Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,199 +11,204 @@ import gradio as gr
|
|
| 11 |
import io
|
| 12 |
import os
|
| 13 |
from zipfile import ZipFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
class RSM_BoxBehnken:
|
| 16 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
self.data = data.copy()
|
| 18 |
self.model = None
|
| 19 |
self.model_simplified = None
|
| 20 |
self.optimized_results = None
|
| 21 |
self.optimal_levels = None
|
| 22 |
|
|
|
|
| 23 |
self.x1_name = x1_name
|
| 24 |
self.x2_name = x2_name
|
| 25 |
self.x3_name = x3_name
|
| 26 |
self.y_name = y_name
|
| 27 |
|
| 28 |
-
#
|
| 29 |
self.x1_levels = x1_levels
|
| 30 |
self.x2_levels = x2_levels
|
| 31 |
self.x3_levels = x3_levels
|
| 32 |
|
| 33 |
-
def
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
else:
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
print("Modelo Completo:")
|
| 49 |
-
print(self.model.summary())
|
| 50 |
-
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
| 51 |
-
|
| 52 |
-
def fit_simplified_model(self):
|
| 53 |
-
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
| 54 |
-
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
| 55 |
-
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
| 56 |
-
print("\nModelo Simplificado:")
|
| 57 |
-
print(self.model_simplified.summary())
|
| 58 |
-
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
| 59 |
|
| 60 |
def optimize(self, method='Nelder-Mead'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if self.model_simplified is None:
|
| 62 |
-
|
| 63 |
-
return
|
| 64 |
|
| 65 |
def objective_function(x):
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
| 69 |
x0 = [0, 0, 0]
|
| 70 |
|
| 71 |
-
self.optimized_results = minimize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
self.optimal_levels = self.optimized_results.x
|
| 73 |
|
|
|
|
| 74 |
optimal_levels_natural = [
|
| 75 |
-
round(self.coded_to_natural(self.optimal_levels[
|
| 76 |
-
|
| 77 |
-
round(self.coded_to_natural(self.optimal_levels[2], self.x3_name), 3)
|
| 78 |
]
|
|
|
|
| 79 |
optimization_table = pd.DataFrame({
|
| 80 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
| 81 |
-
'
|
| 82 |
-
'
|
| 83 |
})
|
| 84 |
|
| 85 |
return optimization_table
|
| 86 |
|
| 87 |
-
def
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
return None
|
| 91 |
-
|
| 92 |
-
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
| 102 |
-
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
| 103 |
-
|
| 104 |
-
prediction_data = pd.DataFrame({
|
| 105 |
-
varying_variables[0]: x_grid_coded.flatten(),
|
| 106 |
-
varying_variables[1]: y_grid_coded.flatten(),
|
| 107 |
-
})
|
| 108 |
-
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
| 109 |
-
|
| 110 |
-
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
| 111 |
-
|
| 112 |
-
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
| 113 |
-
|
| 114 |
-
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
| 115 |
-
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
| 116 |
-
|
| 117 |
-
valid_levels = [-1, 0, 1]
|
| 118 |
-
experiments_data = subset_data[
|
| 119 |
-
subset_data[varying_variables[0]].isin(valid_levels) &
|
| 120 |
-
subset_data[varying_variables[1]].isin(valid_levels)
|
| 121 |
-
]
|
| 122 |
-
|
| 123 |
-
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
| 124 |
-
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
| 125 |
-
|
| 126 |
-
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
| 127 |
-
|
| 128 |
-
for i in range(x_grid_natural.shape[0]):
|
| 129 |
-
fig.add_trace(go.Scatter3d(
|
| 130 |
-
x=x_grid_natural[i, :],
|
| 131 |
-
y=y_grid_natural[i, :],
|
| 132 |
-
z=z_pred[i, :],
|
| 133 |
-
mode='lines',
|
| 134 |
-
line=dict(color='gray', width=2),
|
| 135 |
-
showlegend=False,
|
| 136 |
-
hoverinfo='skip'
|
| 137 |
-
))
|
| 138 |
-
for j in range(x_grid_natural.shape[1]):
|
| 139 |
-
fig.add_trace(go.Scatter3d(
|
| 140 |
-
x=x_grid_natural[:, j],
|
| 141 |
-
y=y_grid_natural[:, j],
|
| 142 |
-
z=z_pred[:, j],
|
| 143 |
-
mode='lines',
|
| 144 |
-
line=dict(color='gray', width=2),
|
| 145 |
-
showlegend=False,
|
| 146 |
-
hoverinfo='skip'
|
| 147 |
-
))
|
| 148 |
-
|
| 149 |
-
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
| 150 |
-
point_labels = []
|
