
|
555 |
-
["2022-Q3", 68.6, 38.1, 30.5],
|
556 |
-
["2023-Q1", 65.1, 37.5, 27.5],
|
557 |
-
["2023-Q2", 65.3, 35.8, 29.5],
|
558 |
-
["2023-Q3", 65.3, 37.6, 27.8],
|
559 |
-
["2024-Q1", 64.5, 37.3, 27.3],
|
560 |
-
["2024-Q2", 64.0, 35.0, 29.0],
|
561 |
-
["2024-Q3", 64.0, 35.6, 28.3],
|
562 |
-
]
|
563 |
-
},
|
564 |
-
'Ica': {
|
565 |
-
'desempleo_trimestral': [
|
566 |
-
["2022-Q3", 3.1, None, None],
|
567 |
-
["2022-Q4", 5.3, 4.3, 6.6],
|
568 |
-
["2023-Q3", 7.6, 6.4, 9.0],
|
569 |
-
["2023-Q4", 5.3, 4.3, 6.6],
|
570 |
-
["2024-Q3", 7.1, 5.8, 8.9],
|
571 |
-
["2024-Q4", 8.2, 6.8, 10.0],
|
572 |
-
],
|
573 |
-
'ingresos_periodo': [
|
574 |
-
["2022-10/2023-09", 1969.4, 2172.6, 1696.0],
|
575 |
-
["2023-10/2024-09", 2055.1, 2276.2, 1750.1],
|
576 |
-
["2024", 2032.6, 2237.5, 1747.5],
|
577 |
-
],
|
578 |
-
'informal_periodo': [
|
579 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
580 |
-
],
|
581 |
-
'actividad_trimestral': [],
|
582 |
-
'poblacion_ocupada': [
|
583 |
-
["2022-Q3", 175.4, 99.7, 75.8],
|
584 |
-
["2023-Q1", 168.2, 98.6, 69.5],
|
585 |
-
["2023-Q2", 169.0, 95.4, 73.6],
|
586 |
-
["2023-Q3", 172.0, 96.1, 75.8],
|
587 |
-
["2024-Q1", 162.8, 94.2, 68.6],
|
588 |
-
["2024-Q2", 166.7, 97.2, 69.5],
|
589 |
-
["2024-Q3", 172.1, 99.5, 72.6],
|
590 |
-
]
|
591 |
-
},
|
592 |
-
'Iquitos': {
|
593 |
-
'desempleo_trimestral': [
|
594 |
-
["2022-Q3", 3.2, None, None],
|
595 |
-
["2022-Q4", 3.4, None, None],
|
596 |
-
["2023-Q1", 8.1, 7.4, 9.0],
|
597 |
-
["2023-Q2", 7.0, 6.2, 7.9],
|
598 |
-
["2023-Q3", 6.2, 6.6, 5.7],
|
599 |
-
["2023-Q4", 6.3, 5.3, 7.7],
|
600 |
-
["2024-Q1", 8.1, 7.4, 9.1],
|
601 |
-
["2024-Q2", 7.6, 6.1, 9.6],
|
602 |
-
["2024-Q3", 8.0, 8.1, 8.0],
|
603 |
-
["2024-Q4", 4.2, 3.7, 4.8],
|
604 |
-
],
|
605 |
-
'ingresos_periodo': [
|
606 |
-
["2022-04/2023-03", 1581.5, 1723.7, 1396.7],
|
607 |
-
["2022-07/2023-06", 1623.0, 1786.5, 1413.3],
|
608 |
-
["2022-10/2023-09", 1671.5, 1837.8, 1458.2],
|
609 |
-
["2023", 1702.8, 1884.1, 1467.3],
|
610 |
-
["2023-04/2024-03", 1728.4, 1919.9, 1476.4],
|
611 |
-
["2023-07/2024-06", 1716.9, 1891.9, 1480.4],
|
612 |
-
["2023-10/2024-09", 1725.3, 1894.0, 1494.4],
|
613 |
-
["2024", 1741.9, 1898.3, 1532.0],
|
614 |
-
],
|
615 |
-
'informal_periodo': [
|
616 |
-
["2022-07/2023-06", 73.8, None, None],
|
617 |
-
["2022-10/2023-09", 74.1, None, None],
|
618 |
-
["2023", 73.1, 71.6, 75.9],
|
619 |
-
["2023-04/2024-03", 73.8, None, None],
|
620 |
-
["2023-07/2024-06", 72.8, None, None],
|
621 |
-
["2023-10/2024-09", 72.8, None, None],
|
622 |
-
["2024", 72.4, None, None],
|
623 |
-
],
|
624 |
-
'actividad_trimestral': [
|
625 |
-
["2022", 72.5, None, None],
|
626 |
-
["2023-Q3", 69.4, None, None],
|
627 |
-
["2023", 70.3, None, None],
|
628 |
-
["2024-Q3", 71.8, None, None],
|
629 |
-
],
|
630 |
-
'poblacion_ocupada': [
|
631 |
-
["2022-Q1", 218.6, 119.4, 99.2],
|
632 |
-
["2022-Q2", 221.6, 124.1, 97.4],
|
633 |
-
["2022-Q3", 232.4, 127.8, 104.5],
|
634 |
-
["2023-Q1", 212.0, 119.7, 92.3],
|
635 |
-
["2023-Q2", 215.7, 117.4, 98.3],
|
636 |
-
["2023-Q3", 213.8, 119.2, 94.5],
|
637 |
-
["2024-Q3", 218.5, 123.4, 95.1],
|
638 |
-
]
|
639 |
-
},
|
640 |
-
'Lima Metropolitana y la Provincia Constitucional del Callao': {
|
641 |
-
'desempleo_trimestral': [
|
642 |
-
["2022-Q1", 9.4, 6.4, 8.7],
|
643 |
-
["2022-Q2", 6.8, None, None],
|
644 |
-
["2022-Q3", 7.7, None, None],
|
645 |
-
["2022-Q4", 7.1, None, None],
|
646 |
-
["2023-Q1", 7.5, 6.4, 8.7],
|
647 |
-
["2023-Q2", 6.6, 6.0, 7.1],
|
648 |
-
["2023-Q3", 6.7, 5.8, 7.8],
|
649 |
-
["2023-Q4", 6.4, 5.2, 7.8],
|
650 |
-
["2024-Q1", 7.7, 6.8, 8.7],
|
651 |
-
["2024-Q2", 6.6, 6.0, 7.3],
|
652 |
-
["2024-Q3", 5.9, 5.0, 7.1],
|
653 |
-
["2024-Q4", 5.5, 5.0, 6.1],
|
654 |
-
],
|
655 |
-
'ingresos_periodo': [
|
656 |
-
["2022-04/2023-03", 1949.9, 2213.6, 1627.9],
|
657 |
-
["2022-07/2023-06", 2032.3, 2294.5, 1715.2],
|
658 |
-
["2023", 2141.1, 2430.3, 1797.4],
|
659 |
-
["2023-04/2024-03", 2176.2, 2472.3, 1823.8],
|
660 |
-
["2023-07/2024-06", 2189.5, 2506.0, 1816.4],
|
661 |
-
["2023-10/2024-09", 2217.8, 2519.7, 1859.8],
|
662 |
-
["2024", 2268.9, 2565.8, 1915.4],
|
663 |
-
],
|
664 |
-
'informal_periodo': [
|
665 |
-
["2022-07/2023-06", 58.0, 55.3, 61.2],
|
666 |
-
["2023", 56.7, 53.9, 59.9],
|
667 |
-
["2023-04/2024-03", 57.3, 54.5, 60.6],
|
668 |
-
["2023-07/2024-06", 57.3, 54.6, 60.4],
|
669 |
-
["2023-10/2024-09", 57.3, 54.9, 60.1],
|
670 |
-
["2024", 57.0, 54.2, 60.2],
|
671 |
-
],
|
672 |
-
'actividad_trimestral': [
|
673 |
-
["2023-Q3", 65.4, None, None],
|
674 |
-
["2024-Q1", 66.7, None, None],
|
675 |
-
["2024-Q2", 66.5, None, None],
|
676 |
-
["2024-Q3", 65.4, None, None],
|
677 |
-
],
|
678 |
-
'poblacion_ocupada': [
|
679 |
-
["2022-Q1", 4921.1, 2732.9, 2188.3],
|
680 |
-
["2022-Q2", 5087.7, 2771.6, 2316.0],
|
681 |
-
["2022-Q3", 4982.9, 2734.5, 2248.4],
|
682 |
-
["2022-Q4", 5019.4, 2754.0, 2265.5],
|
683 |
-
["2023-Q1", 5124.4, 2749.1, 2375.3],
|
684 |
-
["2023-Q2", 5215.5, 2800.2, 2415.4],
|
685 |
-
["2023-Q3", 5208.3, 2823.0, 2385.2],
|
686 |
-
["2023-Q4", 5217.0, 2807.6, 2409.4],
|
687 |
-
["2024-Q1", 5359.7, 2892.8, 2466.9],
|
688 |
-
["2024-Q2", 5461.3, 2891.5, 2569.7],
|
689 |
-
["2024-Q3", 5461.7, 2985.0, 2476.8],
|
690 |
-
["2024-Q4", 5459.2, 2942.9, 2516.4],
|
691 |
-
]
|
692 |
-
},
|
693 |
-
'Moquegua': {
|
694 |
-
'desempleo_trimestral': [
|
695 |
-
["2022-Q1", 10.5, 9.7, 11.6],
|
696 |
-
["2022-Q2", 6.0, None, None],
|
697 |
-
["2022-Q3", 6.6, None, None],
|
698 |
-
["2022-Q4", 9.2, None, None],
|
699 |
-
["2023-Q1", 14.8, 12.9, 17.3],
