Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
|
@@ -8,352 +8,1528 @@ import os
|
|
| 8 |
import json
|
| 9 |
import zipfile
|
| 10 |
import tempfile
|
| 11 |
-
from typing import Dict, List, Tuple, Union
|
|
|
|
| 12 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 13 |
from docx import Document
|
| 14 |
-
from docx.shared import Pt
|
|
|
|
| 15 |
from reportlab.lib import colors
|
| 16 |
-
from reportlab.lib.pagesizes import letter
|
| 17 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 18 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 19 |
from reportlab.lib.units import inch
|
|
|
|
|
|
|
|
|
|
| 20 |
from datetime import datetime
|
| 21 |
|
| 22 |
# Configuración para HuggingFace
|
| 23 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 24 |
|
| 25 |
-
# Inicializar cliente
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
client = OpenAI(
|
| 27 |
-
base_url="https://api.studio.nebius.com/v1/",
|
| 28 |
api_key=os.environ.get("NEBIUS_API_KEY")
|
| 29 |
)
|
| 30 |
|
| 31 |
-
# Sistema de traducción
|
| 32 |
TRANSLATIONS = {
|
| 33 |
'en': {
|
| 34 |
-
'title': '🧬
|
| 35 |
-
'subtitle': '
|
| 36 |
'upload_files': '📁 Upload fitting results (CSV/Excel)',
|
| 37 |
-
'select_model': '🤖
|
| 38 |
'select_language': '🌐 Language',
|
| 39 |
-
'
|
|
|
|
| 40 |
'detailed': 'Detailed',
|
| 41 |
'summarized': 'Summarized',
|
| 42 |
-
'analyze_button': '🚀 Analyze
|
| 43 |
-
'export_format': '📄 Export
|
| 44 |
-
'export_button': '💾 Export
|
| 45 |
-
'comparative_analysis': '📊
|
| 46 |
-
'implementation_code': '💻
|
| 47 |
-
'data_format': '📋 Expected
|
| 48 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
'error_no_files': 'Please upload fitting result files to analyze',
|
| 50 |
'report_exported': 'Report exported successfully as',
|
| 51 |
-
'
|
| 52 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
},
|
| 54 |
'es': {
|
| 55 |
-
'title': '🧬 Analizador
|
| 56 |
-
'subtitle': '
|
| 57 |
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
|
| 58 |
-
'select_model': '🤖 Modelo
|
| 59 |
'select_language': '🌐 Idioma',
|
| 60 |
-
'
|
|
|
|
| 61 |
'detailed': 'Detallado',
|
| 62 |
'summarized': 'Resumido',
|
| 63 |
-
'analyze_button': '🚀 Analizar
|
| 64 |
-
'export_format': '📄 Formato de
|
| 65 |
-
'export_button': '💾 Exportar
|
| 66 |
-
'comparative_analysis': '📊 Análisis
|
| 67 |
-
'implementation_code': '💻 Código de Implementación
|
| 68 |
-
'data_format': '📋 Formato de
|
| 69 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
|
| 71 |
'report_exported': 'Reporte exportado exitosamente como',
|
| 72 |
-
'
|
| 73 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
}
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
}
|
| 84 |
|
| 85 |
class FileProcessor:
|
|
|
|
|
|
|
| 86 |
@staticmethod
|
| 87 |
-
def
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
@staticmethod
|
| 92 |
-
def
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
class ReportExporter:
|
|
|
|
|
|
|
| 97 |
@staticmethod
|
| 98 |
-
def export_to_docx(content: str, filename: str, language: str = 'en'):
|
|
|
|
| 99 |
doc = Document()
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
doc.add_paragraph()
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
doc.save(filename)
|
| 109 |
return filename
|
| 110 |
-
|
| 111 |
@staticmethod
|
| 112 |
-
def export_to_pdf(content: str, filename: str, language: str = 'en'):
|
|
|
|
|
|
|
| 113 |
doc = SimpleDocTemplate(filename, pagesize=letter)
|
|
|
|
| 114 |
styles = getSampleStyleSheet()
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
doc.build(story)
|
| 122 |
return filename
|
| 123 |
|
| 124 |
class AIAnalyzer:
|
| 125 |
-
"""
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
"""
|
| 129 |
-
def __init__(self, client):
|
| 130 |
self.client = client
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
--- END DATA ---
|
| 147 |
-
|
| 148 |
-
User requirements:
|
| 149 |
-
- Language for the analysis: {language}
|
| 150 |
-
- Detail level: {detail_level}
|
| 151 |
-
- Additional specifications: "{additional_specs if additional_specs else 'None'}"
|
| 152 |
-
|
| 153 |
-
Based on all the information above, perform the following two tasks:
|
| 154 |
-
|
| 155 |
-
TASK 1: GENERATE TEXTUAL ANALYSIS
|
| 156 |
-
Write a comprehensive comparative analysis in Markdown format.
|
| 157 |
-
- If detail_level is 'detailed', provide an in-depth, experiment-by-experiment comparison, parameter analysis, biological interpretation, and robust conclusions.
|
| 158 |
-
- If detail_level is 'summarized', provide a concise overview, highlight the best models per experiment, and give clear, practical recommendations.
|
| 159 |
-
- The analysis MUST be in {language}.
|
| 160 |
-
|
| 161 |
-
TASK 2: GENERATE PYTHON CODE
|
| 162 |
-
Write a complete, executable Python script that a researcher can use to replicate and visualize this analysis.
|
| 163 |
-
- The script should include data loading (embed the provided data directly).
|
| 164 |
-
- It must contain functions to compare models and find the best ones.
|
| 165 |
-
- It must include plotting functions (using matplotlib or seaborn) to visualize the results, such as comparing R² values across experiments.
|
| 166 |
-
- The code should be well-commented.
|
| 167 |
-
|
| 168 |
-
IMPORTANT: Your final output must be a single, valid JSON object containing two keys: "analysis" and "code".
|
| 169 |
-
Example format:
|
| 170 |
-
{{
|
| 171 |
-
"analysis": "### Comparative Analysis\\n\\nHere is the detailed analysis in Markdown...",
|
| 172 |
-
"code": "import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Your Python code here..."
|
| 173 |
-
}}
|
| 174 |
-
|
| 175 |
-
Do not add any text or explanations outside of the JSON object.
|
| 176 |
"""
|
| 177 |
-
|
| 178 |
try:
|
|
|
|
| 179 |
response = self.client.chat.completions.create(
|
| 180 |
-
model=
|
| 181 |
temperature=0.6,
|
| 182 |
top_p=0.95,
|
| 183 |
-
max_tokens=
|
| 184 |
-
messages=[{"role": "user", "content": prompt}]
|
| 185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
# Intentar parsear la respuesta JSON
|
| 190 |
-
try:
|
| 191 |
-
# Limpiar el texto para asegurar que sea un JSON válido
|
| 192 |
-
json_text = raw_response_text[raw_response_text.find('{'):raw_response_text.rfind('}')+1]
|
| 193 |
-
parsed_json = json.loads(json_text)
|
| 194 |
-
return {
|
| 195 |
-
"analysis": parsed_json.get("analysis", "API did not return an analysis."),
|
| 196 |
-
"code": parsed_json.get("code", "# API did not return code.")
|
| 197 |
-
}
|
| 198 |
-
except (json.JSONDecodeError, IndexError):
|
| 199 |
-
# Si falla el parseo, devolver el texto crudo como análisis
|
| 200 |
-
return {
|
| 201 |
-
"analysis": f"API returned a non-JSON response:\n\n{raw_response_text}",
|
| 202 |
-
"code": "# Could not parse API response to extract code."