| 151 |
-
for i, row in experiments_data.iterrows():
|
| 152 |
-
point_labels.append(f"{row[self.y_name]:.2f}")
|
| 153 |
-
|
| 154 |
-
fig.add_trace(go.Scatter3d(
|
| 155 |
-
x=experiments_x_natural,
|
| 156 |
-
y=experiments_y_natural,
|
| 157 |
-
z=experiments_data[self.y_name],
|
| 158 |
-
mode='markers+text',
|
| 159 |
-
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
|
| 160 |
-
text=point_labels,
|
| 161 |
-
textposition='top center',
|
| 162 |
-
name='Experimentos'
|
| 163 |
-
))
|
| 164 |
-
|
| 165 |
-
fig.update_layout(
|
| 166 |
-
scene=dict(
|
| 167 |
-
xaxis_title=varying_variables[0] + " (g/L)",
|
| 168 |
-
yaxis_title=varying_variables[1] + " (g/L)",
|
| 169 |
-
zaxis_title=self.y_name,
|
| 170 |
-
),
|
| 171 |
-
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
|
| 172 |
-
height=800,
|
| 173 |
-
width=1000,
|
| 174 |
-
showlegend=True
|
| 175 |
-
)
|
| 176 |
-
return fig
|
| 177 |
-
|
| 178 |
-
def generate_all_plots(self):
|
| 179 |
-
if self.model_simplified is None:
|
| 180 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
| 181 |
-
return
|
| 182 |
-
|
| 183 |
-
levels_to_plot_natural = {
|
| 184 |
-
self.x1_name: self.x1_levels,
|
| 185 |
-
self.x2_name: self.x2_levels,
|
| 186 |
-
self.x3_name: self.x3_levels
|
| 187 |
-
}
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
figs.append(fig)
|
| 196 |
-
return figs
|
| 197 |
-
|
| 198 |
-
def coded_to_natural(self, coded_value, variable_name):
|
| 199 |
-
levels = self.get_levels(variable_name)
|
| 200 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
| 201 |
|
| 202 |
def natural_to_coded(self, natural_value, variable_name):
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
| 205 |
|
| 206 |
def pareto_chart(self, model, title):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
tvalues = model.tvalues[1:]
|
| 208 |
abs_tvalues = np.abs(tvalues)
|
| 209 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
|
@@ -218,121 +223,107 @@ class RSM_BoxBehnken:
|
|
| 218 |
x=sorted_tvalues,
|
| 219 |
y=sorted_names,
|
| 220 |
orientation='h',
|
| 221 |
-
labels={'x': '
|
| 222 |
title=title
|
| 223 |
)
|
| 224 |
fig.update_yaxes(autorange="reversed")
|
| 225 |
-
|
| 226 |
fig.add_vline(x=t_critical, line_dash="dot",
|
| 227 |
-
annotation_text=f"t
|
| 228 |
annotation_position="bottom right")
|
| 229 |
|
| 230 |
return fig
|
| 231 |
|
| 232 |
-
def get_simplified_equation(self):
|
| 233 |
-
if self.model_simplified is None:
|
| 234 |
-
print("Error: Ajusta el modelo simplificado primero.")
|
| 235 |
-
return None
|
| 236 |
-
|
| 237 |
-
coefficients = self.model_simplified.params
|
| 238 |
-
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
|
| 239 |
-
|
| 240 |
-
for term, coef in coefficients.items():
|
| 241 |
-
if term != 'Intercept':
|
| 242 |
-
if term == f'{self.x1_name}':
|
| 243 |
-
equation += f" + {coef:.3f}*{self.x1_name}"
|
| 244 |
-
elif term == f'{self.x2_name}':
|
| 245 |
-
equation += f" + {coef:.3f}*{self.x2_name}"
|
| 246 |
-
elif term == f'{self.x3_name}':
|
| 247 |
-
equation += f" + {coef:.3f}*{self.x3_name}"
|
| 248 |
-
elif term == f'I({self.x1_name} ** 2)':
|
| 249 |
-
equation += f" + {coef:.3f}*{self.x1_name}^2"
|
| 250 |
-
elif term == f'I({self.x2_name} ** 2)':
|
| 251 |
-
equation += f" + {coef:.3f}*{self.x2_name}^2"
|
| 252 |
-
elif term == f'I({self.x3_name} ** 2)':
|
| 253 |
-
equation += f" + {coef:.3f}*{self.x3_name}^2"
|
| 254 |
-
|
| 255 |
-
return equation
|
| 256 |
-
|
| 257 |
def generate_prediction_table(self):
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
prediction_table['Residual'] = prediction_table['Residual'].round(3)
|
| 269 |
|
| 270 |
-
|
| 271 |
|
| 272 |
def calculate_contribution_percentage(self):
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
'% Contribución': []
|
| 284 |
-
})
|
| 285 |
-
|
| 286 |
-
for index, row in anova_table.iterrows():
|
| 287 |
-
if index != 'Residual':
|
| 288 |
-
factor_name = index
|
| 289 |
-
if factor_name == f'I({self.x1_name} ** 2)':
|
| 290 |
-
factor_name = f'{self.x1_name}^2'
|
| 291 |
-
elif factor_name == f'I({self.x2_name} ** 2)':
|
| 292 |
-
factor_name = f'{self.x2_name}^2'
|
| 293 |
-
elif factor_name == f'I({self.x3_name} ** 2)':
|
| 294 |
-
factor_name = f'{self.x3_name}^2'
|
| 295 |
-
|
| 296 |
-