|
700 |
-
["2023-Q2", 10.0, 9.2, 11.2],
|
701 |
-
###
|
702 |
-
["2023-Q3", 11.4, 10.8, 12.2],
|
703 |
-
["2023-Q4", 11.1, 9.7, 13.0],
|
704 |
-
["2024-Q1", 14.4, 11.3, 18.6],
|
705 |
-
["2024-Q2", 11.1, 8.6, 14.4],
|
706 |
-
["2024-Q3", 11.2, 8.1, 15.0],
|
707 |
-
["2024-Q4", 6.3, 6.8, 5.5],
|
708 |
-
],
|
709 |
-
'ingresos_periodo': [
|
710 |
-
["2022-04/2023-03", 2002.0, 2313.2, 1570.7],
|
711 |
-
["2022-07/2023-06", 2075.2, 2402.3, 1609.8],
|
712 |
-
["2022-10/2023-09", 2141.5, 2492.6, 1642.4],
|
713 |
-
["2023", 2174.3, 2517.8, 1673.8],
|
714 |
-
["2023-04/2024-03", 2195.7, 2516.1, 1729.2],
|
715 |
-
["2023-07/2024-06", 2206.9, 2517.5, 1756.6],
|
716 |
-
["2023-10/2024-09", 2222.2, 2540.8, 1766.5],
|
717 |
-
],
|
718 |
-
'informal_periodo': [
|
719 |
-
["2023", 54.1, 50.9, 58.5],
|
720 |
-
["2024",54.1,50.9,58.5]
|
721 |
-
],
|
722 |
-
'actividad_trimestral': [
|
723 |
-
["2023-Q1",64.2,None,None],
|
724 |
-
["2023-Q3",66.0,None,None],
|
725 |
-
["2024-Q1",69.1,None,None]
|
726 |
-
],
|
727 |
-
'poblacion_ocupada': [
|
728 |
-
["2022-Q2", 40.7, 23.2, 17.5],
|
729 |
-
["2022-Q3", 40.0, 23.4, 16.7],
|
730 |
-
["2023-Q1", 36.6, 21.4, 15.1],
|
731 |
-
["2023-Q2", 40.9, 24.2, 16.7],
|
732 |
-
["2023-Q3", 39.6, 23.2, 16.4],
|
733 |
-
["2024-Q1", 40.5, 23.7, 16.8],
|
734 |
-
["2024-Q2", 42.7, 25.2, 17.5],
|
735 |
-
["2024-Q3", 42.9, 24.6, 18.3],
|
736 |
-
]
|
737 |
-
},
|
738 |
-
'Moyobamba': {
|
739 |
-
'desempleo_trimestral': [
|
740 |
-
["2022-Q1", 3.7, 5.9, 6.1],
|
741 |
-
["2022-Q2", 1.8, 3.4, 2.7],
|
742 |
-
["2022-Q3", 1.1, 3.4, 4.4],
|
743 |
-
["2022-Q4", 1.9, 3.8, 6.1],
|
744 |
-
["2023-Q1", 6.0, 5.9, 6.1],
|
745 |
-
["2023-Q2", 3.2, 3.4, 2.7],
|
746 |
-
["2023-Q3", 3.8, 3.4, 4.4],
|
747 |
-
["2023-Q4", 4.3, 3.3, 5.8],
|
748 |
-
["2024-Q1", 6.8, 5.1, 9.2],
|
749 |
-
["2024-Q2", 3.4, 3.1, 3.8],
|
750 |
-
["2024-Q3", 4.0, 3.0, 5.3],
|
751 |
-
["2024-Q4", 3.0, 3.0, 3.1],
|
752 |
-
],
|
753 |
-
'ingresos_periodo': [
|
754 |
-
["2022-07/2023-06", 1778.8, 1927.2, 1554.4],
|
755 |
-
["2022-10/2023-09", 1753.7, 1893.1, 1537.0],
|
756 |
-
["2023", 1738.2, 1858.6, 1547.1],
|
757 |
-
["2023-04/2024-03", 1743.8, 1868.6, 1546.7],
|
758 |
-
["2023-07/2024-06", 1726.2, 1841.2, 1548.6],
|
759 |
-
["2023-10/2024-09", 1734.6, 1860.1, 1543.5],
|
760 |
-
["2024", 1730.3, 1882.3, 1504.7],
|
761 |
-
["2022-04/2023-03",1753.1,1905.7,1523.4]
|
762 |
-
],
|
763 |
-
'informal_periodo': [
|
764 |
-
["2023-10/2024-09",None,72.9,74.3],
|
765 |
-
["2024",None,70.3,68.5],
|
766 |
-
["2023-04/2024-03",69.0,69.2,68.6]
|
767 |
-
],
|
768 |
-
'actividad_trimestral': [
|
769 |
-
["2022-Q3", 72.6, None, None],
|
770 |
-
["2023-Q3", 72.6, None, None],
|
771 |
-
["2024-Q1", 73.7, None, None],
|
772 |
-
["2024-Q2", 73.5, None, None],
|
773 |
-
["2024-Q3", 73.1, None, None],
|
774 |
-
],
|
775 |
-
'poblacion_ocupada': [
|
776 |
-
["2022-Q1", 32.0, 19.0, 13.0],
|
777 |
-
["2022-Q2", 33.2, 19.6, 13.6],
|
778 |
-
["2022-Q3", 34.0, 19.9, 14.1],
|
779 |
-
["2023-Q1", 32.4, 19.0, 13.4],
|
780 |
-
["2023-Q2", 32.6, 19.4, 13.2],
|
781 |
-
["2023-Q3", 32.6, 19.6, 13.1],
|
782 |
-
["2024-Q1", 33.8, None, None],
|
783 |
-
["2024-Q2", 33.8, 19.3, 14.5],
|
784 |
-
["2024-Q3", 33.6, 19.6, 14.0],
|
785 |
-
]
|
786 |
-
},
|
787 |
-
'Cerro de Pasco': {
|
788 |
-
'desempleo_trimestral': [
|
789 |
-
["2022-Q1", 7.5, 5.8, 9.3],
|
790 |
-
["2022-Q2", 5.2, None, None],
|
791 |
-
["2022-Q3", 3.3, 5.3, 6.6],
|
792 |
-
["2022-Q4", 5.7, 3.2, 5.5],
|
793 |
-
["2023-Q1", 9.5, 7.9, 11.5],
|
794 |
-
["2023-Q2", 6.7, 6.7, 8.8],
|
795 |
-
["2023-Q3", 5.9, 5.3, 6.6],
|
796 |
-
["2023-Q4", 4.2, 3.2, 5.5],
|
797 |
-
["2024-Q1", 10.1, 9.1, 11.5],
|
798 |
-
["2024-Q2", 7.6, 6.8, 8.6],
|
799 |
-
["2024-Q3", 7.7, 7.6, 7.7],
|
800 |
-
["2024-Q4", 6.4, 5.1, 8.1],
|
801 |
-
],
|
802 |
-
'ingresos_periodo': [
|
803 |
-
["2022-04/2023-03", 1679.1, 2036.5, 1216.6],
|
804 |
-
["2022-07/2023-06", 1738.4, 2113.4, 1238.4],
|
805 |
-
["2022-10/2023-09", 1779.2, 2170.1, 1238.5],
|
806 |
-
["2023", 1783.2, 2162.7, 1245.5],
|
807 |
-
["2023-04/2024-03", 1811.3, 2190.5, 1271.8],
|
808 |
-
["2023-07/2024-06", 1808.9, 2210.8, 1252.4],
|
809 |
-
["2023-10/2024-09", 1844.0, 2269.1, 1270.0],
|
810 |
-
["2024", 1870.4, 2313.9, 1267.6],
|
811 |
-
],
|
812 |
-
'informal_periodo': [
|
813 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
814 |
-
],
|
815 |
-
'actividad_trimestral': [
|
816 |
-
["2023-Q3",64.8,None,None],
|
817 |
-
["2024-Q3",63.8,None,None]
|
818 |
-
],
|
819 |
-
'poblacion_ocupada': [
|
820 |
-
["2022-Q2", 28.9, 15.8, 13.1],
|
821 |
-
["2022-Q3", 29.5, 16.3, 13.2],
|
822 |
-
["2023-Q1", 27.5, 15.5, 12.0],
|
823 |
-
["2023-Q2", 29.4, 16.9, 12.5],
|
824 |
-
["2023-Q3", 28.4, 16.4, 12.0],
|
825 |
-
["2023-Q4", 28.4, 16.3, 12.1],
|
826 |
-
["2024-Q1", 24.2, 14.0, 10.2],
|
827 |
-
["2024-Q2", 27.2, 15.0, 12.2],
|
828 |
-
["2024-Q3", 27.3, 15.7, 11.6],
|
829 |
-
["2024-Q4", 26.6, 15.1, 11.4]
|
830 |
-
]
|
831 |
-
},
|
832 |
-
'Piura': {
|
833 |
-
'desempleo_trimestral': [
|
834 |
-
["2022-Q1", 5.4, None, None],
|
835 |
-
["2022-Q2", 3.2, None, None],
|
836 |
-
["2022-Q3", 2.9, None, None],
|
837 |
-
["2022-Q4", 3.4, None, None],
|
838 |
-
["2023-Q1", 9.2, 8.3, 10.1],
|
839 |
-
["2023-Q2", 6.7, 5.0, 8.7],
|
840 |
-
["2023-Q3", 6.0, 6.4, 5.5],
|
841 |
-
["2023-Q4", 6.6, 5.6, 7.7],
|
842 |
-
["2024-Q1", 9.5, 7.9, 11.2],
|
843 |
-
["2024-Q2", 8.2, 7.2, 9.4],
|
844 |
-
["2024-Q3", 6.9, 4.6, 9.5],
|
845 |
-
["2024-Q4", 8.0, 5.7, 10.7],
|
846 |
-
],
|
847 |
-
'ingresos_periodo': [
|
848 |
-
["2022-04/2023-03", 1799.1, 2055.2, 1490.1],
