Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,36 +10,39 @@ from scipy.stats import t
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
class RSM_BoxBehnken:
|
| 13 |
-
def __init__(self, data):
|
| 14 |
"""
|
| 15 |
Inicializa la clase con los datos del dise帽o Box-Behnken.
|
| 16 |
|
| 17 |
Args:
|
| 18 |
data (pd.DataFrame): DataFrame con los datos del experimento.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""
|
| 20 |
self.data = data.copy()
|
| 21 |
-
|
| 22 |
-
'Glucosa': 'Glucosa',
|
| 23 |
-
'Extracto de Levadura': 'Extracto_de_Levadura',
|
| 24 |
-
'Tript贸fano': 'Triptofano',
|
| 25 |
-
'AIA (ppm)': 'AIA_ppm'
|
| 26 |
-
}, inplace=True)
|
| 27 |
|
| 28 |
self.model = None
|
| 29 |
self.model_simplified = None
|
| 30 |
self.optimized_results = None
|
| 31 |
self.optimal_levels = None
|
| 32 |
|
| 33 |
-
self.x1_name =
|
| 34 |
-
self.x2_name =
|
| 35 |
-
self.x3_name =
|
| 36 |
-
self.y_name =
|
| 37 |
|
| 38 |
# Niveles originales de las variables
|
| 39 |
-
self.x1_levels =
|
| 40 |
-
self.x2_levels =
|
| 41 |
-
self.x3_levels =
|
| 42 |
-
|
|
|
|
| 43 |
def get_levels(self, variable_name):
|
| 44 |
"""
|
| 45 |
Obtiene los niveles para una variable espec铆fica.
|
|
@@ -69,7 +72,7 @@ class RSM_BoxBehnken:
|
|
| 69 |
self.model = smf.ols(formula, data=self.data).fit()
|
| 70 |
print("Modelo Completo:")
|
| 71 |
print(self.model.summary())
|
| 72 |
-
self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
| 73 |
|
| 74 |
def fit_simplified_model(self):
|
| 75 |
"""
|
|
@@ -80,7 +83,7 @@ class RSM_BoxBehnken:
|
|
| 80 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
| 81 |
print("\nModelo Simplificado:")
|
| 82 |
print(self.model_simplified.summary())
|
| 83 |
-
self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
| 84 |
|
| 85 |
def optimize(self, method='Nelder-Mead'):
|
| 86 |
"""
|
|
@@ -309,55 +312,135 @@ class RSM_BoxBehnken:
|
|
| 309 |
|
| 310 |
return fig
|
| 311 |
|
| 312 |
-
#
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
def fit_and_optimize_model():
|
| 327 |
-
rsm
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
| 329 |
rsm.optimize()
|
| 330 |
model_summary = rsm.model_simplified.summary().as_html()
|
| 331 |
-
|
| 332 |
-
return model_summary,
|
| 333 |
|
| 334 |
def generate_rsm_plot(fixed_variable, fixed_level):
|
|
|
|
|
|
|
| 335 |
fig = rsm.plot_rsm_individual(fixed_variable, fixed_level)
|
| 336 |
return fig
|
| 337 |
|
| 338 |
-
# Crear la interfaz de Gradio
|
|
|
|
| 339 |
with gr.Blocks() as demo:
|
| 340 |
gr.Markdown("# Optimizaci贸n de la producci贸n de AIA usando RSM Box-Behnken")
|
|
|
|
| 341 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
with gr.Column():
|
| 343 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
| 344 |
model_summary_output = gr.HTML()
|
| 345 |
-
|
|
|
|
| 346 |
optimization_results_output = gr.Textbox(label="Resultados de la Optimizaci贸n")
|
| 347 |
with gr.Column():
|
| 348 |
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
|
| 349 |
-
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=[
|
| 350 |
-
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=
|
| 351 |
plot_button = gr.Button("Generar Gr谩fico")
|
| 352 |
rsm_plot_output = gr.Plot()
|
| 353 |
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
# Ejemplo de uso
|
| 358 |
gr.Markdown("## Ejemplo de uso")
|
| 359 |
-
gr.Markdown("1.
|
| 360 |
-
gr.Markdown("2.
|
| 361 |
-
gr.Markdown("3. Haz clic en '
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
demo.launch()
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
class RSM_BoxBehnken:
|
| 13 |
+
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
|
| 14 |
"""
|
| 15 |
Inicializa la clase con los datos del dise帽o Box-Behnken.
|
| 16 |
|
| 17 |
Args:
|
| 18 |
data (pd.DataFrame): DataFrame con los datos del experimento.
|
| 19 |
+
x1_name (str): Nombre de la primera variable independiente.
|
| 20 |
+
x2_name (str): Nombre de la segunda variable independiente.
|
| 21 |
+
x3_name (str): Nombre de la tercera variable independiente.