ss_factor = row['sum_sq']
|
| 297 |
-
contribution_percentage = (ss_factor / ss_total) * 100
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
'Suma de Cuadrados': [round(ss_factor, 3)],
|
| 302 |
-
'% Contribución': [round(contribution_percentage, 3)]
|
| 303 |
-
})], ignore_index=True)
|
| 304 |
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
def calculate_detailed_anova(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
if self.model_simplified is None:
|
| 309 |
-
|
| 310 |
-
return None
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
| 313 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
| 314 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
| 315 |
-
|
| 316 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
df_total = len(self.data) - 1
|
| 321 |
-
|
| 322 |
ss_regression = anova_reduced['sum_sq'][:-1].sum()
|
| 323 |
-
|
| 324 |
df_regression = len(anova_reduced) - 1
|
| 325 |
|
| 326 |
ss_residual = self.model_simplified.ssr
|
| 327 |
df_residual = self.model_simplified.df_resid
|
| 328 |
|
|
|
|
| 329 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
| 330 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
| 331 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
| 332 |
|
|
|
|
| 333 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
| 334 |
df_lack_of_fit = df_residual - df_pure_error
|
| 335 |
|
|
|
|
| 336 |
ms_regression = ss_regression / df_regression
|
| 337 |
ms_residual = ss_residual / df_residual
|
| 338 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
|
@@ -341,26 +332,29 @@ class RSM_BoxBehnken:
|
|
| 341 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
| 342 |
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
| 343 |
|
|
|
|
| 344 |
detailed_anova_table = pd.DataFrame({
|
| 345 |
-
'
|
| 346 |
-
'
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan],
|
| 350 |
-
'
|
| 351 |
})
|
| 352 |
-
|
| 353 |
-
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
|
| 354 |
-
df_curvature = 3
|
| 355 |
-
|
| 356 |
-
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', round(ss_curvature, 3), df_curvature, round(ss_curvature / df_curvature, 3), np.nan, np.nan]
|
| 357 |
-
|
| 358 |
-
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
|
| 359 |
-
|
| 360 |
-
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
|
| 361 |
|
| 362 |
return detailed_anova_table
|
| 363 |
-
|
| 364 |
# --- Funciones para la interfaz de Gradio ---
|
| 365 |
|
| 366 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
|
@@ -396,7 +390,7 @@ def fit_and_optimize_model():
|
|
| 396 |
prediction_table = rsm.generate_prediction_table()
|
| 397 |
contribution_table = rsm.calculate_contribution_percentage()
|
| 398 |
anova_table = rsm.calculate_detailed_anova()
|
| 399 |
-
|
| 400 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
| 401 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
| 402 |
|
|
@@ -407,16 +401,19 @@ def generate_rsm_plot(fixed_variable, fixed_level):
|
|
| 407 |
if 'rsm' not in globals():
|
| 408 |
return None, "Error: Carga los datos primero."
|
| 409 |
|
| 410 |
-
#
|
| 411 |
all_figs = rsm.generate_all_plots()
|
| 412 |
|
| 413 |
-
#
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
-
#
|
| 417 |
-
return
|
| 418 |
|
| 419 |
-
# Función para descargar el Excel con todas las tablas
|
| 420 |
def download_excel():
|
| 421 |
if 'rsm' not in globals():
|
| 422 |
return None, "Error: Carga los datos y ajusta el modelo primero."
|
|
@@ -425,31 +422,42 @@ def download_excel():
|
|
| 425 |
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
| 426 |
rsm.data.to_excel(writer, sheet_name='Datos', index=False)
|
| 427 |
rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
|
| 428 |
-
rsm.optimize().to_excel(writer, sheet_name='
|
| 429 |
-
rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='
|
| 430 |
rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)
|
| 431 |
|
| 432 |
output.seek(0)
|
| 433 |
-
|
| 434 |
-
# Modificar para usar gr.File
|
| 435 |
-
return gr.File(value=output, visible=True, filename="resultados_rsm.xlsx")
|
| 436 |
|
| 437 |
-
# Función para descargar las imágenes
|
| 438 |
def download_images():
|
| 439 |
if 'rsm' not in globals():
|
| 440 |
return None, "Error: Carga los datos y ajusta el modelo primero."