|
| 203 |
-
}
|
| 204 |
-
|
| 205 |
-
except Exception as e:
|
| 206 |
-
error_message = f"An error occurred while calling the API: {str(e)}"
|
| 207 |
return {
|
| 208 |
-
"
|
| 209 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
}
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
def process_files(files
|
| 213 |
-
|
| 214 |
-
Procesa
|
| 215 |
-
"""
|
| 216 |
-
if not files:
|
| 217 |
-
return TRANSLATIONS[language]['error_no_files'], ""
|
| 218 |
-
|
| 219 |
processor = FileProcessor()
|
| 220 |
-
analyzer = AIAnalyzer(client)
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
# Por simplicidad, se procesa solo el primer archivo válido
|
| 223 |
-
full_analysis = []
|
| 224 |
-
full_code = []
|
| 225 |
-
|
| 226 |
for file in files:
|
| 227 |
-
if file is None:
|
| 228 |
-
|
| 229 |
-
|
|
|
|
| 230 |
file_ext = Path(file_name).suffix.lower()
|
| 231 |
|
| 232 |
with open(file.name, 'rb') as f:
|
| 233 |
file_content = f.read()
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
#
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
t = TRANSLATIONS[language]
|
|
|
|
| 260 |
return [
|
| 261 |
-
gr.update(value=f"# {t['title']}"),
|
| 262 |
-
gr.update(
|
| 263 |
-
gr.update(label=t['
|
| 264 |
-
gr.update(label=t['
|
| 265 |
-
gr.update(
|
| 266 |
-
gr.update(
|
| 267 |
-
gr.update(label=t['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
]
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
| 277 |
with gr.Column(scale=1):
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
analyze_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
gr.Markdown("---")
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
with gr.Column(scale=2):
|
| 298 |
-
analysis_output = gr.Markdown(
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
analyze_btn.click(
|
| 324 |
-
fn=
|
| 325 |
-
inputs=[files_input, model_selector,
|
| 326 |
-
outputs=[analysis_output, code_output
|
| 327 |
)
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
export_btn.click(
|
| 330 |
-
fn=
|
| 331 |
-
inputs=[
|
| 332 |
-
outputs=[
|
| 333 |
)
|
| 334 |
-
|
| 335 |
return demo
|
| 336 |
|
|
|
|
| 337 |
def main():
|
| 338 |
-
if not os.getenv("
|
| 339 |
-
print("⚠️
|
| 340 |
-
return gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
return create_interface()
|
| 343 |
|
|
|
|
| 344 |
if __name__ == "__main__":
|
| 345 |
-
# Crear archivos de ejemplo para Gradio si no existen
|
| 346 |
-
if not os.path.exists("examples"):
|
| 347 |
-
os.makedirs("examples")
|
| 348 |
-
if not os.path.exists("examples/biomass_models_comparison.csv"):
|
| 349 |
-
pd.DataFrame({
|
| 350 |
-
'Experiment': ['pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5'],
|
| 351 |
-
'Model': ['Monod', 'Logistic', 'Monod', 'Logistic'],
|
| 352 |
-
'Type': ['Biomass', 'Biomass', 'Biomass', 'Biomass'],
|
| 353 |
-
'R2': [0.98, 0.99, 0.97, 0.985],
|
| 354 |
-
'RMSE': [0.02, 0.01, 0.03, 0.015]
|
| 355 |
-
}).to_csv("examples/biomass_models_comparison.csv", index=False)
|
| 356 |
-
|
| 357 |
demo = main()
|
| 358 |
if demo:
|
| 359 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
#import anthropic
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
|
|
|
| 8 |
import json
|
| 9 |
import zipfile
|
| 10 |
import tempfile
|
| 11 |
+
from typing import Dict, List, Tuple, Union, Optional
|
| 12 |
+
import re
|
| 13 |
from pathlib import Path
|
| 14 |
+
import openpyxl
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from enum import Enum
|
| 17 |
from docx import Document
|
| 18 |
+
from docx.shared import Inches, Pt, RGBColor
|
| 19 |
+
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
| 20 |
from reportlab.lib import colors
|
| 21 |
+
from reportlab.lib.pagesizes import letter, A4
|
| 22 |
+
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
|
| 23 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 24 |
from reportlab.lib.units import inch
|
| 25 |
+
from reportlab.pdfbase import pdfmetrics
|
| 26 |
+
from reportlab.pdfbase.ttfonts import TTFont
|
| 27 |
+
import matplotlib.pyplot as plt
|
| 28 |
from datetime import datetime
|
| 29 |
|
| 30 |
# Configuración para HuggingFace
|
| 31 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 32 |
|
| 33 |
+
# Inicializar cliente Anthropic
|
| 34 |
+
#client = anthropic.Anthropic()
|
| 35 |
+
|
| 36 |
+
# Inicializar cliente Nebius
|
| 37 |
+
import os
|
| 38 |
+
from openai import OpenAI
|
| 39 |
+
|
| 40 |
client = OpenAI(
|
| 41 |
+
base_url="https://api.studio.nebius.com/v1/",
|
| 42 |
api_key=os.environ.get("NEBIUS_API_KEY")
|
| 43 |
)
|
| 44 |
|
| 45 |
+
# Sistema de traducción - Actualizado con nuevas entradas
|
| 46 |
TRANSLATIONS = {
|
| 47 |
'en': {
|
| 48 |
+
'title': '🧬 Comparative Analyzer of Biotechnological Models',
|
| 49 |
+
'subtitle': 'Specialized in comparative analysis of mathematical model fitting results',
|
| 50 |
'upload_files': '📁 Upload fitting results (CSV/Excel)',
|
| 51 |
+
'select_model': '🤖 Claude Model',
|
| 52 |
'select_language': '🌐 Language',
|
| 53 |
+
'select_theme': '🎨 Theme',
|
| 54 |
+
'detail_level': '📋 Analysis detail level',
|
| 55 |
'detailed': 'Detailed',
|
| 56 |
'summarized': 'Summarized',
|
| 57 |
+
'analyze_button': '🚀 Analyze and Compare Models',
|
| 58 |
+
'export_format': '📄 Export format',
|
| 59 |
+
'export_button': '💾 Export Report',
|
| 60 |
+
'comparative_analysis': '📊 Comparative Analysis',
|
| 61 |
+
'implementation_code': '💻 Implementation Code',
|
| 62 |
+
'data_format': '📋 Expected data format',
|
| 63 |
+
'examples': '📚 Analysis examples',
|
| 64 |
+
'light': 'Light',
|
| 65 |
+
'dark': 'Dark',
|
| 66 |
+
'best_for': 'Best for',
|
| 67 |
+
'loading': 'Loading...',
|
| 68 |
+
'error_no_api': 'Please configure ANTHROPIC_API_KEY in HuggingFace Space secrets',
|
| 69 |
'error_no_files': 'Please upload fitting result files to analyze',
|
| 70 |
'report_exported': 'Report exported successfully as',
|
| 71 |
+
'specialized_in': '🎯 Specialized in:',
|
| 72 |
+
'metrics_analyzed': '📊 Analyzed metrics:',
|
| 73 |
+
'what_analyzes': '🔍 What it specifically analyzes:',
|
| 74 |
+
'tips': '💡 Tips for better results:',
|
| 75 |
+
'additional_specs': '📝 Additional specifications for analysis',
|
| 76 |
+
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...'
|
| 77 |
},
|
| 78 |
'es': {
|
| 79 |
+
'title': '🧬 Analizador Comparativo de Modelos Biotecnológicos',
|
| 80 |
+
'subtitle': 'Especializado en análisis comparativo de resultados de ajuste de modelos matemáticos',
|
| 81 |
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
|
| 82 |
+
'select_model': '🤖 Modelo Claude',
|
| 83 |
'select_language': '🌐 Idioma',
|
| 84 |
+
'select_theme': '🎨 Tema',
|
| 85 |
+
'detail_level': '📋 Nivel de detalle del análisis',
|
| 86 |
'detailed': 'Detallado',
|
| 87 |
'summarized': 'Resumido',
|
| 88 |
+
'analyze_button': '🚀 Analizar y Comparar Modelos',
|
| 89 |
+
'export_format': '📄 Formato de exportación',
|
| 90 |
+
'export_button': '💾 Exportar Reporte',
|
| 91 |
+
'comparative_analysis': '📊 Análisis Comparativo',
|
| 92 |
+
'implementation_code': '💻 Código de Implementación',
|
| 93 |
+
'data_format': '📋 Formato de datos esperado',
|
| 94 |
+
'examples': '📚 Ejemplos de análisis',
|
| 95 |
+
'light': 'Claro',
|
| 96 |
+
'dark': 'Oscuro',
|
| 97 |
+
'best_for': 'Mejor para',
|
| 98 |
+
'loading': 'Cargando...',
|
| 99 |
+
'error_no_api': 'Por favor configura ANTHROPIC_API_KEY en los secretos del Space',
|
| 100 |
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
|
| 101 |
'report_exported': 'Reporte exportado exitosamente como',
|
| 102 |
+
'specialized_in': '🎯 Especializado en:',
|
| 103 |
+
'metrics_analyzed': '📊 Métricas analizadas:',
|
| 104 |
+
'what_analyzes': '🔍 Qué analiza específicamente:',
|
| 105 |
+
'tips': '💡 Tips para mejores resultados:',
|
| 106 |
+
'additional_specs': '📝 Especificaciones adicionales para el análisis',
|
| 107 |
+
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...'
|
| 108 |
},
|
| 109 |
+
'fr': {
|
| 110 |
+
'title': '🧬 Analyseur Comparatif de Modèles Biotechnologiques',
|
| 111 |
+
'subtitle': 'Spécialisé dans l\'analyse comparative des résultats d\'ajustement',
|
| 112 |
+
'upload_files': '📁 Télécharger les résultats (CSV/Excel)',
|
| 113 |
+
'select_model': '🤖 Modèle Claude',
|
| 114 |
+
'select_language': '🌐 Langue',
|
| 115 |
+
'select_theme': '🎨 Thème',
|
| 116 |
+
'detail_level': '📋 Niveau de détail',
|
| 117 |
+
'detailed': 'Détaillé',
|
| 118 |
+
'summarized': 'Résumé',
|
| 119 |
+
'analyze_button': '🚀 Analyser et Comparer',
|
| 120 |
+
'export_format': '📄 Format d\'export',
|
| 121 |
+
'export_button': '💾 Exporter le Rapport',
|
| 122 |
+
'comparative_analysis': '📊 Analyse Comparative',
|
| 123 |
+
'implementation_code': '💻 Code d\'Implémentation',
|
| 124 |
+
'data_format': '📋 Format de données attendu',
|
| 125 |
+
'examples': '📚 Exemples d\'analyse',
|
| 126 |
+
'light': 'Clair',
|
| 127 |
+
'dark': 'Sombre',
|
| 128 |
+
'best_for': 'Meilleur pour',
|
| 129 |
+
'loading': 'Chargement...',
|
| 130 |
+
'error_no_api': 'Veuillez configurer ANTHROPIC_API_KEY',
|
| 131 |
+
'error_no_files': 'Veuillez télécharger des fichiers à analyser',
|
| 132 |
+
'report_exported': 'Rapport exporté avec succès comme',
|
| 133 |
+
'specialized_in': '🎯 Spécialisé dans:',
|
| 134 |
+
'metrics_analyzed': '📊 Métriques analysées:',
|
| 135 |
+
'what_analyzes': '🔍 Ce qu\'il analyse spécifiquement:',
|
| 136 |
+
'tips': '💡 Conseils pour de meilleurs résultats:',
|
| 137 |
+
'additional_specs': '📝 Spécifications supplémentaires pour l\'analyse',
|
| 138 |
+
'additional_specs_placeholder': 'Ajoutez des exigences spécifiques ou des domaines d\'intérêt pour l\'analyse...'
