Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -350,13 +350,13 @@ class RSM_BoxBehnken:
|
|
| 350 |
if self.model_simplified is None:
|
| 351 |
print("Error: Ajusta el modelo simplificado primero.")
|
| 352 |
return None
|
| 353 |
-
|
| 354 |
# ANOVA del modelo simplificado
|
| 355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 356 |
-
|
| 357 |
# Suma de cuadrados total
|
| 358 |
ss_total = anova_table['sum_sq'].sum()
|
| 359 |
-
|
| 360 |
# Crear tabla de contribuci贸n
|
| 361 |
contribution_table = pd.DataFrame({
|
| 362 |
'Fuente de Variaci贸n': [],
|
|
@@ -370,24 +370,58 @@ class RSM_BoxBehnken:
|
|
| 370 |
|
| 371 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
| 372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
|
|
|
|
| 374 |
for index, row in anova_table.iterrows():
|
| 375 |
if index != 'Residual':
|
| 376 |
factor_name = index
|
| 377 |
if factor_name == f'I({self.x1_name} ** 2)':
|
| 378 |
-
factor_name = f'{self.x1_name}
|
| 379 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
| 380 |
-
factor_name = f'{self.x2_name}
|
| 381 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
| 382 |
-
factor_name = f'{self.x3_name}
|
| 383 |
-
|
| 384 |
ss_factor = row['sum_sq']
|
| 385 |
df_factor = row['df']
|
| 386 |
ms_factor = ss_factor / df_factor
|
| 387 |
f_stat = ms_factor / ms_error
|
| 388 |
p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
|
| 389 |
contribution_percentage = (ss_factor / ss_total) * 100
|
| 390 |
-
|
| 391 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 392 |
'Fuente de Variaci贸n': [factor_name],
|
| 393 |
'Suma de Cuadrados': [ss_factor],
|
|
@@ -397,22 +431,32 @@ class RSM_BoxBehnken:
|
|
| 397 |
'Valor p': [p_value],
|
| 398 |
'% Contribuci贸n': [contribution_percentage]
|
| 399 |
})], ignore_index=True)
|
| 400 |
-
|
| 401 |
-
#
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
# Agregar fila para el estad铆stico F global
|
| 406 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 407 |
-
'Fuente de Variaci贸n': ['
|
| 408 |
-
'Suma de Cuadrados': [
|
| 409 |
-
'Grados de Libertad': [
|
| 410 |
-
'Cuadrado Medio': [
|
| 411 |
-
'F': [
|
| 412 |
-
'Valor p': [
|
| 413 |
-
'% Contribuci贸n': [
|
| 414 |
})], ignore_index=True)
|
| 415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
return contribution_table.round(3)
|
| 417 |
|
| 418 |
def calculate_detailed_anova(self):
|
|
|
|
| 350 |
if self.model_simplified is None:
|
| 351 |
print("Error: Ajusta el modelo simplificado primero.")
|
| 352 |
return None
|
| 353 |
+
|
| 354 |
# ANOVA del modelo simplificado
|
| 355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 356 |
+
|
| 357 |
# Suma de cuadrados total
|
| 358 |
ss_total = anova_table['sum_sq'].sum()
|
| 359 |
+
|
| 360 |
# Crear tabla de contribuci贸n
|
| 361 |
contribution_table = pd.DataFrame({
|
| 362 |
'Fuente de Variaci贸n': [],
|
|
|
|
| 370 |
|
| 371 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
| 372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
| 373 |
+
|
| 374 |
+
# Agregar Block (si est谩 disponible en los datos)
|
| 375 |
+
block_ss = self.data.groupby('Block')['AIA_ppm'].sum().var() if 'Block' in self.data.columns else 0
|
| 376 |
+
if block_ss > 0:
|
| 377 |
+
block_df = len(self.data['Block'].unique()) - 1 if 'Block' in self.data.columns else 1
|
| 378 |
+
block_ms = block_ss / block_df
|
| 379 |
+
block_f = block_ms / ms_error
|
| 380 |
+
block_p = f.sf(block_f, block_df, anova_table.loc['Residual', 'df'])