|
| 441 |
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
for level in rsm.get_levels(fixed_variable):
|
| 446 |
-
fig = rsm.plot_rsm_individual(fixed_variable, level)
|
| 447 |
-
img_bytes = fig.to_image(format="png")
|
| 448 |
-
img_path = f"{fixed_variable}_{level}.png"
|
| 449 |
-
zipf.writestr(img_path, img_bytes)
|
| 450 |
|
| 451 |
-
|
| 452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
# --- Crear la interfaz de Gradio ---
|
| 455 |
|
|
@@ -492,6 +500,8 @@ with gr.Blocks() as demo:
|
|
| 492 |
with gr.Row(visible=False) as analysis_row:
|
| 493 |
with gr.Column():
|
| 494 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
|
|
|
|
|
|
| 495 |
gr.Markdown("**Modelo Completo**")
|
| 496 |
model_completo_output = gr.HTML()
|
| 497 |
pareto_completo_output = gr.Plot()
|
|
@@ -503,22 +513,12 @@ with gr.Blocks() as demo:
|
|
| 503 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
| 504 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
| 505 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
| 506 |
-
|
| 507 |
-
# Botones de descarga
|
| 508 |
-
with gr.Row():
|
| 509 |
-
download_excel_button = gr.Button("Descargar Tablas en Excel")
|
| 510 |
-
download_images_button = gr.Button("Descargar Gráficos en ZIP")
|
| 511 |
-
excel_file_output = gr.File(label="Descargar Excel")
|
| 512 |
-
zip_file_output = gr.File(label="Descargar ZIP")
|
| 513 |
-
|
| 514 |
with gr.Column():
|
| 515 |
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
| 516 |
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
| 517 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 518 |
plot_button = gr.Button("Generar Gráfico")
|
| 519 |
-
|
| 520 |
-
gallery = gr.Gallery(label="Gráficos RSM").style(preview=False, grid=(3,3), height="auto")
|
| 521 |
-
image_output = gr.Image(label="Descargar Gráfico")
|
| 522 |
|
| 523 |
load_button.click(
|
| 524 |
load_data,
|
|
@@ -528,11 +528,10 @@ with gr.Blocks() as demo:
|
|
| 528 |
|
| 529 |
fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
|
| 530 |
|
| 531 |
-
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[
|
| 532 |
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
download_images_button.click(download_images, outputs=zip_file_output)
|
| 536 |
|
| 537 |
# Ejemplo de uso
|
| 538 |
gr.Markdown("## Ejemplo de uso")
|
|
@@ -542,7 +541,7 @@ with gr.Blocks() as demo:
|
|
| 542 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
| 543 |
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
| 544 |
gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
|
| 545 |
-
gr.Markdown("7. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo
|
| 546 |
-
gr.Markdown("8. Haz clic en 'Descargar Gráficos en ZIP' para obtener un archivo
|
| 547 |
|
| 548 |
demo.launch()
|
|
|
|
| 11 |
import io
|
| 12 |
import os
|
| 13 |
from zipfile import ZipFile
|
| 14 |
+
import warnings
|
| 15 |
+
|
| 16 |
+
# Suppress specific warnings
|
| 17 |
+
warnings.filterwarnings('ignore', category=UserWarning)
|
| 18 |
+
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
| 19 |
|
| 20 |
class RSM_BoxBehnken:
|
| 21 |
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
| 22 |
+
"""
|
| 23 |
+
Initialize the Response Surface Methodology Box-Behnken Design class
|
| 24 |
+
|
| 25 |
+
Parameters:
|
| 26 |
+
-----------
|
| 27 |
+
data : pandas.DataFrame
|
| 28 |
+
Experimental design data
|
| 29 |
+
x1_name, x2_name, x3_name : str
|
| 30 |
+
Names of independent variables
|
| 31 |
+
y_name : str
|
| 32 |
+
Name of dependent variable
|
| 33 |
+
x1_levels, x2_levels, x3_levels : list
|
| 34 |
+
Levels of each independent variable
|
| 35 |
+
"""
|
| 36 |
self.data = data.copy()
|
| 37 |
self.model = None
|
| 38 |
self.model_simplified = None
|
| 39 |
self.optimized_results = None
|
| 40 |
self.optimal_levels = None
|
| 41 |
|
| 42 |
+
# Variable names
|
| 43 |
self.x1_name = x1_name
|
| 44 |
self.x2_name = x2_name
|
| 45 |
self.x3_name = x3_name
|
| 46 |
self.y_name = y_name
|
| 47 |
|
| 48 |
+
# Original levels of variables
|
| 49 |
self.x1_levels = x1_levels
|
| 50 |
self.x2_levels = x2_levels
|
| 51 |
self.x3_levels = x3_levels
|
| 52 |
|
| 53 |
+