|
849 |
-
["2022-07/2023-06", 1805.6, 2064.7, 1494.2],
|
850 |
-
["2022-10/2023-09", 1842.5, 2101.1, 1533.2],
|
851 |
-
["2023", 1839.3, 2103.5, 1520.5],
|
852 |
-
["2023-04/2024-03", 1839.8, 2099.2, 1527.5],
|
853 |
-
["2023-07/2024-06", 1856.8, 2104.4, 1555.9],
|
854 |
-
["2023-10/2024-09", 1856.8, 2105.2, 1547.8],
|
855 |
-
["2024", 1856.5, 2084.4, 1569.8],
|
856 |
-
],
|
857 |
-
'informal_periodo': [
|
858 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
859 |
-
],
|
860 |
-
'actividad_trimestral': [
|
861 |
-
["2023-Q3", 70.1, None, None],
|
862 |
-
["2024-Q3", 69.0, None, None],
|
863 |
-
],
|
864 |
-
'poblacion_ocupada': [
|
865 |
-
["2022-Q3", 293.0, 159.1, 133.9],
|
866 |
-
]
|
867 |
-
},
|
868 |
-
'Pucallpa': {
|
869 |
-
'desempleo_trimestral': [
|
870 |
-
["2022-Q1", 4.2, None, None],
|
871 |
-
["2022-Q3", 2.0, None, None],
|
872 |
-
["2022-Q4", 1.9, None, None],
|
873 |
-
["2023-Q1", 4.7, 4.2, 5.4],
|
874 |
-
["2023-Q2", 2.9, 2.5, 3.6],
|
875 |
-
["2023-Q3", 5.7, 4.6, 7.3],
|
876 |
-
["2023-Q4", 4.8, 3.8, 6.1],
|
877 |
-
["2024-Q1", 6.6, 6.4, 6.8],
|
878 |
-
["2024-Q2", 7.4, 7.3, 7.5],
|
879 |
-
["2024-Q3", 4.9, 5.0, 4.8],
|
880 |
-
["2024-Q4", 4.6, 3.4, 6.1],
|
881 |
-
],
|
882 |
-
'ingresos_periodo': [
|
883 |
-
["2022-04/2023-03", 1583.0, 1698.1, 1412.8],
|
884 |
-
["2022-07/2023-06", 1587.9, 1712.9, 1402.5],
|
885 |
-
["2022-10/2023-09", 1591.5, 1714.7, 1404.1],
|
886 |
-
["2023", 1616.2, 1736.1, 1430.3],
|
887 |
-
["2023-04/2024-03", 1626.1, 1741.0, 1450.3],
|
888 |
-
["2023-07/2024-06", 1623.8, 1729.1, 1463.0],
|
889 |
-
["2023-10/2024-09", 1627.5, 1720.2, 1488.0],
|
890 |
-
["2024", 1628.0, 1711.5, 1501.3],
|
891 |
-
],
|
892 |
-
'informal_periodo': [
|
893 |
-
["2023-04/2024-03", 74.2, 72.9, 75.9],
|
894 |
-
],
|
895 |
-
'actividad_trimestral': [
|
896 |
-
["2023-Q1",68.3,None,None],
|
897 |
-
["2023-Q2",67.7,None,None],
|
898 |
-
["2023-Q3",66.2,None,None],
|
899 |
-
["2024-Q1",67.9,None,None],
|
900 |
-
["2024-Q2",66.1,None,None],
|
901 |
-
["2024-Q3",68.7,None,None]
|
902 |
-
],
|
903 |
-
'poblacion_ocupada': [
|
904 |
-
["2022-Q1", 189.1, 115.1, 74.0],
|
905 |
-
["2022-Q3", 232.4, 127.8, 104.5],
|
906 |
-
["2023-Q1", 190.0, 112.6, 77.4],
|
907 |
-
["2024-Q1",190.0,112.6,77.4]
|
908 |
-
]
|
909 |
-
},
|
910 |
-
'Puerto Maldonado': {
|
911 |
-
'desempleo_trimestral': [
|
912 |
-
["2022-Q4", 2.0, None, None],
|
913 |
-
["2023-Q1", 6.1, 4.9, 8.3],
|
914 |
-
["2023-Q2", 4.5, 3.9, 5.6],
|
915 |
-
["2023-Q3", 4.3, 2.9, 6.4],
|
916 |
-
["2023-Q4", 5.2, 4.3, 6.7],
|
917 |
-
["2024-Q1", 6.4, 3.9, 10.5],
|
918 |
-
["2024-Q2", 7.8, 6.0, 10.7],
|
919 |
-
["2024-Q3", 6.7, 5.2, 9.1],
|
920 |
-
["2024-Q4", 5.6, 4.3, 7.8],
|
921 |
-
],
|
922 |
-
'ingresos_periodo': [
|
923 |
-
["2022-04/2023-03", 1911.6, 2075.4, 1622.0],
|
924 |
-
["2022-07/2023-06", 1893.7, 2034.2, 1641.7],
|
925 |
-
["2022-10/2023-09", 1871.5, 2002.7, 1637.3],
|
926 |
-
["2023", 1869.8, 1995.4, 1645.5],
|
927 |
-
["2023-04/2024-03", 1872.8, 1992.9, 1654.6],
|
928 |
-
["2023-07/2024-06", 1904.0, 2037.4, 1662.8],
|
929 |
-
["2023-10/2024-09", 1955.6, 2095.1, 1700.2],
|
930 |
-
["2024", 1973.6, 2113.7, 1715.4],
|
931 |
-
],
|
932 |
-
'informal_periodo': [
|
933 |
-
["2022-04/2023-03",None,None,None],
|
934 |
-
["2022-07/2023-06",None,None,None],
|
935 |
-
["2022-10/2023-09",None,None,None],
|
936 |
-
["2023", 70.5, 72.0, 68.0],
|
937 |
-
["2023-04/2024-03", 70.7, 71.8, 68.9],
|
938 |
-
["2023-07/2024-06", 70.7, 71.8, 68.9],
|
939 |
-
["2023-10/2024-09", 70.3, 70.9, 69.1],
|
940 |
-
["2024", 73.5,72.5,73.5],
|
941 |
-
],
|
942 |
-
'actividad_trimestral': [
|
943 |
-
["2023-Q1",68.3,None,None],
|
944 |
-
["2023-Q2",74.8,None,None],
|
945 |
-
["2023-Q3",75.8,None,None],
|
946 |
-
["2024-Q1",72.4,None,None],
|
947 |
-
["2024-Q2",74.8,None,None],
|
948 |
-
["2024-Q3",72.2,None,None]
|
949 |
-
],
|
950 |
-
'poblacion_ocupada': [
|
951 |
-
["2022-Q2", 60.4, 38.6, 21.8],
|
952 |
-
["2022-Q3", 66.8, 42.3, 24.4],
|
953 |
-
["2023-Q1", 59.2, 37.5, 21.7],
|
954 |
-
["2023-Q2", 66.6, 41.7, 24.9],
|
955 |
-
["2023-Q3", 68.4, 42.5, 25.8],
|
956 |
-
["2024-Q2",66.8,42.0,24.7],
|
957 |
-
["2024-Q3",65.9,42.0,23.9]
|
958 |
-
]
|
959 |
-
},
|
960 |
-
'Puno': {
|
961 |
-
'desempleo_trimestral': [
|
962 |
-
["2023-Q1", 15.3, 13.4, 17.7],
|
963 |
-
["2023-Q2", 9.3, 10.3, 8.2],
|
964 |
-
["2023-Q3", 8.5, 8.8, 8.1],
|
965 |
-
["2023-Q4", 6.2, 6.1, 6.3],
|
966 |
-
["2024-Q1", 11.9, 10.9, 13.0],
|
967 |
-
["2024-Q2", 7.7, 7.2, 8.3],
|
968 |
-
["2024-Q3", 8.4, 7.1, 9.9],
|
969 |
-
["2024-Q4", 5.2, 5.7, 4.6],
|
970 |
-
],
|
971 |
-
'ingresos_periodo': [
|
972 |
-
["2022-04/2023-03", 1672.8, 1950.7, 1361.2],
|
973 |
-
["2022-07/2023-06", 1672.8, 1950.7, 1361.2],
|
974 |
-
["2022-10/2023-09", 1700.3, 1958.8, 1416.7],
|
975 |
-
["2023", 1731.9, 1977.9, 1462.7],
|
976 |
-
["2023-04/2024-03", 1763.4, 1995.6, 1508.9],
|
977 |
-
["2023-07/2024-06", 1809.9, 2038.3, 1556.1],
|
978 |
-
["2023-10/2024-09", 1789.5, 1996.4, 1552.3],
|
979 |
-
["2024", 1804.6, 2006.0, 1568.1],
|
980 |
-
],
|
981 |
-
'informal_periodo': [
|
982 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
983 |
-
],
|
984 |
-
'actividad_trimestral': [],
|
985 |
-
'poblacion_ocupada': []
|
986 |
-
},
|
987 |
-
'Tacna': {
|
988 |
-
'desempleo_trimestral': [
|
989 |
-
["2022-Q1", 7.1, None, None],
|
990 |
-
["2022-Q2", 3.5, None, None],
|
991 |
-
["2022-Q3", 2.7, None, None],
|
992 |
-
["2022-Q4", 2.8, None, None],
|
993 |
-
["2023-Q1", 8.8, 8.7, 8.9],
|
994 |
-
["2023-Q2", 7.4, 6.6, 8.4],
|
995 |
-
["2023-Q3", 5.9, 6.1, 5.7],
|
996 |
-