|
| 139 |
+
},
|
| 140 |
+
'de': {
|
| 141 |
+
'title': '🧬 Vergleichender Analysator für Biotechnologische Modelle',
|
| 142 |
+
'subtitle': 'Spezialisiert auf vergleichende Analyse von Modellanpassungsergebnissen',
|
| 143 |
+
'upload_files': '📁 Ergebnisse hochladen (CSV/Excel)',
|
| 144 |
+
'select_model': '🤖 Claude Modell',
|
| 145 |
+
'select_language': '🌐 Sprache',
|
| 146 |
+
'select_theme': '🎨 Thema',
|
| 147 |
+
'detail_level': '📋 Detailgrad der Analyse',
|
| 148 |
+
'detailed': 'Detailliert',
|
| 149 |
+
'summarized': 'Zusammengefasst',
|
| 150 |
+
'analyze_button': '🚀 Analysieren und Vergleichen',
|
| 151 |
+
'export_format': '📄 Exportformat',
|
| 152 |
+
'export_button': '💾 Bericht Exportieren',
|
| 153 |
+
'comparative_analysis': '📊 Vergleichende Analyse',
|
| 154 |
+
'implementation_code': '💻 Implementierungscode',
|
| 155 |
+
'data_format': '📋 Erwartetes Datenformat',
|
| 156 |
+
'examples': '📚 Analysebeispiele',
|
| 157 |
+
'light': 'Hell',
|
| 158 |
+
'dark': 'Dunkel',
|
| 159 |
+
'best_for': 'Am besten für',
|
| 160 |
+
'loading': 'Laden...',
|
| 161 |
+
'error_no_api': 'Bitte konfigurieren Sie ANTHROPIC_API_KEY',
|
| 162 |
+
'error_no_files': 'Bitte laden Sie Dateien zur Analyse hoch',
|
| 163 |
+
'report_exported': 'Bericht erfolgreich exportiert als',
|
| 164 |
+
'specialized_in': '🎯 Spezialisiert auf:',
|
| 165 |
+
'metrics_analyzed': '📊 Analysierte Metriken:',
|
| 166 |
+
'what_analyzes': '🔍 Was spezifisch analysiert wird:',
|
| 167 |
+
'tips': '💡 Tipps für bessere Ergebnisse:',
|
| 168 |
+
'additional_specs': '📝 Zusätzliche Spezifikationen für die Analyse',
|
| 169 |
+
'additional_specs_placeholder': 'Fügen Sie spezifische Anforderungen oder Schwerpunktbereiche für die Analyse hinzu...'
|
| 170 |
+
},
|
| 171 |
+
'pt': {
|
| 172 |
+
'title': '🧬 Analisador Comparativo de Modelos Biotecnológicos',
|
| 173 |
+
'subtitle': 'Especializado em análise comparativa de resultados de ajuste',
|
| 174 |
+
'upload_files': '📁 Carregar resultados (CSV/Excel)',
|
| 175 |
+
'select_model': '🤖 Modelo Claude',
|
| 176 |
+
'select_language': '🌐 Idioma',
|
| 177 |
+
'select_theme': '🎨 Tema',
|
| 178 |
+
'detail_level': '📋 Nível de detalhe',
|
| 179 |
+
'detailed': 'Detalhado',
|
| 180 |
+
'summarized': 'Resumido',
|
| 181 |
+
'analyze_button': '🚀 Analisar e Comparar',
|
| 182 |
+
'export_format': '📄 Formato de exportação',
|
| 183 |
+
'export_button': '💾 Exportar Relatório',
|
| 184 |
+
'comparative_analysis': '📊 Análise Comparativa',
|
| 185 |
+
'implementation_code': '💻 Código de Implementação',
|
| 186 |
+
'data_format': '📋 Formato de dados esperado',
|
| 187 |
+
'examples': '📚 Exemplos de análise',
|
| 188 |
+
'light': 'Claro',
|
| 189 |
+
'dark': 'Escuro',
|
| 190 |
+
'best_for': 'Melhor para',
|
| 191 |
+
'loading': 'Carregando...',
|
| 192 |
+
'error_no_api': 'Por favor configure ANTHROPIC_API_KEY',
|
| 193 |
+
'error_no_files': 'Por favor carregue arquivos para analisar',
|
| 194 |
+
'report_exported': 'Relatório exportado com sucesso como',
|
| 195 |
+
'specialized_in': '🎯 Especializado em:',
|
| 196 |
+
'metrics_analyzed': '📊 Métricas analisadas:',
|
| 197 |
+
'what_analyzes': '🔍 O que analisa especificamente:',
|
| 198 |
+
'tips': '💡 Dicas para melhores resultados:',
|
| 199 |
+
'additional_specs': '📝 Especificações adicionais para a análise',
|
| 200 |
+
'additional_specs_placeholder': 'Adicione requisitos específicos ou áreas de foco para a análise...'
|
| 201 |
+
}
|
| 202 |
}
|
| 203 |
|
| 204 |
+
# Temas disponibles
|
| 205 |
+
THEMES = {
|
| 206 |
+
'light': gr.themes.Soft(),
|
| 207 |
+
'dark': gr.themes.Base(
|
| 208 |
+
primary_hue="blue",
|
| 209 |
+
secondary_hue="gray",
|
| 210 |
+
neutral_hue="gray",
|
| 211 |
+
font=["Arial", "sans-serif"]
|
| 212 |
+
).set(
|
| 213 |
+
body_background_fill="dark",
|
| 214 |
+
body_background_fill_dark="*neutral_950",
|
| 215 |
+
button_primary_background_fill="*primary_600",
|
| 216 |
+
button_primary_background_fill_hover="*primary_500",
|
| 217 |
+
button_primary_text_color="white",
|
| 218 |
+
block_background_fill="*neutral_800",
|
| 219 |
+
block_border_color="*neutral_700",
|
| 220 |
+
block_label_text_color="*neutral_200",
|
| 221 |
+
block_title_text_color="*neutral_100",
|
| 222 |
+
checkbox_background_color="*neutral_700",
|
| 223 |
+
checkbox_background_color_selected="*primary_600",
|
| 224 |
+
input_background_fill="*neutral_700",
|
| 225 |
+
input_border_color="*neutral_600",
|
| 226 |
+
input_placeholder_color="*neutral_400"
|
| 227 |
+
)
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
# Enum para tipos de análisis
|
| 231 |
+
class AnalysisType(Enum):
|
| 232 |
+
MATHEMATICAL_MODEL = "mathematical_model"
|
| 233 |
+
DATA_FITTING = "data_fitting"
|
| 234 |
+
FITTING_RESULTS = "fitting_results"
|
| 235 |
+
UNKNOWN = "unknown"
|
| 236 |
+
|
| 237 |
+
# Estructura modular para modelos
|
| 238 |
+
@dataclass
|
| 239 |
+
class MathematicalModel:
|
| 240 |
+
name: str
|
| 241 |
+
equation: str
|
| 242 |
+
parameters: List[str]
|
| 243 |
+
application: str
|
| 244 |
+
sources: List[str]
|
| 245 |
+
category: str
|
| 246 |
+
biological_meaning: str
|
| 247 |
+
|
| 248 |
+
# Sistema de registro de modelos escalable
|
| 249 |
+
class ModelRegistry:
|
| 250 |
+
def __init__(self):
|
| 251 |
+
self.models = {}
|
| 252 |
+
self._initialize_default_models()
|
| 253 |
+
|
| 254 |
+
def register_model(self, model: MathematicalModel):
|
| 255 |
+
"""Registra un nuevo modelo matemático"""
|
| 256 |
+
if model.category not in self.models:
|
| 257 |
+
self.models[model.category] = {}
|
| 258 |
+
self.models[model.category][model.name] = model
|
| 259 |
+
|
| 260 |
+
def get_model(self, category: str, name: str) -> MathematicalModel:
|
| 261 |
+
"""Obtiene un modelo específico"""
|
| 262 |
+
return self.models.get(category, {}).get(name)
|
| 263 |
+
|
| 264 |
+
def get_all_models(self) -> Dict:
|
| 265 |
+
"""Retorna todos los modelos registrados"""
|
| 266 |
+
return self.models
|
| 267 |
+
|
| 268 |
+
def _initialize_default_models(self):
|
| 269 |
+
"""Inicializa los modelos por defecto"""
|
| 270 |
+
# Modelos de crecimiento
|
| 271 |
+
self.register_model(MathematicalModel(
|
| 272 |
+
name="Monod",
|
| 273 |
+
equation="μ = μmax × (S / (Ks + S))",
|
| 274 |
+
parameters=["μmax (h⁻¹)", "Ks (g/L)"],
|
| 275 |
+
application="Crecimiento limitado por sustrato único",
|
| 276 |
+
sources=["Cambridge", "MIT", "DTU"],
|
| 277 |
+
category="crecimiento_biomasa",
|
| 278 |
+
biological_meaning="Describe cómo la velocidad de crecimiento depende de la concentración de sustrato limitante"
|
| 279 |
+
))
|
| 280 |
+
|
| 281 |
+
self.register_model(MathematicalModel(
|
| 282 |
+
name="Logístico",
|
| 283 |
+
equation="dX/dt = μmax × X × (1 - X/Xmax)",
|
| 284 |
+
parameters=["μmax (h⁻¹)", "Xmax (g/L)"],
|
| 285 |
+
application="Sistemas cerrados batch",
|
| 286 |
+
sources=["Cranfield", "Swansea", "HAL Theses"],
|
| 287 |
+
category="crecimiento_biomasa",
|
| 288 |
+
biological_meaning="Modela crecimiento limitado por capacidad de carga del sistema"
|
| 289 |
+
))
|
| 290 |
+
|
| 291 |
+
self.register_model(MathematicalModel(
|
| 292 |
+
name="Gompertz",
|
| 293 |
+
equation="X(t) = Xmax × exp(-exp((μmax × e / Xmax) × (λ - t) + 1))",
|
| 294 |
+
parameters=["λ (h)", "μmax (h⁻¹)", "Xmax (g/L)"],
|
| 295 |
+