def _get_levels(self, variable_name):
|
| 54 |
+
"""
|
| 55 |
+
Get levels for a specific variable
|
| 56 |
+
|
| 57 |
+
Parameters:
|
| 58 |
+
-----------
|
| 59 |
+
variable_name : str
|
| 60 |
+
Name of the variable
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
--------
|
| 64 |
+
list
|
| 65 |
+
Levels of the variable
|
| 66 |
+
"""
|
| 67 |
+
level_map = {
|
| 68 |
+
self.x1_name: self.x1_levels,
|
| 69 |
+
self.x2_name: self.x2_levels,
|
| 70 |
+
self.x3_name: self.x3_levels
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
if variable_name not in level_map:
|
| 74 |
+
raise ValueError(f"Unknown variable: {variable_name}")
|
| 75 |
+
|
| 76 |
+
return level_map[variable_name]
|
| 77 |
+
|
| 78 |
+
def fit_model(self, simplified=False):
|
| 79 |
+
"""
|
| 80 |
+
Fit the response surface model
|
| 81 |
+
|
| 82 |
+
Parameters:
|
| 83 |
+
-----------
|
| 84 |
+
simplified : bool, optional
|
| 85 |
+
Whether to fit a simplified model, by default False
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
--------
|
| 89 |
+
tuple
|
| 90 |
+
Fitted model and Pareto chart
|
| 91 |
+
"""
|
| 92 |
+
if simplified:
|
| 93 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
| 94 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
| 95 |
+
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
| 96 |
+
print("\nSimplified Model:")
|
| 97 |
+
print(self.model_simplified.summary())
|
| 98 |
+
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Simplified Model")
|
| 99 |
else:
|
| 100 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
| 101 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
| 102 |
+
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
| 103 |
+
self.model = smf.ols(formula, data=self.data).fit()
|
| 104 |
+
print("Full Model:")
|
| 105 |
+
print(self.model.summary())
|
| 106 |
+
return self.model, self.pareto_chart(self.model, "Pareto - Full Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def optimize(self, method='Nelder-Mead'):
|
| 109 |
+
"""
|
| 110 |
+
Optimize the response surface model
|
| 111 |
+
|
| 112 |
+
Parameters:
|
| 113 |
+
-----------
|
| 114 |
+
method : str, optional
|
| 115 |
+
Optimization method, by default 'Nelder-Mead'
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
--------
|
| 119 |
+
pandas.DataFrame
|
| 120 |
+
Optimization results table
|
| 121 |
+
"""
|
| 122 |
if self.model_simplified is None:
|
| 123 |
+
raise ValueError("Fit the simplified model first.")
|
|
|
|
| 124 |
|
| 125 |
def objective_function(x):
|
| 126 |
+
"""Objective function for optimization"""
|
| 127 |
+
return -self.model_simplified.predict(pd.DataFrame({
|
| 128 |
+
self.x1_name: [x[0]],
|
| 129 |
+
self.x2_name: [x[1]],
|
| 130 |
+
self.x3_name: [x[2]]
|
| 131 |
+
}))
|
| 132 |
|
| 133 |
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
| 134 |
x0 = [0, 0, 0]
|
| 135 |
|
| 136 |
+
self.optimized_results = minimize(
|
| 137 |
+
objective_function,
|
| 138 |
+
x0,
|
| 139 |
+
method=method,
|
| 140 |
+
bounds=bounds
|
| 141 |
+
)
|
| 142 |
self.optimal_levels = self.optimized_results.x
|
| 143 |
|
| 144 |
+
# Convert to natural levels
|
| 145 |
optimal_levels_natural = [
|
| 146 |
+
round(self.coded_to_natural(self.optimal_levels[i], var), 3)
|
| 147 |
+
for i, var in enumerate([self.x1_name, self.x2_name, self.x3_name])
|
|
|
|
| 148 |
]
|
| 149 |
+
|
| 150 |
optimization_table = pd.DataFrame({
|
| 151 |
'Variable': [self.x1_name, self.x2_name, self.x3_name],
|
| 152 |
+
'Optimal Level (Natural)': optimal_levels_natural,
|
| 153 |
+
'Optimal Level (Coded)': [round(x, 3) for x in self.optimal_levels]
|
| 154 |
})
|
| 155 |
|
| 156 |
return optimization_table
|
| 157 |
|
| 158 |
+
def coded_to_natural(self, coded_value, variable_name):
|
| 159 |
+
"""
|
| 160 |
+
Convert coded value to natural level
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
Parameters:
|
| 163 |
+
-----------
|
| 164 |
+
coded_value : float
|
| 165 |
+
Coded value of the variable
|
| 166 |
+
variable_name : str
|
| 167 |
+
Name of the variable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
Returns:
|
| 170 |
+
--------
|
| 171 |
+
float
|
| 172 |
+