["2023-Q4", 5.1, 4.5, 6.0],
|
997 |
-
["2024-Q1", 8.5, 7.6, 9.7],
|
998 |
-
["2024-Q2", 8.3, 9.0, 7.5],
|
999 |
-
["2024-Q3", 6.6, 5.8, 7.6],
|
1000 |
-
["2024-Q4", 6.1, 6.2, 6.0],
|
1001 |
-
],
|
1002 |
-
'ingresos_periodo': [
|
1003 |
-
["2022-04/2023-03", 1536.4, 1708.2, 1313.5],
|
1004 |
-
["2022-07/2023-06", 1568.6, 1737.1, 1349.7],
|
1005 |
-
["2022-10/2023-09", 1603.6, 1766.7, 1394.7],
|
1006 |
-
["2023", 1624.3, 1785.2, 1420.0],
|
1007 |
-
["2023-04/2024-03", 1659.6, 1824.6, 1447.2],
|
1008 |
-
["2023-07/2024-06", 1666.0, 1832.8, 1451.7],
|
1009 |
-
["2023-10/2024-09", 1645.3, 1799.6, 1447.2],
|
1010 |
-
["2024", 1686.6, 1850.7, 1474.1],
|
1011 |
-
],
|
1012 |
-
'informal_periodo': [
|
1013 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
1014 |
-
],
|
1015 |
-
'actividad_trimestral': [
|
1016 |
-
["2024-Q3",None,None,None]
|
1017 |
-
],
|
1018 |
-
'poblacion_ocupada': [
|
1019 |
-
["2022-Q2", 158.2, 86.6, 71.6],
|
1020 |
-
["2023-Q2", 161.5, 89.9, 71.6],
|
1021 |
-
["2023-Q3", 166.0, 91.6, 74.5],
|
1022 |
-
["2024-Q2", 165.4, 91.7, 73.6],
|
1023 |
-
["2024-Q3", 167.0, 93.5, 73.6],
|
1024 |
-
]
|
1025 |
-
},
|
1026 |
-
'Tarapoto': {
|
1027 |
-
'desempleo_trimestral': [
|
1028 |
-
["2022-Q1", 3.5, None, None],
|
1029 |
-
["2022-Q2", 2.1, None, None],
|
1030 |
-
["2022-Q3", 2.2, None, None],
|
1031 |
-
["2022-Q4", 2.5, None, None],
|
1032 |
-
["2023-Q1", 4.7, 4.4, 5.2], # Hay dos valores para hombres y mujeres
|
1033 |
-
["2023-Q2", 4.6, 3.8, 5.6], # Hay dos valores para hombres y mujeres
|
1034 |
-
["2023-Q3", 4.6, 5.2, 3.8], # Hay dos valores para hombres y mujeres
|
1035 |
-
["2023-Q4", 4.4, 3.9, 5.1],
|
1036 |
-
["2024-Q1", 5.8, 6.1, 5.4],
|
1037 |
-
["2024-Q2", 5.0, 4.9, 5.2],
|
1038 |
-
["2024-Q3", 4.0, 3.5, 4.7],
|
1039 |
-
["2024-Q4", 2.8, 2.0, 4.0],
|
1040 |
-
],
|
1041 |
-
'ingresos_periodo': [
|
1042 |
-
["2023-04/2024-03", 1903.9, 2136.1, 1583.3],
|
1043 |
-
["2023-07/2024-06", 1928.3, 2163.4, 1608.5],
|
1044 |
-
["2023-10/2024-09", 1981.4, 2214.1, 1661.9],
|
1045 |
-
["2024", 2021.5, 2265.3, 1684.8],
|
1046 |
-
["2022-04/2023-03",1863.4,2059.1,1580.5],
|
1047 |
-
["2022-07/2023-06",1852.9,2051.5,1565.0],
|
1048 |
-
["2022-10/2023-09",1863.1,2072.9,1560.7],
|
1049 |
-
["2023",1893.2,2114.3,1579.0]
|
1050 |
-
],
|
1051 |
-
'informal_periodo': [
|
1052 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
1053 |
-
],
|
1054 |
-
'actividad_trimestral': [
|
1055 |
-
###
|
1056 |
-
["2024-Q3", 72.2, None, None],
|
1057 |
-
],
|
1058 |
-
'poblacion_ocupada': [
|
1059 |
-
["2022-Q1", 87.8, 51.9, 35.8],
|
1060 |
-
["2023-Q1", 87.0, 50.9, 36.1],
|
1061 |
-
]
|
1062 |
-
},
|
1063 |
-
'Trujillo': {
|
1064 |
-
'desempleo_trimestral': [
|
1065 |
-
["2022-Q1", 6.7, None, None],
|
1066 |
-
["2022-Q2", 3.9, None, None],
|
1067 |
-
["2022-Q3", 3.6, None, None],
|
1068 |
-
["2022-Q4", 3.9, None, None],
|
1069 |
-
["2023-Q1", 8.2, 5.3, 11.5],
|
1070 |
-
["2023-Q2", 7.1, 5.6, 8.8],
|
1071 |
-
["2023-Q3", 5.6, 3.5, 7.8],
|
1072 |
-
["2023-Q4", 5.3, 4.0, 6.8],
|
1073 |
-
["2024-Q1", 5.7, 4.7, 6.9],
|
1074 |
-
["2024-Q2", 5.0, 3.2, 7.1],
|
1075 |
-
["2024-Q3", 3.6, 2.1, 5.4],
|
1076 |
-
["2024-Q4", 3.8, 2.7, 5.0],
|
1077 |
-
],
|
1078 |
-
'ingresos_periodo': [
|
1079 |
-
["2022-04/2023-03", 1845.8, 2147.2, 1464.1],
|
1080 |
-
["2022-07/2023-06", 1857.0, 2151.1, 1489.6],
|
1081 |
-
["2022-10/2023-09", 1909.2, 2215.3, 1530.1],
|
1082 |
-
["2023", 1975.4, 2298.1, 1586.4],
|
1083 |
-
["2023-04/2024-03", 1987.4, 2319.0, 1592.1],
|
1084 |
-
["2023-07/2024-06", 2012.6, 2340.0, 1614.7],
|
1085 |
-
["2023-10/2024-09", 2013.9, 2304.1, 1654.2],
|
1086 |
-
["2024", 1989.7, 2255.1, 1656.6],
|
1087 |
-
],
|
1088 |
-
'informal_periodo': [
|
1089 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
1090 |
-
],
|
1091 |
-
'actividad_trimestral': [
|
1092 |
-
["2023-Q3",None,None,None],
|
1093 |
-
["2024-Q3",69.1,None,None]
|
1094 |
-
],
|
1095 |
-
'poblacion_ocupada': [
|
1096 |
-
["2022-Q1", 490.8, 266.5, 224.2],
|
1097 |
-
["2022-Q3", 505.0, 275.5, 229.5],
|
1098 |
-
["2023-Q1", 542.4, 289.2, 253.3],
|
1099 |
-
["2023-Q2", 500.1, 266.9, 233.2],
|
1100 |
-
["2023-Q3", 542.4, 289.2, 253.3],
|
1101 |
-
["2024-Q2", 515.9, 282.6, 233.3],
|
1102 |
-
["2024-Q3", 536.0, 294.9, 241.0],
|
1103 |
-
]
|
1104 |
-
},
|
1105 |
-
'Tumbes': {
|
1106 |
-
'desempleo_trimestral': [
|
1107 |
-
["2023-Q1", 6.3, 4.8, 8.4],
|
1108 |
-
["2023-Q2", 5.7, 4.3, 7.7],
|
1109 |
-
["2023-Q3", 5.2, 4.8, 5.9],
|
1110 |
-
["2023-Q4", 5.9, 4.8, 7.7],
|
1111 |
-
["2024-Q1", 6.7, 4.7, 9.6],
|
1112 |
-
["2024-Q2", 7.0, 5.7, 8.8],
|
1113 |
-
["2024-Q3", 7.4, 5.1, 10.9],
|
1114 |
-
["2024-Q4", 6.9, 6.5, 7.4],
|
1115 |
-
],
|
1116 |
-
'ingresos_periodo': [
|
1117 |
-
["2022-04/2023-03", 1554.9, 1663.3, 1376.7],
|
1118 |
-
["2022-07/2023-06", 1590.2, 1710.0, 1395.6],
|
1119 |
-
["2022-10/2023-09", 1623.7, 1765.0, 1397.3],
|
1120 |
-
["2023", 1640.7, 1791.0, 1401.3],
|
1121 |
-
["2023-04/2024-03", 1654.5, 1809.0, 1409.6],
|
1122 |
-
["2023-07/2024-06", 1701.0, 1853.8, 1464.9],
|
1123 |
-
["2023-10/2024-09", 1732.5, 1867.3, 1520.9],
|
1124 |
-
["2024", 1779.2, 1918.3, 1557.7],
|
1125 |
-
],
|
1126 |
-
'informal_periodo': [
|
1127 |
-
["2022-04/2023-03", 68.6, 70.2, 66.1],
|
1128 |
-
["2024",None,61.5,68.5]
|
1129 |
-
],
|
1130 |
-
'actividad_trimestral': [
|
1131 |
-
["2023-Q3",69.4,None,None],
|
1132 |
-
["2024-Q1",67.2,None,None],
|
1133 |
-
["2024-Q3",68.5,None,None]
|
1134 |
-
],
|
1135 |
-
'poblacion_ocupada': [
|
1136 |
-
["2023-Q1", 52.5, 31.6, 20.9],
|
1137 |
-
["2023-Q2", 52.1, 31.6, 20.5],
|
1138 |
-