application="Crecimiento con fase lag pronunciada",
|
| 296 |
+
sources=["Lund University", "NC State"],
|
| 297 |
+
category="crecimiento_biomasa",
|
| 298 |
+
biological_meaning="Incluye fase de adaptación (lag) seguida de crecimiento exponencial y estacionario"
|
| 299 |
+
))
|
| 300 |
+
|
| 301 |
+
# Instancia global del registro
|
| 302 |
+
model_registry = ModelRegistry()
|
| 303 |
+
|
| 304 |
+
'''
|
| 305 |
+
# Modelos de Claude disponibles
|
| 306 |
+
CLAUDE_MODELS = {
|
| 307 |
+
"claude-opus-4-20250514": {
|
| 308 |
+
"name": "Claude Opus 4 (Latest)",
|
| 309 |
+
"description": "Modelo más potente para desafíos complejos",
|
| 310 |
+
"max_tokens": 4000,
|
| 311 |
+
"best_for": "Análisis muy detallados y complejos"
|
| 312 |
},
|
| 313 |
+
"claude-sonnet-4-20250514": {
|
| 314 |
+
"name": "Claude Sonnet 4 (Latest)",
|
| 315 |
+
"description": "Modelo inteligente y eficiente para uso cotidiano",
|
| 316 |
+
"max_tokens": 4000,
|
| 317 |
+
"best_for": "Análisis general, recomendado para la mayoría de casos"
|
| 318 |
+
},
|
| 319 |
+
"claude-3-5-haiku-20241022": {
|
| 320 |
+
"name": "Claude 3.5 Haiku (Latest)",
|
| 321 |
+
"description": "Modelo más rápido para tareas diarias",
|
| 322 |
+
"max_tokens": 4000,
|
| 323 |
+
"best_for": "Análisis rápidos y económicos"
|
| 324 |
+
},
|
| 325 |
+
"claude-3-7-sonnet-20250219": {
|
| 326 |
+
"name": "Claude 3.7 Sonnet",
|
| 327 |
+
"description": "Modelo avanzado de la serie 3.7",
|
| 328 |
+
"max_tokens": 4000,
|
| 329 |
+
"best_for": "Análisis equilibrados con alta calidad"
|
| 330 |
+
},
|
| 331 |
+
"claude-3-5-sonnet-20241022": {
|
| 332 |
+
"name": "Claude 3.5 Sonnet (Oct 2024)",
|
| 333 |
+
"description": "Excelente balance entre velocidad y capacidad",
|
| 334 |
+
"max_tokens": 4000,
|
| 335 |
+
"best_for": "Análisis rápidos y precisos"
|
| 336 |
+
}
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
'''
|
| 340 |
+
|
| 341 |
+
CLAUDE_MODELS = {
|
| 342 |
+
"Qwen/Qwen3-14B": {
|
| 343 |
+
"name": "Qwen 3-14B",
|
| 344 |
+
"description": "Modelo Qwen 3-14B para análisis detallado",
|
| 345 |
+
"max_tokens": 4096,
|
| 346 |
+
"best_for": "Análisis técnico y científico"
|
| 347 |
+
}
|
| 348 |
}
|
| 349 |
|
| 350 |
class FileProcessor:
|
| 351 |
+
"""Clase para procesar diferentes tipos de archivos"""
|
| 352 |
+
|
| 353 |
@staticmethod
|
| 354 |
+
def extract_text_from_pdf(pdf_file) -> str:
|
| 355 |
+
"""Extrae texto de un archivo PDF"""
|
| 356 |
+
try:
|
| 357 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
|
| 358 |
+
text = ""
|
| 359 |
+
for page in pdf_reader.pages:
|
| 360 |
+
text += page.extract_text() + "\n"
|
| 361 |
+
return text
|
| 362 |
+
except Exception as e:
|
| 363 |
+
return f"Error reading PDF: {str(e)}"
|
| 364 |
|
| 365 |
@staticmethod
|
| 366 |
+
def read_csv(csv_file) -> pd.DataFrame:
|
| 367 |
+
"""Lee archivo CSV"""
|
| 368 |
+
try:
|
| 369 |
+
return pd.read_csv(io.BytesIO(csv_file))
|
| 370 |
+
except Exception as e:
|
| 371 |
+
return None
|
| 372 |
+
|
| 373 |
+
@staticmethod
|
| 374 |
+
def read_excel(excel_file) -> pd.DataFrame:
|
| 375 |
+
"""Lee archivo Excel"""
|
| 376 |
+
try:
|
| 377 |
+
return pd.read_excel(io.BytesIO(excel_file))
|
| 378 |
+
except Exception as e:
|
| 379 |
+
return None
|
| 380 |
+
|
| 381 |
+
@staticmethod
|
| 382 |
+
def extract_from_zip(zip_file) -> List[Tuple[str, bytes]]:
|
| 383 |
+
"""Extrae archivos de un ZIP"""
|
| 384 |
+
files = []
|
| 385 |
+
try:
|
| 386 |
+
with zipfile.ZipFile(io.BytesIO(zip_file), 'r') as zip_ref:
|
| 387 |
+
for file_name in zip_ref.namelist():
|
| 388 |
+
if not file_name.startswith('__MACOSX'):
|
| 389 |
+
file_data = zip_ref.read(file_name)
|
| 390 |
+
files.append((file_name, file_data))
|
| 391 |
+
except Exception as e:
|
| 392 |
+
print(f"Error processing ZIP: {e}")
|
| 393 |
+
return files
|
| 394 |
|
| 395 |
class ReportExporter:
|
| 396 |
+
"""Clase para exportar reportes a diferentes formatos"""
|
| 397 |
+
|
| 398 |
@staticmethod
|
| 399 |
+
def export_to_docx(content: str, filename: str, language: str = 'en') -> str:
|
| 400 |
+
"""Exporta el contenido a un archivo DOCX"""
|
| 401 |
doc = Document()
|
| 402 |
+
|
| 403 |
+
# Configurar estilos
|
| 404 |
+
title_style = doc.styles['Title']
|
| 405 |
+
title_style.font.size = Pt(24)
|
| 406 |
+
title_style.font.bold = True
|
| 407 |
+
|
| 408 |
+
heading_style = doc.styles['Heading 1']
|
| 409 |
+
heading_style.font.size = Pt(18)
|
| 410 |
+
heading_style.font.bold = True
|
| 411 |
+
|
| 412 |
+
# Título
|
| 413 |
+
title_text = {
|
| 414 |
+
'en': 'Comparative Analysis Report - Biotechnological Models',
|
| 415 |
+
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
| 416 |
+
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
| 417 |
+
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
| 418 |
+
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
doc.add_heading(title_text.get(language, title_text['en']), 0)
|
| 422 |
+
|
| 423 |
+
# Fecha
|
| 424 |
+
date_text = {
|
| 425 |
+
'en': 'Generated on',
|
| 426 |
+
'es': 'Generado el',
|
| 427 |
+
'fr': 'Généré le',
|
| 428 |
+
'de': 'Erstellt am',
|
| 429 |
+
'pt': 'Gerado em'
|
| 430 |
+
}
|
| 431 |
+
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 432 |
doc.add_paragraph()
|
| 433 |
+
|
| 434 |
+
# Procesar contenido
|
| 435 |
+
lines = content.split('\n')
|
| 436 |
+
current_paragraph = None
|
| 437 |
+
|
| 438 |
+
for line in lines:
|
| 439 |
+
line = line.strip()
|
| 440 |
+
|
| 441 |
+
if line.startswith('###'):
|
| 442 |
+
doc.add_heading(line.replace('###', '').strip(), level=2)
|
| 443 |
+
elif line.startswith('##'):
|
| 444 |
+
doc.add_heading(line.replace('##', '').strip(), level=1)
|
| 445 |
+
elif line.startswith('#'):
|
| 446 |
+
doc.add_heading(line.replace('#', '').strip(), level=0)
|
| 447 |
+
elif line.startswith('**') and line.endswith('**'):
|
| 448 |
+
# Texto en negrita
|
| 449 |
+
p = doc.add_paragraph()
|
| 450 |
+
run = p.add_run(line.replace('**', ''))
|
| 451 |
+
run.bold = True
|
| 452 |
+
elif line.startswith('- ') or line.startswith('* '):
|
| 453 |
+
# Lista
|
| 454 |
+
doc.add_paragraph(line[2:], style='List Bullet')
|
| 455 |
+
elif line.startswith(tuple('0123456789')):
|
| 456 |
+
# Lista numerada
|
| 457 |
+
doc.add_paragraph(line, style='List Number')
|
| 458 |
+
elif line == '---' or line.startswith('==='):
|
| 459 |
+
# Separador
|
| 460 |
+
doc.add_paragraph('_' * 50)
|
| 461 |
+
elif line:
|
| 462 |
+
# Párrafo normal
|
| 463 |
+
doc.add_paragraph(line)
|
| 464 |
+
|
| 465 |
+
# Guardar documento
|
| 466 |
doc.save(filename)
|
| 467 |
return filename
|
| 468 |
+
|
| 469 |
@staticmethod
|
| 470 |
+
def export_to_pdf(content: str, filename: str, language: str = 'en') -> str:
|
| 471 |
+
"""Exporta el contenido a un archivo PDF"""
|
| 472 |
+
# Crear documento PDF
|
| 473 |
doc = SimpleDocTemplate(filename, pagesize=letter)
|
| 474 |
+
story = []
|
| 475 |
styles = getSampleStyleSheet()
|
| 476 |
+
|
| 477 |
+
# Estilos personalizados
|
| 478 |
+
title_style = ParagraphStyle(
|
| 479 |
+
'CustomTitle',
|
| 480 |
+
parent=styles['Title'],
|
| 481 |
+
fontSize=24,
|
| 482 |
+
textColor=colors.HexColor('#1f4788'),
|
| 483 |
+
spaceAfter=30
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
heading_style = ParagraphStyle(
|
| 487 |
+
'CustomHeading',
|
| 488 |
+