Natural level of the variable
|
| 173 |
+
"""
|
| 174 |
+
levels = self._get_levels(variable_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
| 176 |
|
| 177 |
def natural_to_coded(self, natural_value, variable_name):
|
| 178 |
+
"""
|
| 179 |
+
Convert natural level to coded value
|
| 180 |
+
|
| 181 |
+
Parameters:
|
| 182 |
+
-----------
|
| 183 |
+
natural_value : float
|
| 184 |
+
Natural level of the variable
|
| 185 |
+
variable_name : str
|
| 186 |
+
Name of the variable
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
--------
|
| 190 |
+
float
|
| 191 |
+
Coded value of the variable
|
| 192 |
+
"""
|
| 193 |
+
levels = self._get_levels(variable_name)
|
| 194 |
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
| 195 |
|
| 196 |
def pareto_chart(self, model, title):
|
| 197 |
+
"""
|
| 198 |
+
Create Pareto chart of standardized effects
|
| 199 |
+
|
| 200 |
+
Parameters:
|
| 201 |
+
-----------
|
| 202 |
+
model : statsmodels.regression.linear_model.RegressionResultsWrapper
|
| 203 |
+
Fitted regression model
|
| 204 |
+
title : str
|
| 205 |
+
Title of the Pareto chart
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
--------
|
| 209 |
+
plotly.graph_objects.Figure
|
| 210 |
+
Pareto chart
|
| 211 |
+
"""
|
| 212 |
tvalues = model.tvalues[1:]
|
| 213 |
abs_tvalues = np.abs(tvalues)
|
| 214 |
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
|
|
|
| 223 |
x=sorted_tvalues,
|
| 224 |
y=sorted_names,
|
| 225 |
orientation='h',
|
| 226 |
+
labels={'x': 'Standardized Effect', 'y': 'Term'},
|
| 227 |
title=title
|
| 228 |
)
|
| 229 |
fig.update_yaxes(autorange="reversed")
|
|
|
|
| 230 |
fig.add_vline(x=t_critical, line_dash="dot",
|
| 231 |
+
annotation_text=f"Critical t = {t_critical:.2f}",
|
| 232 |
annotation_position="bottom right")
|
| 233 |
|
| 234 |
return fig
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
def generate_prediction_table(self):
|
| 237 |
+
"""
|
| 238 |
+
Generate prediction table with predicted and residual values
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
--------
|
| 242 |
+
pandas.DataFrame
|
| 243 |
+
Prediction table
|
| 244 |
+
"""
|
| 245 |
+
if self.model_simplified is None:
|
| 246 |
+
raise ValueError("Fit the simplified model first.")
|
| 247 |
|
| 248 |
+
predictions = self.model_simplified.predict(self.data)
|
| 249 |
+
residuals = self.data[self.y_name] - predictions
|
| 250 |
|
| 251 |
+
prediction_table = self.data.copy()
|
| 252 |
+
prediction_table['Predicted'] = predictions.round(3)
|
| 253 |
+
prediction_table['Residual'] = residuals.round(3)
|
|
|
|
| 254 |
|
| 255 |
+
return prediction_table[[self.y_name, 'Predicted', 'Residual']]
|
| 256 |
|
| 257 |
def calculate_contribution_percentage(self):
|
| 258 |
+
"""
|
| 259 |
+
Calculate percentage contribution of model terms
|
| 260 |
+
|
| 261 |
+
Returns:
|
| 262 |
+
--------
|
| 263 |
+
pandas.DataFrame
|
| 264 |
+
Contribution percentage table
|
| 265 |
+
"""
|
| 266 |
+
if self.model_simplified is None:
|
| 267 |
+
raise ValueError("Fit the simplified model first.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 270 |
+
ss_total = anova_table['sum_sq'].sum()
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
+
contribution_table = []
|
| 273 |
+
|
| 274 |
+
for index, row in anova_table.iterrows():
|
| 275 |
+
if index != 'Residual':
|
| 276 |
+
factor_name = index.replace('I(', '').replace('**2)', '^2')
|
| 277 |
+
ss_factor = row['sum_sq']
|
| 278 |
+
contribution_percentage = (ss_factor / ss_total) * 100
|
| 279 |
+
|
| 280 |
+
contribution_table.append({
|
| 281 |
+
'Factor': factor_name,
|
| 282 |
+
'Sum of Squares': round(ss_factor, 3),
|
| 283 |
+
'% Contribution': round(contribution_percentage, 3)
|
| 284 |
+
})
|
| 285 |
+
|
| 286 |
+
return pd.DataFrame(contribution_table)
|
| 287 |
|
| 288 |
def calculate_detailed_anova(self):
|
| 289 |
+
"""
|
| 290 |
+
Perform detailed ANOVA analysis
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
--------
|
| 294 |
+
pandas.DataFrame
|
| 295 |
+
Detailed ANOVA table
|
| 296 |
+
"""
|
| 297 |
if self.model_simplified is None:
|
| 298 |
+
raise ValueError("Fit the simplified model first.")