]
|
1139 |
-
},
|
1140 |
-
'Juliaca': {
|
1141 |
-
'desempleo_trimestral': [
|
1142 |
-
["2023-Q4", 6.3, 6.3, 6.3],
|
1143 |
-
["2024-Q4", 7.6, 7.6, 7.6],
|
1144 |
-
],
|
1145 |
-
'ingresos_periodo': [
|
1146 |
-
["2023", 1298.6, 1638.7, 899.9],
|
1147 |
-
["2024", 1298.6, 1638.7, 899.9]
|
1148 |
-
],
|
1149 |
-
'informal_periodo': [
|
1150 |
-
# No hay datos num茅ricos espec铆ficos, solo inferencias de gr谩ficos.
|
1151 |
-
],
|
1152 |
-
'actividad_trimestral': [],
|
1153 |
-
'poblacion_ocupada': []
|
1154 |
-
}
|
1155 |
-
}
|
1156 |
-
|
1157 |
-
|
1158 |
-
#DATA
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
plt.rcParams['figure.figsize'] = (14, 9)
|
1163 |
-
plt.rcParams['font.size'] = 13
|
1164 |
-
plt.rcParams['font.family'] = 'sans-serif'
|
1165 |
-
plt.style.use('seaborn-v0_8-whitegrid')
|
1166 |
|
1167 |
COLORES = {
|
1168 |
'Total': '#2C3E50',
|
1169 |
'Hombres': '#3498DB',
|
1170 |
'Mujeres': '#E74C3C',
|
1171 |
-
'Brecha': '#8E44AD'
|
1172 |
-
'Fondo': '#F8F9F9'
|
1173 |
}
|
1174 |
|
1175 |
def normalizar_nombres_ciudades(nombre):
|
@@ -1184,388 +24,225 @@ def normalizar_nombres_ciudades(nombre):
|
|
1184 |
'Pura': 'Piura',
|
1185 |
'Posalipa': 'Pucallpa',
|
1186 |
'Tagapito': 'Talara',
|
1187 |
-
'Juliana': 'Juliaca'
|
|
|
|
|
|
|
1188 |
}
|
1189 |
return correcciones.get(nombre, nombre)
|
1190 |
|
1191 |
-
def
|
1192 |
-
df =
|
1193 |
-
if col_fecha == 'Trimestre':
|
1194 |
-
fechas = []
|
1195 |
-
for t in df[col_fecha]:
|
1196 |
-
if 'Q' in t:
|
1197 |
-
a帽o = t.split('-')[0]
|
1198 |
-
trimestre = t.split('-')[1]
|
1199 |
-
mes = {'Q1': '03', 'Q2': '06', 'Q3': '09', 'Q4': '12'}[trimestre]
|
1200 |
-
fechas.append(f"{a帽o}-{mes}")
|
1201 |
-
else:
|
1202 |
-
fechas.append(f"{t}-01")
|
1203 |
-
df['fecha_orden'] = pd.to_datetime(fechas, format='%Y-%m')
|
1204 |
-
else:
|
1205 |
-
fechas = []
|
1206 |
-
for p in df[col_fecha]:
|
1207 |
-
if '/' in p:
|
1208 |
-
fechas.append(p.split('/')[0])
|
1209 |
-
else:
|
1210 |
-
fechas.append(f"{p}-01")
|
1211 |
-
df['fecha_orden'] = pd.to_datetime(fechas, format='%Y-%m', errors='coerce')
|
1212 |
-
df = df.sort_values('fecha_orden')
|
1213 |
-
return df
|
1214 |
-
|
1215 |
-
def calcular_rango_y(df, categorias, padding=0.15):
|
1216 |
-
valores = df[categorias].values.flatten()
|
1217 |
-
valores = valores[~np.isnan(valores)]
|
1218 |
-
if len(valores) == 0:
|
1219 |
-
return (0, 1)
|
1220 |
-
min_val = np.nanmin(valores)
|
1221 |
-
max_val = np.nanmax(valores)
|
1222 |
-
rango = max_val - min_val
|
1223 |
-
return (max(0, min_val - rango*padding), max_val + rango*padding)
|
1224 |
-
|
1225 |
-
def graficar_datos_mejorados(df, titulo, subtitulo, ylabel, col_fecha='Trimestre', mostrar_valores=True, formato_valores='.1f'):
|
1226 |
-
fig, ax = plt.subplots(figsize=(14, 8))
|
1227 |
-
ax.set_facecolor(COLORES['Fondo'])
|
1228 |
-
fig.patch.set_facecolor(COLORES['Fondo'])
|
1229 |
-
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
1230 |
-
|
1231 |
-
categorias = df.columns[1:4]
|
1232 |
-
x_indices = np.arange(len(df))
|
1233 |
-
ylim = calcular_rango_y(df, categorias)
|
1234 |
-
|
1235 |
-
for categoria in categorias:
|
1236 |
-
if categoria in df.columns and not df[categoria].isna().all():
|
1237 |
-
y_vals = df[categoria].values
|
1238 |
-
valid_mask = ~np.isnan(y_vals)
|
1239 |
-
|
1240 |
-
ax.plot(x_indices[valid_mask], y_vals[valid_mask],
|
1241 |
-
marker='o', linewidth=3, markersize=8,
|
1242 |
-
label=categoria, color=COLORES[categoria])
|
1243 |
|
1244 |
-
|
1245 |
-
|
1246 |
-
offset = 0.2 if categoria == 'Hombres' else -0.8 if categoria == 'Mujeres' else 0
|
1247 |
-
ax.annotate(f'{valor:{formato_valores}}',
|
1248 |
-
xy=(i, valor),
|
1249 |
-
xytext=(0, 5 + offset),
|
1250 |
-
textcoords='offset points',
|
1251 |
-
ha='center', va='bottom',
|
1252 |
-
fontsize=10, fontweight='bold',
|
1253 |
-
color=COLORES[categoria],
|
1254 |
-
bbox=dict(boxstyle='round,pad=0.3', fc='white', alpha=0.7))
|
1255 |
-
|
1256 |
-
ax.set_title(titulo, fontsize=18, fontweight='bold', pad=20)
|
1257 |
-
plt.figtext(0.5, 0.01, subtitulo, ha='center', fontsize=12, fontstyle='italic')
|
1258 |
-
ax.set_ylabel(ylabel, fontsize=14, fontweight='bold')
|
1259 |
-
ax.set_xticks(x_indices)
|
1260 |
-
ax.set_xticklabels(df[col_fecha].astype(str), rotation=45, ha='right')
|
1261 |
-
ax.set_ylim(ylim)
|
1262 |
-
|
1263 |
-
for spine in ['top', 'right']:
|
1264 |
-
ax.spines[spine].set_visible(False)
|
1265 |
-
|
1266 |
-
legend = ax.legend(fontsize=12, frameon=True, framealpha=0.9,
|
1267 |
-
facecolor='white', edgecolor='lightgrey',
|
1268 |
-
loc='upper right', bbox_to_anchor=(0.98, 0.98))
|
1269 |
-
plt.tight_layout(rect=[0, 0.03, 1, 1])
|
1270 |
-
return fig
|
1271 |
-
|
1272 |
-
def generar_analisis_global():
|
1273 |
-
figuras = []
|
1274 |
-
estilo_comun = {
|
1275 |
-
'marker': 'o',
|
1276 |
-
'linewidth': 2,
|
1277 |
-
'markersize': 6,
|
1278 |
-
'alpha': 0.8
|
1279 |
-
}
|
1280 |
-
|
1281 |
-
# Gr谩fico de Desempleo Global
|
1282 |
-
fig_desempleo = Figure(figsize=(16, 10))
|
1283 |
-
ax_desempleo = fig_desempleo.add_subplot(111)
|
1284 |
-
for ciudad, datos in cities_data.items():
|
1285 |
-
nombre = normalizar_nombres_ciudades(ciudad)
|
1286 |
-
df = ordenar_trimestres(pd.DataFrame(datos['desempleo_trimestral'],
|
1287 |
-
columns=["Trimestre", "Total", "Hombres", "Mujeres"]))
|
1288 |
-
if not df.empty:
|
1289 |
-
ax_desempleo.plot(df['fecha_orden'], df['Total'],
|
1290 |
-
label=nombre, **estilo_comun)
|
1291 |
|
1292 |
-
|
1293 |
-
|
1294 |
-
|
1295 |
-
|
1296 |
-
|
1297 |
-
|
|
|
|
|
|
|
|
|
|
|