parent=styles['Heading1'],
|
| 489 |
+
fontSize=16,
|
| 490 |
+
textColor=colors.HexColor('#2e5090'),
|
| 491 |
+
spaceAfter=12
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
# Título
|
| 495 |
+
title_text = {
|
| 496 |
+
'en': 'Comparative Analysis Report - Biotechnological Models',
|
| 497 |
+
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
|
| 498 |
+
'fr': 'Rapport d\'Analyse Comparative - Modèles Biotechnologiques',
|
| 499 |
+
'de': 'Vergleichsanalysebericht - Biotechnologische Modelle',
|
| 500 |
+
'pt': 'Relatório de Análise Comparativa - Modelos Biotecnológicos'
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
|
| 504 |
+
|
| 505 |
+
# Fecha
|
| 506 |
+
date_text = {
|
| 507 |
+
'en': 'Generated on',
|
| 508 |
+
'es': 'Generado el',
|
| 509 |
+
'fr': 'Généré le',
|
| 510 |
+
'de': 'Erstellt am',
|
| 511 |
+
'pt': 'Gerado em'
|
| 512 |
+
}
|
| 513 |
+
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
|
| 514 |
+
story.append(Spacer(1, 0.5*inch))
|
| 515 |
+
|
| 516 |
+
# Procesar contenido
|
| 517 |
+
lines = content.split('\n')
|
| 518 |
+
|
| 519 |
+
for line in lines:
|
| 520 |
+
line = line.strip()
|
| 521 |
+
|
| 522 |
+
if not line:
|
| 523 |
+
story.append(Spacer(1, 0.2*inch))
|
| 524 |
+
elif line.startswith('###'):
|
| 525 |
+
story.append(Paragraph(line.replace('###', '').strip(), styles['Heading3']))
|
| 526 |
+
elif line.startswith('##'):
|
| 527 |
+
story.append(Paragraph(line.replace('##', '').strip(), styles['Heading2']))
|
| 528 |
+
elif line.startswith('#'):
|
| 529 |
+
story.append(Paragraph(line.replace('#', '').strip(), heading_style))
|
| 530 |
+
elif line.startswith('**') and line.endswith('**'):
|
| 531 |
+
text = line.replace('**', '')
|
| 532 |
+
story.append(Paragraph(f"<b>{text}</b>", styles['Normal']))
|
| 533 |
+
elif line.startswith('- ') or line.startswith('* '):
|
| 534 |
+
story.append(Paragraph(f"• {line[2:]}", styles['Normal']))
|
| 535 |
+
elif line == '---' or line.startswith('==='):
|
| 536 |
+
story.append(Spacer(1, 0.3*inch))
|
| 537 |
+
story.append(Paragraph("_" * 70, styles['Normal']))
|
| 538 |
+
story.append(Spacer(1, 0.3*inch))
|
| 539 |
+
else:
|
| 540 |
+
# Limpiar caracteres especiales para PDF
|
| 541 |
+
clean_line = line.replace('📊', '[GRAPH]').replace('🎯', '[TARGET]').replace('🔍', '[SEARCH]').replace('💡', '[TIP]')
|
| 542 |
+
story.append(Paragraph(clean_line, styles['Normal']))
|
| 543 |
+
|
| 544 |
+
# Construir PDF
|
| 545 |
doc.build(story)
|
| 546 |
return filename
|
| 547 |
|
| 548 |
class AIAnalyzer:
|
| 549 |
+
"""Clase para análisis con IA"""
|
| 550 |
+
|
| 551 |
+
def __init__(self, client, model_registry):
|
|
|
|
|
|
|
| 552 |
self.client = client
|
| 553 |
+
self.model_registry = model_registry
|
| 554 |
+
|
| 555 |
+
def detect_analysis_type(self, content: Union[str, pd.DataFrame]) -> AnalysisType:
|
| 556 |
+
"""Detecta el tipo de análisis necesario"""
|
| 557 |
+
if isinstance(content, pd.DataFrame):
|
| 558 |
+
columns = [col.lower() for col in content.columns]
|
| 559 |
+
|
| 560 |
+
fitting_indicators = [
|
| 561 |
+
'r2', 'r_squared', 'rmse', 'mse', 'aic', 'bic',
|
| 562 |
+
'parameter', 'param', 'coefficient', 'fit',
|
| 563 |
+
'model', 'equation', 'goodness', 'chi_square',
|
| 564 |
+
'p_value', 'confidence', 'standard_error', 'se'
|
| 565 |
+
]
|
| 566 |
+
|
| 567 |
+
has_fitting_results = any(indicator in ' '.join(columns) for indicator in fitting_indicators)
|
| 568 |
+
|
| 569 |
+
if has_fitting_results:
|
| 570 |
+
return AnalysisType.FITTING_RESULTS
|
| 571 |
+
else:
|
| 572 |
+
return AnalysisType.DATA_FITTING
|
| 573 |
|
| 574 |
+
prompt = """
|
| 575 |
+
Analyze this content and determine if it is:
|
| 576 |
+
1. A scientific article describing biotechnological mathematical models
|
| 577 |
+
2. Experimental data for parameter fitting
|
| 578 |
+
3. Model fitting results (with parameters, R², RMSE, etc.)
|
| 579 |
+
|
| 580 |
+
Reply only with: "MODEL", "DATA" or "RESULTS"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
"""
|
| 582 |
+
|
| 583 |
try:
|
| 584 |
+
# Cliente Nebius
|
| 585 |
response = self.client.chat.completions.create(
|
| 586 |
+
model="Qwen/Qwen3-14B",
|
| 587 |
temperature=0.6,
|
| 588 |
top_p=0.95,
|
| 589 |
+
max_tokens=10,
|
| 590 |
+
messages=[{"role": "user", "content": f"{prompt}\n{content[:1000]}"}]
|
| 591 |
)
|
| 592 |
+
|
| 593 |
+
#Cliente Anthropic
|
| 594 |
+
#response = self.client.messages.create(
|
| 595 |
+
#model="claude-3-haiku-20240307",
|
| 596 |
+
#max_tokens=10,
|
| 597 |
+
#messages=[{"role": "user", "content": f"{prompt}\n\n{content[:1000]}"}]
|
| 598 |
+
#)
|
| 599 |
+
|
| 600 |
+
#result = response.content[0].text.strip().upper()
|
| 601 |
+
result = response.choices[0].message.content.strip().upper()
|
| 602 |
+
if "MODEL" in result:
|
| 603 |
+
return AnalysisType.MATHEMATICAL_MODEL
|
| 604 |
+
elif "RESULTS" in result:
|
| 605 |
+
return AnalysisType.FITTING_RESULTS
|
| 606 |
+
elif "DATA" in result:
|
| 607 |
+
return AnalysisType.DATA_FITTING
|
| 608 |
+
else:
|
| 609 |
+
return AnalysisType.UNKNOWN
|
| 610 |
+
|
| 611 |
+
except:
|
| 612 |
+
return AnalysisType.UNKNOWN
|
| 613 |
+
|
| 614 |
+
def get_language_prompt_prefix(self, language: str) -> str:
|
| 615 |
+
"""Obtiene el prefijo del prompt según el idioma"""
|
| 616 |
+
prefixes = {
|
| 617 |
+
'en': "Please respond in English. ",
|
| 618 |
+
'es': "Por favor responde en español. ",
|
| 619 |
+
'fr': "Veuillez répondre en français. ",
|
| 620 |
+
'de': "Bitte antworten Sie auf Deutsch. ",
|
| 621 |
+
'pt': "Por favor responda em português. "
|
| 622 |
+
}
|
| 623 |
+
return prefixes.get(language, prefixes['en'])
|
| 624 |
+
|
| 625 |
+
def analyze_fitting_results(self, data: pd.DataFrame, claude_model: str, detail_level: str = "detailed",
|
| 626 |
+
language: str = "en", additional_specs: str = "") -> Dict:
|
| 627 |
+
"""Analiza resultados de ajuste de modelos con soporte multiidioma y especificaciones adicionales"""
|
| 628 |
+
|
| 629 |
+
# Preparar resumen completo de los datos
|
| 630 |
+
data_summary = f"""
|
| 631 |
+
FITTING RESULTS DATA:
|
| 632 |
+
|
| 633 |
+
Data structure:
|
| 634 |
+
- Columns: {list(data.columns)}
|
| 635 |
+
- Number of models evaluated: {len(data)}
|
| 636 |
+
|
| 637 |
+
Complete data:
|
| 638 |
+
{data.to_string()}
|
| 639 |
+
|
| 640 |
+
Descriptive statistics:
|
| 641 |
+
{data.describe().to_string()}
|
| 642 |
+
"""
|
| 643 |
+
|
| 644 |
+
# Extraer valores para usar en el código
|
| 645 |
+
data_dict = data.to_dict('records')
|
| 646 |
+
|
| 647 |
+
# Obtener prefijo de idioma
|
| 648 |
+
lang_prefix = self.get_language_prompt_prefix(language)
|
| 649 |
+
|
| 650 |
+
# Agregar especificaciones adicionales del usuario si existen
|
| 651 |
+
user_specs_section = f"""
|
| 652 |
+
|
| 653 |
+
USER ADDITIONAL SPECIFICATIONS:
|
| 654 |
+
{additional_specs}
|
| 655 |
+
|
| 656 |
+
Please ensure to address these specific requirements in your analysis.
|
| 657 |
+
""" if additional_specs else ""
|
| 658 |
+
|
| 659 |
+
# Prompt mejorado con instrucciones específicas para cada nivel
|
| 660 |
+
if detail_level == "detailed":
|
| 661 |
+
prompt = f"""
|
| 662 |
+
{lang_prefix}
|
| 663 |
|
| 664 |
+
You are an expert in biotechnology and mathematical modeling. Analyze these kinetic/biotechnological model fitting results.
