Spaces:
Runtime error
Runtime error
| # app.py | |
| import gradio as gr | |
| from models import load_embedding_model, load_yi_coder_model | |
| from pinecone_utils import connect_to_pinecone, vector_search # Ahora deber铆a funcionar correctamente | |
| from ui import build_interface | |
| from config import SIMILARITY_THRESHOLD_DEFAULT, SYSTEM_PROMPT, MAX_LENGTH_DEFAULT | |
| from decorators import gpu_decorator | |
| import torch | |
| # Cargar modelos | |
| embedding_model = load_embedding_model() | |
| tokenizer, yi_coder_model, yi_coder_device = load_yi_coder_model() | |
| # Conectar a Pinecone | |
| index = connect_to_pinecone() | |
| # Funci贸n para generar c贸digo utilizando Yi-Coder | |
| def generate_code(system_prompt, user_prompt, max_length): | |
| device = yi_coder_device | |
| model = yi_coder_model | |
| tokenizer_ = tokenizer # Ya lo tenemos cargado | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_prompt} | |
| ] | |
| # Aplicar la plantilla de chat y preparar el texto | |
| text = tokenizer_.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer_([text], return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| model_inputs.input_ids, | |
| max_new_tokens=max_length, | |
| eos_token_id=tokenizer_.eos_token_id | |
| ) | |
| # Extraer solo la parte generada | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return response | |
| # Funci贸n para combinar b煤squeda vectorial y Yi-Coder | |
| def combined_function(user_prompt, similarity_threshold, selected_option, system_prompt, max_length): | |
| if selected_option == "Solo B煤squeda Vectorial": | |
| # Realizar b煤squeda vectorial | |
| search_results = vector_search(user_prompt, embedding_model, index) | |
| if search_results: | |
| # Usar el primer resultado | |
| content = search_results[0]['content'] | |
| return content, None | |
| else: | |
| return "No se encontraron resultados en Pinecone.", None | |
| elif selected_option == "Solo Yi-Coder": | |
| # Generar respuesta usando Yi-Coder | |
| yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
| return yi_coder_response, None | |
| elif selected_option == "Ambos (basado en umbral de similitud)": | |
| # Realizar b煤squeda vectorial | |
| search_results = vector_search(user_prompt, embedding_model, index) | |
| if search_results: | |
| top_result = search_results[0] | |
| if top_result['score'] >= similarity_threshold: | |
| content = top_result['content'] | |
| return content, None | |
| else: | |
| yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
| return yi_coder_response, None | |
| else: | |
| yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
| return yi_coder_response, None | |
| else: | |
| return "Opci贸n no v谩lida.", None | |
| # Funciones para el procesamiento de entradas y actualizaci贸n de im谩genes | |
| def process_input(message, history, selected_option, similarity_threshold, system_prompt, max_length): | |
| response, image = combined_function(message, similarity_threshold, selected_option, system_prompt, max_length) | |
| history.append((message, response)) | |
| return history, history, image | |
| def update_image(image_url): | |
| if image_url: | |
| return image_url | |
| else: | |
| return None | |
| def send_preset_question(question, history, selected_option, similarity_threshold, system_prompt, max_length): | |
| return process_input(question, history, selected_option, similarity_threshold, system_prompt, max_length) | |
| # Construir y lanzar la interfaz | |
| demo = build_interface(process_input, send_preset_question, update_image) | |
| if __name__ == "__main__": | |
| demo.launch() | |