1298 |
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
1302 |
-
|
1303 |
-
|
1304 |
-
|
1305 |
-
|
1306 |
-
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
# Gr谩fico de Ingresos Global
|
1314 |
-
fig_ingresos = Figure(figsize=(16, 10))
|
1315 |
-
ax_ingresos = fig_ingresos.add_subplot(111)
|
1316 |
-
for ciudad, datos in cities_data.items():
|
1317 |
-
nombre = normalizar_nombres_ciudades(ciudad)
|
1318 |
-
df = ordenar_trimestres(pd.DataFrame(datos['ingresos_periodo'],
|
1319 |
-
columns=["Periodo", "Total", "Hombres", "Mujeres"]),
|
1320 |
-
'Periodo')
|
1321 |
-
if not df.empty:
|
1322 |
-
ax_ingresos.plot(df['fecha_orden'], df['Total'],
|
1323 |
-
label=nombre, **estilo_comun)
|
1324 |
|
1325 |
-
|
1326 |
-
|
1327 |
-
ax_ingresos.set_ylabel('Ingresos (Soles)', fontsize=14)
|
1328 |
-
ax_ingresos.grid(True, linestyle='--', alpha=0.5)
|
1329 |
-
ax_ingresos.xaxis.set_major_locator(mdates.YearLocator())
|
1330 |
-
ax_ingresos.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
|
1331 |
|
1332 |
-
|
1333 |
-
leg = fig_ingresos.legend(handles, labels,
|
1334 |
-
loc='upper center',
|
1335 |
-
bbox_to_anchor=(0.5, -0.12),
|
1336 |
-
ncol=5,
|
1337 |
-
fontsize=10,
|
1338 |
-
frameon=True,
|
1339 |
-
fancybox=True,
|
1340 |
-
shadow=True,
|
1341 |
-
title='Ciudades',
|
1342 |
-
title_fontsize='12')
|
1343 |
-
fig_ingresos.tight_layout(rect=[0, 0.1, 1, 0.95])
|
1344 |
-
figuras.append(fig_ingresos)
|
1345 |
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
for ciudad,
|
1350 |
nombre = normalizar_nombres_ciudades(ciudad)
|
1351 |
-
df =
|
1352 |
-
|
1353 |
-
|
1354 |
-
if
|
1355 |
-
|
1356 |
-
ax_brecha.plot(df['fecha_orden'], df['Brecha'],
|
1357 |
-
label=nombre, **estilo_comun)
|
1358 |
|
1359 |
-
|
1360 |
-
fontsize=18, fontweight='bold', pad=20)
|
1361 |
-
ax_brecha.set_ylabel('Brecha (%)', fontsize=14)
|
1362 |
-
ax_brecha.grid(True, linestyle='--', alpha=0.5)
|
1363 |
-
ax_brecha.xaxis.set_major_locator(mdates.YearLocator())
|
1364 |
-
ax_brecha.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
|
1365 |
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
1383 |
-
|
1384 |
-
return
|
1385 |
-
data['desempleo_trimestral'],
|
1386 |
-
data['ingresos_periodo'],
|
1387 |
-
data['informal_periodo'],
|
1388 |
-
data['actividad_trimestral'],
|
1389 |
-
data['poblacion_ocupada']
|
1390 |
-
]
|
1391 |
|
1392 |
-
def
|
1393 |
-
|
1394 |
-
'
|
1395 |
-
'
|
1396 |
-
'
|
1397 |
-
|
1398 |
-
'
|
1399 |
}
|
1400 |
-
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
|
1409 |
-
|
1410 |
-
|
1411 |
-
|
1412 |
-
|
1413 |
-
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1418 |
),
|
1419 |
-
'
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
|
1425 |
-
values += values[:1]
|
1426 |
-
angles += angles[:1]
|
1427 |
-
|
1428 |
-
fig_radar, ax_radar = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))
|
1429 |
-
ax_radar.fill(angles, values, color=COLORES['Brecha'], alpha=0.2)
|
1430 |
-
ax_radar.set_theta_offset(np.pi/2)
|
1431 |
-
ax_radar.set_theta_direction(-1)
|
1432 |
-
ax_radar.set_thetagrids(np.degrees(angles[:-1]), labels=categories)
|
1433 |
-
ax_radar.set_rlabel_position(0)
|
1434 |
-
plt.yticks([20,40,60,80], ["20%","40%","60%","80%"], color="grey", size=10)
|
1435 |
-
plt.ylim(0,100)
|
1436 |
-
ax_radar.set_title(f'RADAR DE PROBLEM脕TICAS LABORALES\n{dfs["desempleo"]["Trimestre"].iloc[-1]}',
|
1437 |
-
pad=20, fontsize=14, fontweight='bold')
|
1438 |
-
figs.append(fig_radar)
|
1439 |
-
|
1440 |
-
# Gr谩ficos principales
|
1441 |
-
figs.append(graficar_datos_mejorados(dfs['desempleo'], 'TASA DE DESEMPLEO', 'Evoluci贸n por g茅nero', 'Tasa (%)'))
|
1442 |
-
figs.append(graficar_datos_mejorados(dfs['ingresos'], 'INGRESOS PROMEDIO', 'Por per铆odo y g茅nero', 'Ingreso (soles)', col_fecha='Periodo', formato_valores='.0f'))
|
1443 |
-
figs.append(graficar_datos_mejorados(dfs['informal'], 'TASA DE INFORMALIDAD', 'Por per铆odo', 'Tasa (%)', col_fecha='Periodo'))
|
1444 |
-
figs.append(graficar_datos_mejorados(dfs['actividad'], 'TASA DE ACTIVIDAD', 'Participaci贸n econ贸mica', 'Tasa (%)'))
|
1445 |
-
figs.append(graficar_datos_mejorados(dfs['poblacion'], 'POBLACI脫N OCUPADA', 'En miles de personas', 'Poblaci贸n (miles)'))
|
1446 |
|
1447 |
-
|
1448 |
-
|
1449 |
-
|
1450 |
-
|
1451 |
-
|
1452 |
-
|
1453 |
-
|
1454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1455 |
|
1456 |
-
|
1457 |
-
|
1458 |
-
|
1459 |
-
|
|
|
|
|
|
|
|
|
|
|
1460 |
|
1461 |
-
|
1462 |
-
|
1463 |
-
|
1464 |
-
|
1465 |
-
|
1466 |
-
|
1467 |
-
|
1468 |
-
|
1469 |
-
|
1470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1471 |
figs.append(fig_brecha)
|
1472 |
-
|
1473 |
return figs
|
1474 |
|
1475 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=".gradio-container {background-color:
|
1476 |
-
gr.Markdown("# 馃搳 Dashboard de
|
1477 |
-
|
1478 |
-
|
1479 |
with gr.Row():
|
1480 |
-
|
1481 |
list(cities_data.keys()),
|
1482 |
-
label="
|
1483 |
value="Chimbote",
|
1484 |
-
|
1485 |
)
|
1486 |
-
|
1487 |
-
with gr.Tab("
|
1488 |
-
with gr.Accordion("Tasa de Desempleo", open=True):
|
1489 |
-
desempleo_df = gr.Dataframe(
|
1490 |
-
headers=["Trimestre", "Total", "Hombres", "Mujeres"],
|
1491 |
-
datatype=["str", "number", "number", "number"],
|
1492 |
-
label="Datos de Desempleo"
|
1493 |
-
)
|
1494 |
-
with gr.Accordion("Ingresos", open=False):
|
1495 |
-
ingresos_df = gr.Dataframe(
|
1496 |
-
headers=["Periodo", "Total", "Hombres", "Mujeres"],
|
1497 |
-
datatype=["str", "number", "number", "number"],
|
1498 |
-
label="Datos de Ingresos"
|
1499 |
-
)
|
1500 |
-