|
| 665 |
+
|
| 666 |
+
{user_specs_section}
|
| 667 |
+
|
| 668 |
+
DETAIL LEVEL: DETAILED - Provide comprehensive analysis BY EXPERIMENT
|
| 669 |
+
|
| 670 |
+
PERFORM A COMPREHENSIVE COMPARATIVE ANALYSIS PER EXPERIMENT:
|
| 671 |
+
|
| 672 |
+
1. **EXPERIMENT IDENTIFICATION AND OVERVIEW**
|
| 673 |
+
- List ALL experiments/conditions tested (e.g., pH levels, temperatures, time points)
|
| 674 |
+
- For EACH experiment, identify:
|
| 675 |
+
* Experimental conditions
|
| 676 |
+
* Number of models tested
|
| 677 |
+
* Variables measured (biomass, substrate, product)
|
| 678 |
+
|
| 679 |
+
2. **MODEL IDENTIFICATION AND CLASSIFICATION BY EXPERIMENT**
|
| 680 |
+
For EACH EXPERIMENT separately:
|
| 681 |
+
- Identify ALL fitted mathematical models BY NAME
|
| 682 |
+
- Classify them: biomass growth, substrate consumption, product formation
|
| 683 |
+
- Show the mathematical equation of each model
|
| 684 |
+
- List parameter values obtained for that specific experiment
|
| 685 |
+
|
| 686 |
+
3. **COMPARATIVE ANALYSIS PER EXPERIMENT**
|
| 687 |
+
Create a section for EACH EXPERIMENT showing:
|
| 688 |
+
|
| 689 |
+
**EXPERIMENT [Name/Condition]:**
|
| 690 |
+
|
| 691 |
+
a) **BIOMASS MODELS** (if applicable):
|
| 692 |
+
- Best model: [Name] with R²=[value], RMSE=[value]
|
| 693 |
+
- Parameters: μmax=[value], Xmax=[value], etc.
|
| 694 |
+
- Ranking of all biomass models tested
|
| 695 |
+
|
| 696 |
+
b) **SUBSTRATE MODELS** (if applicable):
|
| 697 |
+
- Best model: [Name] with R²=[value], RMSE=[value]
|
| 698 |
+
- Parameters: Ks=[value], Yxs=[value], etc.
|
| 699 |
+
- Ranking of all substrate models tested
|
| 700 |
+
|
| 701 |
+
c) **PRODUCT MODELS** (if applicable):
|
| 702 |
+
- Best model: [Name] with R²=[value], RMSE=[value]
|
| 703 |
+
- Parameters: α=[value], β=[value], etc.
|
| 704 |
+
- Ranking of all product models tested
|
| 705 |
+
|
| 706 |
+
4. **DETAILED COMPARATIVE TABLES**
|
| 707 |
+
|
| 708 |
+
**Table 1: Summary by Experiment and Variable Type**
|
| 709 |
+
| Experiment | Variable | Best Model | R² | RMSE | Key Parameters | Ranking |
|
| 710 |
+
|------------|----------|------------|-------|------|----------------|---------|
|
| 711 |
+
| Exp1 | Biomass | [Name] | [val] | [val]| μmax=X | 1 |
|
| 712 |
+
| Exp1 | Substrate| [Name] | [val] | [val]| Ks=Y | 1 |
|
| 713 |
+
| Exp1 | Product | [Name] | [val] | [val]| α=Z | 1 |
|
| 714 |
+
| Exp2 | Biomass | [Name] | [val] | [val]| μmax=X2 | 1 |
|
| 715 |
+
|
| 716 |
+
**Table 2: Complete Model Comparison Across All Experiments**
|
| 717 |
+
| Model Name | Type | Exp1_R² | Exp1_RMSE | Exp2_R² | Exp2_RMSE | Avg_R² | Best_For |
|
| 718 |
+
|
| 719 |
+
5. **PARAMETER ANALYSIS ACROSS EXPERIMENTS**
|
| 720 |
+
- Compare how parameters change between experiments
|
| 721 |
+
- Identify trends (e.g., μmax increases with temperature)
|
| 722 |
+
- Calculate average parameters and variability
|
| 723 |
+
- Suggest optimal conditions based on parameters
|
| 724 |
+
|
| 725 |
+
6. **BIOLOGICAL INTERPRETATION BY EXPERIMENT**
|
| 726 |
+
For each experiment, explain:
|
| 727 |
+
- What the parameter values mean biologically
|
| 728 |
+
- Whether values are realistic for the conditions
|
| 729 |
+
- Key differences between experiments
|
| 730 |
+
- Critical control parameters identified
|
| 731 |
+
|
| 732 |
+
7. **OVERALL BEST MODELS DETERMINATION**
|
| 733 |
+
- **BEST BIOMASS MODEL OVERALL**: [Name] - performs best in [X] out of [Y] experiments
|
| 734 |
+
- **BEST SUBSTRATE MODEL OVERALL**: [Name] - average R²=[value]
|
| 735 |
+
- **BEST PRODUCT MODEL OVERALL**: [Name] - most consistent across conditions
|
| 736 |
+
|
| 737 |
+
Justify with numerical evidence from multiple experiments.
|
| 738 |
+
|
| 739 |
+
8. **CONCLUSIONS AND RECOMMENDATIONS**
|
| 740 |
+
- Which models are most robust across different conditions
|
| 741 |
+
- Specific models to use for each experimental condition
|
| 742 |
+
- Confidence intervals and prediction reliability
|
| 743 |
+
- Scale-up recommendations with specific values
|
| 744 |
+
|
| 745 |
+
Use Markdown format with clear structure. Include ALL numerical values from the data.
|
| 746 |
+
Create clear sections for EACH EXPERIMENT.
|
| 747 |
+
"""
|
| 748 |
+
else: # summarized
|
| 749 |
+
prompt = f"""
|
| 750 |
+
{lang_prefix}
|
| 751 |
+
|
| 752 |
+
You are an expert in biotechnology. Provide a CONCISE but COMPLETE analysis BY EXPERIMENT.
|
| 753 |
+
|
| 754 |
+
{user_specs_section}
|
| 755 |
+
|
| 756 |
+
DETAIL LEVEL: SUMMARIZED - Be concise but include all experiments and essential information
|
| 757 |
+
|
| 758 |
+
PROVIDE A FOCUSED COMPARATIVE ANALYSIS:
|
| 759 |
+
|
| 760 |
+
1. **EXPERIMENTS OVERVIEW**
|
| 761 |
+
- Total experiments analyzed: [number]
|
| 762 |
+
- Conditions tested: [list]
|
| 763 |
+
- Variables measured: biomass/substrate/product
|
| 764 |
+
|
| 765 |
+
2. **BEST MODELS BY EXPERIMENT - QUICK SUMMARY**
|
| 766 |
+
|
| 767 |
+
📊 **EXPERIMENT 1 [Name/Condition]:**
|
| 768 |
+
- Biomass: [Model] (R²=[value])
|
| 769 |
+
- Substrate: [Model] (R²=[value])
|
| 770 |
+
- Product: [Model] (R²=[value])
|
| 771 |
+
|
| 772 |
+
📊 **EXPERIMENT 2 [Name/Condition]:**
|
| 773 |
+
- Biomass: [Model] (R²=[value])
|
| 774 |
+
- Substrate: [Model] (R²=[value])
|
| 775 |
+
- Product: [Model] (R²=[value])
|
| 776 |
+
|
| 777 |
+
[Continue for all experiments...]
|
| 778 |
+
|
| 779 |
+
3. **OVERALL WINNERS ACROSS ALL EXPERIMENTS**
|
| 780 |
+
🏆 **Best Models Overall:**
|
| 781 |
+
- **Biomass**: [Model] - Best in [X]/[Y] experiments
|
| 782 |
+
- **Substrate**: [Model] - Average R²=[value]
|
| 783 |
+
- **Product**: [Model] - Most consistent performance
|
| 784 |
+
|
| 785 |
+
4. **QUICK COMPARISON TABLE**
|
| 786 |
+
| Experiment | Best Biomass | Best Substrate | Best Product | Overall R² |
|
| 787 |
+
|------------|--------------|----------------|--------------|------------|
|
| 788 |
+
| Exp1 | [Model] | [Model] | [Model] | [avg] |
|
| 789 |
+
| Exp2 | [Model] | [Model] | [Model] | [avg] |
|
| 790 |
+
|
| 791 |
+
5. **KEY FINDINGS**
|
| 792 |
+
- Parameter ranges across experiments: μmax=[min-max], Ks=[min-max]
|
| 793 |
+
- Best conditions identified: [specific values]
|
| 794 |
+
- Most robust models: [list with reasons]
|
| 795 |
+
|
| 796 |
+
6. **PRACTICAL RECOMMENDATIONS**
|
| 797 |
+
- For biomass prediction: Use [Model]
|
| 798 |
+
- For substrate monitoring: Use [Model]
|
| 799 |
+
- For product estimation: Use [Model]
|
| 800 |
+
- Critical parameters: [list with values]
|
| 801 |
+
|
| 802 |
+
Keep it concise but include ALL experiments and model names with their key metrics.
|
| 803 |
+
"""
|
| 804 |
+
|
| 805 |
+
try:
|
| 806 |
+
response = self.client.messages.create(
|
| 807 |
+
model=claude_model,
|
| 808 |
+
max_tokens=4000,
|
| 809 |
+
messages=[{
|
| 810 |
+
"role": "user",
|
| 811 |
+
"content": f"{prompt}\n\n{data_summary}"
|
| 812 |
+
}]
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
# Análisis adicional para generar código con valores numéricos reales
|
| 816 |
+
code_prompt = f"""
|
| 817 |
+
{lang_prefix}
|
| 818 |
+
|
| 819 |
+
Based on the analysis and this actual data:
|
| 820 |
+
{data.to_string()}
|
| 821 |
+
|
| 822 |
+
Generate Python code that:
|
| 823 |
+
|
| 824 |
+
1. Creates a complete analysis system with the ACTUAL NUMERICAL VALUES from the data
|
| 825 |
+
2. Implements analysis BY EXPERIMENT showing:
|
| 826 |
+
- Best models for each experiment
|
| 827 |
+
- Comparison across experiments
|
| 828 |
+
- Parameter evolution between conditions
|
| 829 |
+
3. Includes visualization functions that:
|
| 830 |
+
- Show results PER EXPERIMENT
|
| 831 |
+
- Compare models across experiments
|
| 832 |
+
- Display parameter trends
|
| 833 |
+
4. Shows the best model for biomass, substrate, and product separately
|
| 834 |
+
|
| 835 |
+
The code must include:
|
| 836 |
+
- Data loading with experiment identification
|
| 837 |
+
- Model comparison by experiment and variable type
|
| 838 |
+
- Visualization showing results per experiment
|
| 839 |
+
- Overall best model selection with justification
|
| 840 |
+
- Functions to predict using the best models for each category
|
| 841 |
+
|
| 842 |
+
Make sure to include comments indicating which model won for each variable type and why.