|
|
|
|
| 299 |
|
| 300 |
+
# Preparar datos para ANOVA detallado
|
| 301 |
+
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
|
| 302 |
+
df_total = len(self.data) - 1
|
| 303 |
+
|
| 304 |
+
# ANOVA para modelo reducido
|
| 305 |
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
| 306 |
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
| 307 |
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
|
|
|
|
| 308 |
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
|
| 309 |
|
| 310 |
+
# Calcular componentes de variación
|
|
|
|
|
|
|
|
|
|
| 311 |
ss_regression = anova_reduced['sum_sq'][:-1].sum()
|
|
|
|
| 312 |
df_regression = len(anova_reduced) - 1
|
| 313 |
|
| 314 |
ss_residual = self.model_simplified.ssr
|
| 315 |
df_residual = self.model_simplified.df_resid
|
| 316 |
|
| 317 |
+
# Error puro
|
| 318 |
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
|
| 319 |
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
|
| 320 |
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
|
| 321 |
|
| 322 |
+
# Falta de ajuste
|
| 323 |
ss_lack_of_fit = ss_residual - ss_pure_error
|
| 324 |
df_lack_of_fit = df_residual - df_pure_error
|
| 325 |
|
| 326 |
+
# Calcular cuadrados medios y estadísticos F
|
| 327 |
ms_regression = ss_regression / df_regression
|
| 328 |
ms_residual = ss_residual / df_residual
|
| 329 |
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
|
|
|
|
| 332 |
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
|
| 333 |
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error)
|
| 334 |
|
| 335 |
+
# Crear tabla de ANOVA detallada
|
| 336 |
detailed_anova_table = pd.DataFrame({
|
| 337 |
+
'Source of Variation': ['Regression', 'Residual', 'Lack of Fit', 'Pure Error', 'Total'],
|
| 338 |
+
'Sum of Squares': [
|
| 339 |
+
round(ss_regression, 3),
|
| 340 |
+
round(ss_residual, 3),
|
| 341 |
+
round(ss_lack_of_fit, 3),
|
| 342 |
+
round(ss_pure_error, 3),
|
| 343 |
+
round(ss_total, 3)
|
| 344 |
+
],
|
| 345 |
+
'Degrees of Freedom': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
|
| 346 |
+
'Mean Square': [
|
| 347 |
+
round(ms_regression, 3),
|
| 348 |
+
round(ms_residual, 3),
|
| 349 |
+
round(ms_lack_of_fit, 3),
|
| 350 |
+
round(ms_pure_error, 3),
|
| 351 |
+
np.nan
|
| 352 |
+
],
|
| 353 |
'F': [np.nan, np.nan, round(f_lack_of_fit, 3), np.nan, np.nan],
|
| 354 |
+
'p-value': [np.nan, np.nan, round(p_lack_of_fit, 3), np.nan, np.nan]
|
| 355 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
return detailed_anova_table
|
|
|
|
| 358 |
# --- Funciones para la interfaz de Gradio ---
|
| 359 |
|
| 360 |
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
|
|
|
| 390 |
prediction_table = rsm.generate_prediction_table()
|
| 391 |
contribution_table = rsm.calculate_contribution_percentage()
|
| 392 |
anova_table = rsm.calculate_detailed_anova()
|
| 393 |
+
|
| 394 |
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
|
| 395 |
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
|
| 396 |
|
|
|
|
| 401 |
if 'rsm' not in globals():
|
| 402 |
return None, "Error: Carga los datos primero."
|
| 403 |
|
| 404 |
+
# Generar todas las gráficas
|
| 405 |
all_figs = rsm.generate_all_plots()
|
| 406 |
|
| 407 |
+
# Crear una lista de figuras para la salida
|
| 408 |
+
plot_outputs = []
|
| 409 |
+
for fig in all_figs:
|
| 410 |
+
# Convertir la figura a una imagen en formato PNG
|
| 411 |
+
img_bytes = fig.to_image(format="png")
|
| 412 |
+
plot_outputs.append(img_bytes)
|
| 413 |
|
| 414 |
+
# Retornar la lista de imágenes
|
| 415 |
+
return plot_outputs
|
| 416 |
|
|
|
|
| 417 |
def download_excel():
|
| 418 |
if 'rsm' not in globals():
|
| 419 |
return None, "Error: Carga los datos y ajusta el modelo primero."