with gr.Accordion("Informalidad", open=False):
|
1501 |
-
informal_df = gr.Dataframe(
|
1502 |
-
headers=["Periodo", "Total", "Hombres", "Mujeres"],
|
1503 |
-
datatype=["str", "number", "number", "number"],
|
1504 |
-
label="Datos de Informalidad"
|
1505 |
-
)
|
1506 |
-
with gr.Accordion("Actividad Econ贸mica", open=False):
|
1507 |
-
actividad_df = gr.Dataframe(
|
1508 |
-
headers=["Trimestre", "Total", "Hombres", "Mujeres"],
|
1509 |
-
datatype=["str", "number", "number", "number"],
|
1510 |
-
label="Datos de Actividad"
|
1511 |
-
)
|
1512 |
-
with gr.Accordion("Poblaci贸n Ocupada", open=False):
|
1513 |
-
poblacion_df = gr.Dataframe(
|
1514 |
-
headers=["Trimestre", "Total", "Hombres", "Mujeres"],
|
1515 |
-
datatype=["str", "number", "number", "number"],
|
1516 |
-
label="Datos de Poblaci贸n Ocupada"
|
1517 |
-
)
|
1518 |
-
|
1519 |
-
btn = gr.Button("Generar Visualizaciones", variant="primary")
|
1520 |
-
|
1521 |
-
with gr.Tab("Visualizaciones"):
|
1522 |
-
with gr.Row():
|
1523 |
-
radar_plot = gr.Plot(label="Radar de Problem谩ticas Laborales")
|
1524 |
-
with gr.Row():
|
1525 |
-
desempleo_plot = gr.Plot(label="Tasa de Desempleo")
|
1526 |
with gr.Row():
|
1527 |
-
|
1528 |
-
|
1529 |
with gr.Row():
|
1530 |
-
informalidad_plot = gr.
|
1531 |
-
actividad_plot = gr.
|
1532 |
with gr.Row():
|
1533 |
-
|
1534 |
-
|
1535 |
-
|
1536 |
-
|
1537 |
-
global_btn = gr.Button("Generar An谩lisis Global", variant="primary")
|
1538 |
-
with gr.Row():
|
1539 |
-
global_desempleo_plot = gr.Plot(label="Comparativa de Desempleo")
|
1540 |
with gr.Row():
|
1541 |
-
|
1542 |
with gr.Row():
|
1543 |
-
|
1544 |
-
|
1545 |
-
|
1546 |
-
|
1547 |
-
|
1548 |
-
|
1549 |
-
|
1550 |
-
|
1551 |
-
|
1552 |
-
|
1553 |
-
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
|
|
|
|
|
|
1562 |
]
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
|
1567 |
-
inputs=[],
|
1568 |
-
outputs=[global_desempleo_plot, global_ingresos_plot, global_brecha_plot]
|
1569 |
-
)
|
1570 |
|
1571 |
app.launch(debug=True)
|
|
|
1 |
import pandas as pd
|
|
|
2 |
import numpy as np
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
|
|
5 |
import gradio as gr
|
6 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
COLORES = {
|
9 |
'Total': '#2C3E50',
|
10 |
'Hombres': '#3498DB',
|
11 |
'Mujeres': '#E74C3C',
|
12 |
+
'Brecha': '#8E44AD'
|
|
|
13 |
}
|
14 |
|
15 |
def normalizar_nombres_ciudades(nombre):
|
|
|
24 |
'Pura': 'Piura',
|
25 |
'Posalipa': 'Pucallpa',
|
26 |
'Tagapito': 'Talara',
|
27 |
+
'Juliana': 'Juliaca',
|
28 |
+
'Chimbote': 'Chimbote',
|
29 |
+
'Arequipa': 'Arequipa',
|
30 |
+
'Trujillo': 'Trujillo'
|
31 |
}
|
32 |
return correcciones.get(nombre, nombre)
|
33 |
|
34 |
+
def procesar_dataframe(df, cols):
|
35 |
+
return pd.DataFrame(df, columns=cols).apply(pd.to_numeric, errors='coerce', axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def crear_grafico_lineas(df, titulo, eje_y, formato=None):
|
38 |
+
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
for col in ['Total', 'Hombres', 'Mujeres']:
|
41 |
+
if col in df.columns:
|
42 |
+
fig.add_trace(go.Scatter(
|
43 |
+
x=df['Periodo'],
|
44 |
+
y=df[col],
|
45 |
+
name=col,
|
46 |
+
mode='lines+markers',
|
47 |
+
line=dict(color=COLORES[col], width=3),
|
48 |
+
marker=dict(size=8),
|
49 |
+
hovertemplate=f'<b>{col}</b>: %{{y:{formato or ".2f"}}}<extra></extra>'
|
50 |
+
))
|
51 |
|
52 |
+
fig.update_layout(
|
53 |
+
title=dict(text=titulo, x=0.5, font=dict(size=20)),
|
54 |
+
yaxis_title=eje_y,
|
55 |
+
xaxis_title='Periodo',
|
56 |
+
hovermode='x unified',
|
57 |
+
template='plotly_white',
|
58 |
+
legend=dict(
|
59 |
+
orientation="h",
|
60 |
+
yanchor="bottom",
|
61 |
+
y=1.02,
|
62 |
+
xanchor="right",
|
63 |
+
x=1
|
64 |
+
)
|
65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
if formato:
|
68 |
+
fig.update_layout(yaxis_tickformat=formato)
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
def analisis_comparativo_desempleo():
|
73 |
+
datos = []
|
74 |
+
|
75 |
+
for ciudad, data in cities_data.items():
|
76 |
nombre = normalizar_nombres_ciudades(ciudad)
|
77 |
+
df = pd.DataFrame(data['desempleo_trimestral'],
|
78 |
+
columns=["Trimestre", "Total", "Hombres", "Mujeres"])
|
79 |
+
ultimo_valor = df['Total'].iloc[-1] if not df.empty else None
|
80 |
+
if ultimo_valor:
|
81 |
+
datos.append({'Ciudad': nombre, 'Desempleo': ultimo_valor})
|
|
|
|
|
82 |
|
83 |
+
df_comparativo = pd.DataFrame(datos).sort_values('Desempleo', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
fig = px.bar(df_comparativo,
|
86 |
+
x='Ciudad',
|
87 |
+
y='Desempleo',
|
88 |
+
color='Desempleo',
|
89 |
+
color_continuous_scale='Bluered',
|
90 |
+
text_auto='.1f%',
|
91 |
+
title='Comparaci贸n de Tasa de Desempleo entre Ciudades')
|
92 |
+
|
93 |
+
fig.update_layout(
|
94 |
+
xaxis_title='',
|
95 |
+
yaxis_title='Tasa de Desempleo (%)',
|
96 |
+
coloraxis_showscale=False,
|
97 |
+
xaxis={'categoryorder':'total descending'},
|
98 |
+
hoverlabel=dict(bgcolor="white", font_size=12),
|
99 |
+
height=600
|
100 |
+
)
|
101 |
+
|
102 |
+
fig.update_traces(textfont_size=12, textangle=0, textposition="outside")
|
103 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def crear_radar_plot(dfs):
|
106 |
+
metricas = {
|
107 |
+
'Desempleo': dfs['desempleo']['Total'].iloc[-1],
|
108 |
+
'Informalidad': dfs['informal']['Total'].iloc[-1],
|
109 |
+
'Brecha Salarial': ((dfs['ingresos']['Hombres'].iloc[-1] - dfs['ingresos']['Mujeres'].iloc[-1]) /
|
110 |
+
dfs['ingresos']['Hombres'].iloc[-1]) * 100,
|
111 |
+
'Actividad': dfs['actividad']['Total'].iloc[-1]