|
| 843 |
+
|
| 844 |
+
Format: Complete, executable Python code with actual data values embedded.
|
| 845 |
+
"""
|
| 846 |
+
|
| 847 |
+
code_response = self.client.messages.create(
|
| 848 |
+
model=claude_model,
|
| 849 |
+
max_tokens=3000,
|
| 850 |
+
messages=[{
|
| 851 |
+
"role": "user",
|
| 852 |
+
"content": code_prompt
|
| 853 |
+
}]
|
| 854 |
+
)
|
| 855 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 856 |
return {
|
| 857 |
+
"tipo": "Comparative Analysis of Mathematical Models",
|
| 858 |
+
"analisis_completo": response.content[0].text,
|
| 859 |
+
"codigo_implementacion": code_response.content[0].text,
|
| 860 |
+
"resumen_datos": {
|
| 861 |
+
"n_modelos": len(data),
|
| 862 |
+
"columnas": list(data.columns),
|
| 863 |
+
"metricas_disponibles": [col for col in data.columns if any(metric in col.lower()
|
| 864 |
+
for metric in ['r2', 'rmse', 'aic', 'bic', 'mse'])],
|
| 865 |
+
"mejor_r2": data['R2'].max() if 'R2' in data.columns else None,
|
| 866 |
+
"mejor_modelo_r2": data.loc[data['R2'].idxmax()]['Model'] if 'R2' in data.columns and 'Model' in data.columns else None,
|
| 867 |
+
"datos_completos": data_dict # Incluir todos los datos para el código
|
| 868 |
+
}
|
| 869 |
}
|
| 870 |
+
|
| 871 |
+
except Exception as e:
|
| 872 |
+
return {"error": str(e)}
|
| 873 |
|
| 874 |
+
def process_files(files, claude_model: str, detail_level: str = "detailed",
|
| 875 |
+
language: str = "en", additional_specs: str = "") -> Tuple[str, str]:
|
| 876 |
+
"""Procesa múltiples archivos con soporte de idioma y especificaciones adicionales"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 877 |
processor = FileProcessor()
|
| 878 |
+
analyzer = AIAnalyzer(client, model_registry)
|
| 879 |
+
results = []
|
| 880 |
+
all_code = []
|
| 881 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
for file in files:
|
| 883 |
+
if file is None:
|
| 884 |
+
continue
|
| 885 |
+
|
| 886 |
+
file_name = file.name if hasattr(file, 'name') else "archivo"
|
| 887 |
file_ext = Path(file_name).suffix.lower()
|
| 888 |
|
| 889 |
with open(file.name, 'rb') as f:
|
| 890 |
file_content = f.read()
|
| 891 |
|
| 892 |
+
if file_ext in ['.csv', '.xlsx', '.xls']:
|
| 893 |
+
if language == 'es':
|
| 894 |
+
results.append(f"## 📊 Análisis de Resultados: {file_name}")
|
| 895 |
+
else:
|
| 896 |
+
results.append(f"## 📊 Results Analysis: {file_name}")
|
| 897 |
+
|
| 898 |
+
if file_ext == '.csv':
|
| 899 |
+
df = processor.read_csv(file_content)
|
| 900 |
+
else:
|
| 901 |
+
df = processor.read_excel(file_content)
|
| 902 |
+
|
| 903 |
+
if df is not None:
|
| 904 |
+
analysis_type = analyzer.detect_analysis_type(df)
|
| 905 |
+
|
| 906 |
+
if analysis_type == AnalysisType.FITTING_RESULTS:
|
| 907 |
+
result = analyzer.analyze_fitting_results(
|
| 908 |
+
df, claude_model, detail_level, language, additional_specs
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
if language == 'es':
|
| 912 |
+
results.append("### 🎯 ANÁLISIS COMPARATIVO DE MODELOS MATEMÁTICOS")
|
| 913 |
+
else:
|
| 914 |
+
results.append("### 🎯 COMPARATIVE ANALYSIS OF MATHEMATICAL MODELS")
|
| 915 |
+
|
| 916 |
+
results.append(result.get("analisis_completo", ""))
|
| 917 |
+
if "codigo_implementacion" in result:
|
| 918 |
+
all_code.append(result["codigo_implementacion"])
|
| 919 |
+
|
| 920 |
+
results.append("\n---\n")
|
| 921 |
+
|
| 922 |
+
analysis_text = "\n".join(results)
|
| 923 |
+
code_text = "\n\n# " + "="*50 + "\n\n".join(all_code) if all_code else generate_implementation_code(analysis_text)
|
| 924 |
+
|
| 925 |
+
return analysis_text, code_text
|
| 926 |
|
| 927 |
+
def generate_implementation_code(analysis_results: str) -> str:
|
| 928 |
+
"""Genera código de implementación con análisis por experimento"""
|
| 929 |
+
code = """
|
| 930 |
+
import numpy as np
|
| 931 |
+
import pandas as pd
|
| 932 |
+
import matplotlib.pyplot as plt
|
| 933 |
+
from scipy.integrate import odeint
|
| 934 |
+
from scipy.optimize import curve_fit, differential_evolution
|
| 935 |
+
from sklearn.metrics import r2_score, mean_squared_error
|
| 936 |
+
import seaborn as sns
|
| 937 |
+
from typing import Dict, List, Tuple, Optional
|
| 938 |
|
| 939 |
+
# Visualization configuration
|
| 940 |
+
plt.style.use('seaborn-v0_8-darkgrid')
|
| 941 |
+
sns.set_palette("husl")
|
| 942 |
+
|
| 943 |
+
class ExperimentalModelAnalyzer:
|
| 944 |
+
\"\"\"
|
| 945 |
+
Class for comparative analysis of biotechnological models across multiple experiments.
|
| 946 |
+
Analyzes biomass, substrate and product models separately for each experimental condition.
|
| 947 |
+
\"\"\"
|
| 948 |
+
|
| 949 |
+
def __init__(self):
|
| 950 |
+
self.results_df = None
|
| 951 |
+
self.experiments = {}
|
| 952 |
+
self.best_models_by_experiment = {}
|
| 953 |
+
self.overall_best_models = {
|
| 954 |
+
'biomass': None,
|
| 955 |
+
'substrate': None,
|
| 956 |
+
'product': None
|
| 957 |
+
}
|
| 958 |
+
|
| 959 |
+
def load_results(self, file_path: str = None, data_dict: dict = None) -> pd.DataFrame:
|
| 960 |
+
\"\"\"Load fitting results from CSV/Excel file or dictionary\"\"\"
|
| 961 |
+
if data_dict:
|
| 962 |
+
self.results_df = pd.DataFrame(data_dict)
|
| 963 |
+
elif file_path:
|
| 964 |
+
if file_path.endswith('.csv'):
|
| 965 |
+
self.results_df = pd.read_csv(file_path)
|
| 966 |
+
else:
|
| 967 |
+
self.results_df = pd.read_excel(file_path)
|
| 968 |
+
|
| 969 |
+
print(f"✅ Data loaded: {len(self.results_df)} models")
|
| 970 |
+
print(f"📊 Available columns: {list(self.results_df.columns)}")
|
| 971 |
+
|
| 972 |
+
# Identify experiments
|
| 973 |
+
if 'Experiment' in self.results_df.columns:
|
| 974 |
+
self.experiments = self.results_df.groupby('Experiment').groups
|
| 975 |
+
print(f"🧪 Experiments found: {list(self.experiments.keys())}")
|
| 976 |
+
|
| 977 |
+
return self.results_df
|
| 978 |
+
|
| 979 |
+
def analyze_by_experiment(self,
|
| 980 |
+
experiment_col: str = 'Experiment',
|
| 981 |
+
model_col: str = 'Model',
|
| 982 |
+
type_col: str = 'Type',
|
| 983 |
+
r2_col: str = 'R2',
|
| 984 |
+
rmse_col: str = 'RMSE') -> Dict:
|
| 985 |
+
\"\"\"
|
| 986 |
+
Analyze models by experiment and variable type.
|
| 987 |
+
Identifies best models for biomass, substrate, and product in each experiment.