|
|
|
|
| 422 |
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
| 423 |
rsm.data.to_excel(writer, sheet_name='Datos', index=False)
|
| 424 |
rsm.generate_prediction_table().to_excel(writer, sheet_name='Predicciones', index=False)
|
| 425 |
+
rsm.optimize().to_excel(writer, sheet_name='Optimizacion', index=False)
|
| 426 |
+
rsm.calculate_contribution_percentage().to_excel(writer, sheet_name='Contribucion', index=False)
|
| 427 |
rsm.calculate_detailed_anova().to_excel(writer, sheet_name='ANOVA', index=False)
|
| 428 |
|
| 429 |
output.seek(0)
|
| 430 |
+
return gr.File.update(value=output, visible=True, filename="resultados_rsm.xlsx")
|
|
|
|
|
|
|
| 431 |
|
|
|
|
| 432 |
def download_images():
|
| 433 |
if 'rsm' not in globals():
|
| 434 |
return None, "Error: Carga los datos y ajusta el modelo primero."
|
| 435 |
|
| 436 |
+
# Crear un directorio temporal para guardar las imágenes
|
| 437 |
+
temp_dir = "temp_images"
|
| 438 |
+
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
+
# Generar todas las gráficas y guardarlas como imágenes PNG
|
| 441 |
+
all_figs = rsm.generate_all_plots()
|
| 442 |
+
for i, fig in enumerate(all_figs):
|
| 443 |
+
img_path = os.path.join(temp_dir, f"plot_{i}.png")
|
| 444 |
+
fig.write_image(img_path)
|
| 445 |
+
|
| 446 |
+
# Comprimir las imágenes en un archivo ZIP
|
| 447 |
+
zip_buffer = io.BytesIO()
|
| 448 |
+
with ZipFile(zip_buffer, "w") as zip_file:
|
| 449 |
+
for filename in os.listdir(temp_dir):
|
| 450 |
+
file_path = os.path.join(temp_dir, filename)
|
| 451 |
+
zip_file.write(file_path, arcname=filename)
|
| 452 |
+
|
| 453 |
+
# Eliminar el directorio temporal
|
| 454 |
+
for filename in os.listdir(temp_dir):
|
| 455 |
+
file_path = os.path.join(temp_dir, filename)
|
| 456 |
+
os.remove(file_path)
|
| 457 |
+
os.rmdir(temp_dir)
|
| 458 |
+
|
| 459 |
+
zip_buffer.seek(0)
|
| 460 |
+
return gr.File.update(value=zip_buffer, visible=True, filename="graficos_rsm.zip")
|
| 461 |
|
| 462 |
# --- Crear la interfaz de Gradio ---
|
| 463 |
|
|
|
|
| 500 |
with gr.Row(visible=False) as analysis_row:
|
| 501 |
with gr.Column():
|
| 502 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
| 503 |
+
download_excel_button = gr.Button("Descargar Tablas en Excel")
|
| 504 |
+
download_images_button = gr.Button("Descargar Gráficos en ZIP")
|
| 505 |
gr.Markdown("**Modelo Completo**")
|
| 506 |
model_completo_output = gr.HTML()
|
| 507 |
pareto_completo_output = gr.Plot()
|
|
|
|
| 513 |
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
|
| 514 |
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
|
| 515 |
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
with gr.Column():
|
| 517 |
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
| 518 |
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
|
| 519 |
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 520 |
plot_button = gr.Button("Generar Gráfico")
|
| 521 |
+
rsm_plot_output = gr.Gallery(label="Gráficos RSM", columns=3, preview=True, height="auto")
|
|
|
|
|
|
|
| 522 |
|
| 523 |
load_button.click(
|
| 524 |
load_data,
|
|
|
|
| 528 |
|
| 529 |
fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
|
| 530 |
|
| 531 |
+
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output])
|
| 532 |
|
| 533 |
+
download_excel_button.click(download_excel, outputs=[gr.File()])
|
| 534 |
+
download_images_button.click(download_images, outputs=[gr.File()])
|
|
|
|
| 535 |
|
| 536 |
# Ejemplo de uso
|
| 537 |
gr.Markdown("## Ejemplo de uso")
|
|
|
|
| 541 |
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
| 542 |
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
| 543 |
gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
|
| 544 |
+
gr.Markdown("7. Haz clic en 'Descargar Tablas en Excel' para obtener un archivo Excel con todas las tablas generadas.")
|
| 545 |
+
gr.Markdown("8. Haz clic en 'Descargar Gráficos en ZIP' para obtener un archivo ZIP con todos los gráficos generados.")
|
| 546 |
|
| 547 |
demo.launch()
|