|
| 381 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 382 |
+
'Fuente de Variaci贸n': ['Block'],
|
| 383 |
+
'Suma de Cuadrados': [block_ss],
|
| 384 |
+
'Grados de Libertad': [block_df],
|
| 385 |
+
'Cuadrado Medio': [block_ms],
|
| 386 |
+
'F': [block_f],
|
| 387 |
+
'Valor p': [block_p],
|
| 388 |
+
'% Contribuci贸n': [(block_ss / ss_total) * 100]
|
| 389 |
+
})], ignore_index=True)
|
| 390 |
+
|
| 391 |
+
# Agregar Model (suma de todos los t茅rminos del modelo excepto el residual)
|
| 392 |
+
model_ss = anova_table['sum_sq'][:-1].sum() # Excluir residual
|
| 393 |
+
model_df = anova_table['df'][:-1].sum()
|
| 394 |
+
model_ms = model_ss / model_df
|
| 395 |
+
model_f = model_ms / ms_error
|
| 396 |
+
model_p = f.sf(model_f, model_df, anova_table.loc['Residual', 'df'])
|
| 397 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 398 |
+
'Fuente de Variaci贸n': ['Model'],
|
| 399 |
+
'Suma de Cuadrados': [model_ss],
|
| 400 |
+
'Grados de Libertad': [model_df],
|
| 401 |
+
'Cuadrado Medio': [model_ms],
|
| 402 |
+
'F': [model_f],
|
| 403 |
+
'Valor p': [model_p],
|
| 404 |
+
'% Contribuci贸n': [(model_ss / ss_total) * 100]
|
| 405 |
+
})], ignore_index=True)
|
| 406 |
|
| 407 |
+
# Agregar factores individuales y sus interacciones
|
| 408 |
for index, row in anova_table.iterrows():
|
| 409 |
if index != 'Residual':
|
| 410 |
factor_name = index
|
| 411 |
if factor_name == f'I({self.x1_name} ** 2)':
|
| 412 |
+
factor_name = f'{self.x1_name}虏'
|
| 413 |
elif factor_name == f'I({self.x2_name} ** 2)':
|
| 414 |
+
factor_name = f'{self.x2_name}虏'
|
| 415 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
| 416 |
+
factor_name = f'{self.x3_name}虏'
|
| 417 |
+
|
| 418 |
ss_factor = row['sum_sq']
|
| 419 |
df_factor = row['df']
|
| 420 |
ms_factor = ss_factor / df_factor
|
| 421 |
f_stat = ms_factor / ms_error
|
| 422 |
p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
|
| 423 |
contribution_percentage = (ss_factor / ss_total) * 100
|
| 424 |
+
|
| 425 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 426 |
'Fuente de Variaci贸n': [factor_name],
|
| 427 |
'Suma de Cuadrados': [ss_factor],
|
|
|
|
| 431 |
'Valor p': [p_value],
|
| 432 |
'% Contribuci贸n': [contribution_percentage]
|
| 433 |
})], ignore_index=True)
|
| 434 |
+
|
| 435 |
+
# Agregar Residual
|
| 436 |
+
residual_ss = anova_table.loc['Residual', 'sum_sq']
|
| 437 |
+
residual_df = anova_table.loc['Residual', 'df']
|
| 438 |
+
residual_ms = residual_ss / residual_df
|
|
|
|
| 439 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 440 |
+
'Fuente de Variaci贸n': ['Residual'],
|
| 441 |
+
'Suma de Cuadrados': [residual_ss],
|
| 442 |
+
'Grados de Libertad': [residual_df],
|
| 443 |
+
'Cuadrado Medio': [residual_ms],
|
| 444 |
+
'F': [None],
|
| 445 |
+
'Valor p': [None],
|
| 446 |
+
'% Contribuci贸n': [(residual_ss / ss_total) * 100]
|
| 447 |
})], ignore_index=True)
|
| 448 |
+
|
| 449 |
+
# Agregar Correlation Total
|
| 450 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 451 |
+
'Fuente de Variaci贸n': ['Cor Total'],
|
| 452 |
+
'Suma de Cuadrados': [ss_total],
|
| 453 |
+
'Grados de Libertad': [len(self.data) - 1],
|
| 454 |
+
'Cuadrado Medio': [None],
|
| 455 |
+
'F': [None],
|
| 456 |
+
'Valor p': [None],
|
| 457 |
+
'% Contribuci贸n': [100]
|
| 458 |
+
})], ignore_index=True)
|
| 459 |
+
|
| 460 |
return contribution_table.round(3)
|
| 461 |
|
| 462 |
def calculate_detailed_anova(self):
|