|
112 |
}
|
113 |
+
|
114 |
+
fig = go.Figure()
|
115 |
+
|
116 |
+
fig.add_trace(go.Scatterpolar(
|
117 |
+
r=list(metricas.values()) + [metricas['Desempleo']],
|
118 |
+
theta=list(metricas.keys()) + ['Desempleo'],
|
119 |
+
fill='toself',
|
120 |
+
fillcolor='rgba(142, 68, 173, 0.2)',
|
121 |
+
line=dict(color=COLORES['Brecha'], width=2),
|
122 |
+
name='Indicadores'
|
123 |
+
))
|
124 |
+
|
125 |
+
fig.update_layout(
|
126 |
+
polar=dict(
|
127 |
+
radialaxis=dict(
|
128 |
+
visible=True,
|
129 |
+
range=[0, 100],
|
130 |
+
tickfont=dict(size=12),
|
131 |
+
tickformat='.0f%'
|
132 |
+
),
|
133 |
+
angularaxis=dict(
|
134 |
+
rotation=90,
|
135 |
+
direction='clockwise',
|
136 |
+
tickfont=dict(size=14)
|
137 |
+
)
|
138 |
),
|
139 |
+
title=dict(text='Radar de Indicadores Laborales', x=0.5, font=dict(size=20)),
|
140 |
+
showlegend=False,
|
141 |
+
height=600
|
142 |
+
)
|
143 |
+
|
144 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
def generar_analisis_global():
|
147 |
+
figs = []
|
148 |
+
|
149 |
+
# Gr谩fico comparativo de desempleo
|
150 |
+
figs.append(analisis_comparativo_desempleo())
|
151 |
+
|
152 |
+
# Gr谩fico de tendencia de ingresos
|
153 |
+
datos_ingresos = []
|
154 |
+
for ciudad, data in cities_data.items():
|
155 |
+
nombre = normalizar_nombres_ciudades(ciudad)
|
156 |
+
df = pd.DataFrame(data['ingresos_periodo'],
|
157 |
+
columns=["Periodo", "Total", "Hombres", "Mujeres"])
|
158 |
+
df['Ciudad'] = nombre
|
159 |
+
datos_ingresos.append(df)
|
160 |
|
161 |
+
df_ingresos = pd.concat(datos_ingresos)
|
162 |
+
fig_ingresos = px.line(df_ingresos,
|
163 |
+
x='Periodo',
|
164 |
+
y='Total',
|
165 |
+
color='Ciudad',
|
166 |
+
title='Evoluci贸n de Ingresos por Ciudad',
|
167 |
+
markers=True)
|
168 |
+
fig_ingresos.update_layout(height=600)
|
169 |
+
figs.append(fig_ingresos)
|
170 |
|
171 |
+
# Gr谩fico de brecha salarial
|
172 |
+
datos_brecha = []
|
173 |
+
for ciudad, data in cities_data.items():
|
174 |
+
nombre = normalizar_nombres_ciudades(ciudad)
|
175 |
+
df = pd.DataFrame(data['ingresos_periodo'],
|
176 |
+
columns=["Periodo", "Total", "Hombres", "Mujeres"])
|
177 |
+
df['Brecha'] = (df['Hombres'] - df['Mujeres']) / df['Hombres'] * 100
|
178 |
+
df['Ciudad'] = nombre
|
179 |
+
datos_brecha.append(df)
|
180 |
+
|
181 |
+
df_brecha = pd.concat(datos_brecha)
|
182 |
+
fig_brecha = px.bar(df_brecha,
|
183 |
+
x='Periodo',
|
184 |
+
y='Brecha',
|
185 |
+
color='Ciudad',
|
186 |
+
barmode='group',
|
187 |
+
title='Evoluci贸n de Brecha Salarial por Ciudad',
|
188 |
+
text_auto='.1f%')
|
189 |
+
fig_brecha.update_layout(height=600)
|
190 |
figs.append(fig_brecha)
|
191 |
+
|
192 |
return figs
|
193 |
|
194 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=".gradio-container {background-color: white}") as app:
|
195 |
+
gr.Markdown("# 馃搳 Dashboard Interactivo de Mercado Laboral")
|
196 |
+
|
|
|
197 |
with gr.Row():
|
198 |
+
ciudad = gr.Dropdown(
|
199 |
list(cities_data.keys()),
|
200 |
+
label="Seleccionar Ciudad",
|
201 |
value="Chimbote",
|
202 |
+
interactive=True
|
203 |
)
|
204 |
+
|
205 |
+
with gr.Tab("An谩lisis por Ciudad"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
with gr.Row():
|
207 |
+
desempleo_plot = gr.Plotly(label="Tasa de Desempleo")
|
208 |
+
ingresos_plot = gr.Plotly(label="Ingresos Promedio")
|
209 |
with gr.Row():
|
210 |
+
informalidad_plot = gr.Plotly(label="Tasa de Informalidad")
|
211 |
+
actividad_plot = gr.Plotly(label="Tasa de Actividad")
|
212 |
with gr.Row():
|
213 |
+
radar_plot = gr.Plotly(label="Radar de Indicadores")
|
214 |
+
brecha_plot = gr.Plotly(label="Brecha Salarial")
|
215 |
+
|
216 |
+
with gr.Tab("An谩lisis Comparativo"):
|
|
|
|
|
|
|
217 |
with gr.Row():
|
218 |
+
global_desempleo = gr.Plotly(label="Comparativa de Desempleo")
|
219 |
with gr.Row():
|
220 |
+
global_ingresos = gr.Plotly(label="Evoluci贸n de Ingresos")
|
221 |
+
global_brecha = gr.Plotly(label="Evoluci贸n de Brecha Salarial")
|
222 |
+
|
223 |
+
@app.change(inputs=ciudad, outputs=[desempleo_plot, ingresos_plot, informalidad_plot, actividad_plot, radar_plot, brecha_plot])
|
224 |
+
def actualizar_graficos(ciudad):
|
225 |
+
data = cities_data[ciudad]
|
226 |
+
|
227 |
+
dfs = {
|
228 |
+
'desempleo': procesar_dataframe(data['desempleo_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"]),
|
229 |
+
'ingresos': procesar_dataframe(data['ingresos_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
230 |
+
'informal': procesar_dataframe(data['informal_periodo'], ["Periodo", "Total", "Hombres", "Mujeres"]),
|
231 |
+
'actividad': procesar_dataframe(data['actividad_trimestral'], ["Trimestre", "Total", "Hombres", "Mujeres"])
|
232 |
+
}
|
233 |
+
|
234 |
+
return [
|
235 |
+
crear_grafico_lineas(dfs['desempleo'], "Tasa de Desempleo", "Porcentaje (%)", ".1f"),
|
236 |
+
crear_grafico_lineas(dfs['ingresos'], "Ingresos Promedio", "Soles", ".0f"),
|
237 |
+
crear_grafico_lineas(dfs['informal'], "Tasa de Informalidad", "Porcentaje (%)", ".1f"),
|
238 |
+
crear_grafico_lineas(dfs['actividad'], "Tasa de Actividad", "Porcentaje (%)", ".1f"),
|
239 |
+
crear_radar_plot(dfs),
|
240 |
+
crear_grafico_lineas(dfs['ingresos'].assign(Brecha=lambda x: (x['Hombres'] - x['Mujeres']) / x['Hombres'] * 100),
|
241 |
+
"Brecha Salarial de G茅nero", "Porcentaje (%)", ".1f")
|
242 |
]
|
243 |
+
|
244 |
+
@app.click(inputs=None, outputs=[global_desempleo, global_ingresos, global_brecha])
|
245 |
+
def actualizar_analisis_global():
|
246 |
+
return generar_analisis_global()
|
|
|
|
|
|
|
247 |
|
248 |
app.launch(debug=True)
|