|
| 22 |
+
y_name (str): Nombre de la variable dependiente.
|
| 23 |
+
x1_levels (list): Niveles de la primera variable independiente.
|
| 24 |
+
x2_levels (list): Niveles de la segunda variable independiente.
|
| 25 |
+
x3_levels (list): Niveles de la tercera variable independiente.
|
| 26 |
"""
|
| 27 |
self.data = data.copy()
|
| 28 |
+
# Ya no es necesario renombrar las columnas aqu铆, se har谩 al cargar los datos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
self.model = None
|
| 31 |
self.model_simplified = None
|
| 32 |
self.optimized_results = None
|
| 33 |
self.optimal_levels = None
|
| 34 |
|
| 35 |
+
self.x1_name = x1_name
|
| 36 |
+
self.x2_name = x2_name
|
| 37 |
+
self.x3_name = x3_name
|
| 38 |
+
self.y_name = y_name
|
| 39 |
|
| 40 |
# Niveles originales de las variables
|
| 41 |
+
self.x1_levels = x1_levels
|
| 42 |
+
self.x2_levels = x2_levels
|
| 43 |
+
self.x3_levels = x3_levels
|
| 44 |
+
|
| 45 |
+
# Resto de los m茅todos de la clase (sin cambios)
|
| 46 |
def get_levels(self, variable_name):
|
| 47 |
"""
|
| 48 |
Obtiene los niveles para una variable espec铆fica.
|
|
|
|
| 72 |
self.model = smf.ols(formula, data=self.data).fit()
|
| 73 |
print("Modelo Completo:")
|
| 74 |
print(self.model.summary())
|
| 75 |
+
return self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
| 76 |
|
| 77 |
def fit_simplified_model(self):
|
| 78 |
"""
|
|
|
|
| 83 |
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
| 84 |
print("\nModelo Simplificado:")
|
| 85 |
print(self.model_simplified.summary())
|
| 86 |
+
return self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
| 87 |
|
| 88 |
def optimize(self, method='Nelder-Mead'):
|
| 89 |
"""
|
|
|
|
| 312 |
|
| 313 |
return fig
|
| 314 |
|
| 315 |
+
# --- Funciones para la interfaz de Gradio ---
|
| 316 |
+
|
| 317 |
+
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
|
| 318 |
+
"""
|
| 319 |
+
Carga los datos del dise帽o Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
|
| 320 |
+
|
| 321 |
+
Args:
|
| 322 |
+
x1_name (str): Nombre de la primera variable independiente.
|
| 323 |
+
x2_name (str): Nombre de la segunda variable independiente.
|
| 324 |
+
x3_name (str): Nombre de la tercera variable independiente.
|
| 325 |
+
y_name (str): Nombre de la variable dependiente.
|
| 326 |
+
x1_levels_str (str): Niveles de la primera variable, separados por comas.
|
| 327 |
+
x2_levels_str (str): Niveles de la segunda variable, separados por comas.
|
| 328 |
+
x3_levels_str (str): Niveles de la tercera variable, separados por comas.
|
| 329 |
+
data_str (str): Datos del experimento en formato CSV, separados por comas.
|
| 330 |
+
|
| 331 |
+
Returns:
|
| 332 |
+
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
|
| 333 |
+
"""
|
| 334 |
+
try:
|
| 335 |
+
# Convertir los niveles a listas de n煤meros
|
| 336 |
+
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
|
| 337 |
+
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
|
| 338 |
+
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
|
| 339 |
+
|
| 340 |
+
# Crear DataFrame a partir de la cadena de datos
|
| 341 |
+
data_list = [row.split(',') for row in data_str.strip().split('\n')]
|
| 342 |
+
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
|
| 343 |
+
data = pd.DataFrame(data_list, columns=column_names)
|
| 344 |
+
data = data.apply(pd.to_numeric, errors='coerce') # Convertir a num茅rico
|
| 345 |
+
|
| 346 |
+
# Validar que el DataFrame tenga las columnas correctas
|
| 347 |
+
if not all(col in data.columns for col in column_names):
|
| 348 |
+
raise ValueError("El formato de los datos no es correcto.")
|
| 349 |
+
|
| 350 |
+
# Crear la instancia de RSM_BoxBehnken
|
| 351 |
+
global rsm
|
| 352 |
+
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
|
| 353 |
+
|
| 354 |
+
return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
|
| 355 |
+
|
| 356 |
+
except Exception as e:
|
| 357 |
+
return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"
|
| 358 |
|
| 359 |
def fit_and_optimize_model():
|
| 360 |
+
if 'rsm' not in globals():
|
| 361 |
+
return None, None, "Error: Carga los datos primero."
|
| 362 |
+
|
| 363 |
+
pareto_completo = rsm.fit_model()
|
| 364 |
+
pareto_simplificado = rsm.fit_simplified_model()
|
| 365 |
rsm.optimize()
|
| 366 |
model_summary = rsm.model_simplified.summary().as_html()
|
| 367 |
+
|
| 368 |
+
return model_summary, pareto_completo, pareto_simplificado, f"{rsm.x1_name}: {rsm.optimal_levels[0]:.4f}, {rsm.x2_name}: {rsm.optimal_levels[1]:.4f}, {rsm.x3_name}: {rsm.optimal_levels[2]:.4f}, Valor m谩ximo de {rsm.y_name}: {-rsm.optimized_results.fun:.4f}"
|
| 369 |
|
| 370 |
def generate_rsm_plot(fixed_variable, fixed_level):
|
| 371 |
+
if 'rsm' not in globals():
|
| 372 |
+
return None, "Error: Carga los datos primero."
|
| 373 |
fig = rsm.plot_rsm_individual(fixed_variable, fixed_level)
|
| 374 |
return fig
|
| 375 |
|
| 376 |
+
# --- Crear la interfaz de Gradio ---
|
| 377 |
+
|
| 378 |
with gr.Blocks() as demo:
|
| 379 |
gr.Markdown("# Optimizaci贸n de la producci贸n de AIA usando RSM Box-Behnken")
|
| 380 |
+
|
| 381 |
with gr.Row():
|
| 382 |
+
with gr.Column():
|
| 383 |
+
gr.Markdown("## Configuraci贸n del Dise帽o")
|
| 384 |
+
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
|
| 385 |
+
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto de Levadura")
|
| 386 |
+
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Tript贸fano)", value="Tript贸fano")
|
| 387 |
+
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA (ppm)")
|
| 388 |
+
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
|
| 389 |
+
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
|
| 390 |
+
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
|
| 391 |
+
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=5, value="""1,-1,-1,0,166.594
|
| 392 |
+
2,1,-1,0,177.557
|
| 393 |
+
3,-1,1,0,127.261
|
| 394 |
+
4,1,1,0,147.573
|
| 395 |
+
5,-1,0,-1,188.883
|
| 396 |
+
6,1,0,-1,224.527
|
| 397 |
+
7,-1,0,1,190.238
|
| 398 |
+
8,1,0,1,226.483
|
| 399 |
+
9,0,-1,-1,195.550
|
| 400 |
+
10,0,1,-1,149.493
|
| 401 |
+
11,0,-1,1,187.683
|
| 402 |
+
12,0,1,1,148.621
|
| 403 |
+
13,0,0,0,278.951
|
| 404 |
+
14,0,0,0,297.238
|
| 405 |
+
15,0,0,0,280.896""")
|
| 406 |
+
load_button = gr.Button("Cargar Datos")
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
with gr.Column():
|
| 410 |
+
gr.Markdown("## Datos Cargados")
|
| 411 |
+
data_output = gr.Dataframe(label="Tabla de Datos")
|
| 412 |
+
|
| 413 |
+
# Hacer que la secci贸n de an谩lisis sea visible solo despu茅s de cargar los datos
|
| 414 |
+
with gr.Row(visible=False) as analysis_row:
|
| 415 |
with gr.Column():
|
| 416 |
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
| 417 |
model_summary_output = gr.HTML()
|
| 418 |
+
pareto_chart_completo = gr.Plot()
|
| 419 |
+
pareto_chart_simplificado = gr.Plot()
|
| 420 |
optimization_results_output = gr.Textbox(label="Resultados de la Optimizaci贸n")
|
| 421 |
with gr.Column():
|
| 422 |
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
|
| 423 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto de Levadura", "Tript贸fano"], value="Glucosa")
|
| 424 |
+
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 425 |
plot_button = gr.Button("Generar Gr谩fico")
|
| 426 |
rsm_plot_output = gr.Plot()
|
| 427 |
|
| 428 |
+
load_button.click(
|
| 429 |
+
load_data,
|
| 430 |
+
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
|
| 431 |
+
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
fit_button.click(fit_and_optimize_model, outputs=[model_summary_output, pareto_chart_completo, pareto_chart_simplificado, optimization_results_output])
|
| 435 |
+
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output])
|
| 436 |
|
| 437 |
# Ejemplo de uso
|
| 438 |
gr.Markdown("## Ejemplo de uso")
|
| 439 |
+
gr.Markdown("1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.")
|
| 440 |
+
gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
|
| 441 |
+
gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
|
| 442 |
+
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles 贸ptimos de los factores.")
|
| 443 |
+
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
| 444 |
+
gr.Markdown("6. Haz clic en 'Generar Gr谩fico' para generar un gr谩fico de superficie de respuesta.")
|
| 445 |
|
| 446 |
demo.launch()
|