|
| 988 |
+
\"\"\"
|
| 989 |
+
if self.results_df is None:
|
| 990 |
+
raise ValueError("First load data with load_results()")
|
| 991 |
+
|
| 992 |
+
results_by_exp = {}
|
| 993 |
+
|
| 994 |
+
# Get unique experiments
|
| 995 |
+
if experiment_col in self.results_df.columns:
|
| 996 |
+
experiments = self.results_df[experiment_col].unique()
|
| 997 |
+
else:
|
| 998 |
+
experiments = ['All_Data']
|
| 999 |
+
self.results_df[experiment_col] = 'All_Data'
|
| 1000 |
+
|
| 1001 |
+
print("\\n" + "="*80)
|
| 1002 |
+
print("📊 ANALYSIS BY EXPERIMENT AND VARIABLE TYPE")
|
| 1003 |
+
print("="*80)
|
| 1004 |
+
|
| 1005 |
+
for exp in experiments:
|
| 1006 |
+
print(f"\\n🧪 EXPERIMENT: {exp}")
|
| 1007 |
+
print("-"*50)
|
| 1008 |
+
|
| 1009 |
+
exp_data = self.results_df[self.results_df[experiment_col] == exp]
|
| 1010 |
+
results_by_exp[exp] = {}
|
| 1011 |
+
|
| 1012 |
+
# Analyze by variable type if available
|
| 1013 |
+
if type_col in exp_data.columns:
|
| 1014 |
+
var_types = exp_data[type_col].unique()
|
| 1015 |
+
|
| 1016 |
+
for var_type in var_types:
|
| 1017 |
+
var_data = exp_data[exp_data[type_col] == var_type]
|
| 1018 |
+
|
| 1019 |
+
if not var_data.empty:
|
| 1020 |
+
# Find best model for this variable type
|
| 1021 |
+
best_idx = var_data[r2_col].idxmax()
|
| 1022 |
+
best_model = var_data.loc[best_idx]
|
| 1023 |
+
|
| 1024 |
+
results_by_exp[exp][var_type] = {
|
| 1025 |
+
'best_model': best_model[model_col],
|
| 1026 |
+
'r2': best_model[r2_col],
|
| 1027 |
+
'rmse': best_model[rmse_col],
|
| 1028 |
+
'all_models': var_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
| 1029 |
+
}
|
| 1030 |
+
|
| 1031 |
+
print(f"\\n 📈 {var_type.upper()}:")
|
| 1032 |
+
print(f" Best Model: {best_model[model_col]}")
|
| 1033 |
+
print(f" R² = {best_model[r2_col]:.4f}")
|
| 1034 |
+
print(f" RMSE = {best_model[rmse_col]:.4f}")
|
| 1035 |
+
|
| 1036 |
+
# Show all models for this variable
|
| 1037 |
+
print(f"\\n All {var_type} models tested:")
|
| 1038 |
+
for _, row in var_data.iterrows():
|
| 1039 |
+
print(f" - {row[model_col]}: R²={row[r2_col]:.4f}, RMSE={row[rmse_col]:.4f}")
|
| 1040 |
+
else:
|
| 1041 |
+
# If no type column, analyze all models together
|
| 1042 |
+
best_idx = exp_data[r2_col].idxmax()
|
| 1043 |
+
best_model = exp_data.loc[best_idx]
|
| 1044 |
+
|
| 1045 |
+
results_by_exp[exp]['all'] = {
|
| 1046 |
+
'best_model': best_model[model_col],
|
| 1047 |
+
'r2': best_model[r2_col],
|
| 1048 |
+
'rmse': best_model[rmse_col],
|
| 1049 |
+
'all_models': exp_data[[model_col, r2_col, rmse_col]].to_dict('records')
|
| 1050 |
+
}
|
| 1051 |
+
|
| 1052 |
+
self.best_models_by_experiment = results_by_exp
|
| 1053 |
+
|
| 1054 |
+
# Determine overall best models
|
| 1055 |
+
self._determine_overall_best_models()
|
| 1056 |
+
|
| 1057 |
+
return results_by_exp
|
| 1058 |
+
|
| 1059 |
+
def _determine_overall_best_models(self):
|
| 1060 |
+
\"\"\"Determine the best models across all experiments\"\"\"
|
| 1061 |
+
print("\\n" + "="*80)
|
| 1062 |
+
print("🏆 OVERALL BEST MODELS ACROSS ALL EXPERIMENTS")
|
| 1063 |
+
print("="*80)
|
| 1064 |
+
|
| 1065 |
+
# Aggregate performance by model and type
|
| 1066 |
+
model_performance = {}
|
| 1067 |
+
|
| 1068 |
+
for exp, exp_results in self.best_models_by_experiment.items():
|
| 1069 |
+
for var_type, var_results in exp_results.items():
|
| 1070 |
+
if var_type not in model_performance:
|
| 1071 |
+
model_performance[var_type] = {}
|
| 1072 |
+
|
| 1073 |
+
for model_data in var_results['all_models']:
|
| 1074 |
+
model_name = model_data['Model']
|
| 1075 |
+
if model_name not in model_performance[var_type]:
|
| 1076 |
+
model_performance[var_type][model_name] = {
|
| 1077 |
+
'r2_values': [],
|
| 1078 |
+
'rmse_values': [],
|
| 1079 |
+
'experiments': []
|
| 1080 |
+
}
|
| 1081 |
+
|
| 1082 |
+
model_performance[var_type][model_name]['r2_values'].append(model_data['R2'])
|
| 1083 |
+
model_performance[var_type][model_name]['rmse_values'].append(model_data['RMSE'])
|
| 1084 |
+
model_performance[var_type][model_name]['experiments'].append(exp)
|
| 1085 |
+
|
| 1086 |
+
# Calculate average performance and select best
|
| 1087 |
+
for var_type, models in model_performance.items():
|
| 1088 |
+
best_avg_r2 = -1
|
| 1089 |
+
best_model = None
|
| 1090 |
+
|
| 1091 |
+
print(f"\\n📊 {var_type.upper()} MODELS:")
|
| 1092 |
+
for model_name, perf_data in models.items():
|
| 1093 |
+
avg_r2 = np.mean(perf_data['r2_values'])
|
| 1094 |
+
avg_rmse = np.mean(perf_data['rmse_values'])
|
| 1095 |
+
n_exp = len(perf_data['experiments'])
|
| 1096 |
+
|
| 1097 |
+
print(f" {model_name}:")
|
| 1098 |
+
print(f" Average R² = {avg_r2:.4f}")
|
| 1099 |
+
print(f" Average RMSE = {avg_rmse:.4f}")
|
| 1100 |
+
print(f" Tested in {n_exp} experiments")
|
| 1101 |
+
|
| 1102 |
+
if avg_r2 > best_avg_r2:
|
| 1103 |
+
best_avg_r2 = avg_r2
|
| 1104 |
+
best_model = {
|
| 1105 |
+
'name': model_name,
|
| 1106 |
+
'avg_r2': avg_r2,
|
| 1107 |
+
'avg_rmse': avg_rmse,
|
| 1108 |
+
'n_experiments': n_exp
|
| 1109 |
+
}
|
| 1110 |
+
|
| 1111 |
+
if var_type.lower() in ['biomass', 'substrate', 'product']:
|
| 1112 |
+
self.overall_best_models[var_type.lower()] = best_model
|
| 1113 |
+
print(f"\\n 🏆 BEST {var_type.upper()} MODEL: {best_model['name']} (Avg R²={best_model['avg_r2']:.4f})")
|
| 1114 |
+
|
| 1115 |
+
def create_comparison_visualizations(self):
|
| 1116 |
+
\"\"\"Create visualizations comparing models across experiments\"\"\"
|
| 1117 |
+
if not self.best_models_by_experiment:
|
| 1118 |
+
raise ValueError("First run analyze_by_experiment()")
|
| 1119 |
+
|
| 1120 |
+
# Prepare data for visualization
|
| 1121 |
+
experiments = []
|
| 1122 |
+
biomass_r2 = []
|
| 1123 |
+
substrate_r2 = []
|
| 1124 |
+
product_r2 = []
|
| 1125 |
+
|
| 1126 |
+
for exp, results in self.best_models_by_experiment.items():
|
| 1127 |
+
experiments.append(exp)
|
| 1128 |
+
biomass_r2.append(results.get('Biomass', {}).get('r2', 0))
|
| 1129 |
+
substrate_r2.append(results.get('Substrate', {}).get('r2', 0))
|
| 1130 |
+
product_r2.append(results.get('Product', {}).get('r2', 0))
|
| 1131 |
+
|
| 1132 |
+
# Create figure with subplots
|
| 1133 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
| 1134 |
+
fig.suptitle('Model Performance Comparison Across Experiments', fontsize=16)
|
| 1135 |
+
|
| 1136 |
+
# 1. R² comparison by experiment and variable type
|
| 1137 |
+
ax1 = axes[0, 0]
|
| 1138 |
+
x = np.arange(len(experiments))
|
| 1139 |
+
width = 0.25
|
| 1140 |
+
|
| 1141 |
+
ax1.bar(x - width, biomass_r2, width, label='Biomass', color='green', alpha=0.8)
|
| 1142 |
+
ax1.bar(x, substrate_r2, width, label='Substrate', color='blue', alpha=0.8)
|
| 1143 |
+
ax1.bar(x + width, product_r2, width, label='Product', color='red', alpha=0.8)
|
| 1144 |
+
|
| 1145 |
+
ax1.set_xlabel('Experiment')
|
| 1146 |
+
ax1.set_ylabel('R²')
|
| 1147 |
+
ax1.set_title('Best Model R² by Experiment and Variable Type')
|
| 1148 |
+
ax1.set_xticks(x)
|
| 1149 |
+
ax1.set_xticklabels(experiments, rotation=45, ha='right')
|
| 1150 |
+
ax1.legend()
|
| 1151 |
+
ax1.grid(True, alpha=0.3)
|
| 1152 |
+
|
| 1153 |
+
# Add value labels
|
| 1154 |
+
for i, (b, s, p) in enumerate(zip(biomass_r2, substrate_r2, product_r2)):
|
| 1155 |
+
if b > 0: ax1.text(i - width, b + 0.01, f'{b:.3f}', ha='center', va='bottom', fontsize=8)
|
| 1156 |
+
if s > 0: ax1.text(i, s + 0.01, f'{s:.3f}', ha='center', va='bottom', fontsize=8)
|
| 1157 |
+
if p > 0: ax1.text(i + width, p + 0.01, f'{p:.3f}', ha='center', va='bottom', fontsize=8)
|
| 1158 |
+
|
| 1159 |
+
# 2. Model frequency heatmap
|
| 1160 |
+
ax2 = axes[0, 1]
|
| 1161 |
+
# This would show which models appear most frequently as best
|
| 1162 |
+
# Implementation depends on actual data structure
|
| 1163 |
+
ax2.text(0.5, 0.5, 'Model Frequency Analysis\\n(Most Used Models)',
|
| 1164 |
+
ha='center', va='center', transform=ax2.transAxes)
|
| 1165 |
+
ax2.set_title('Most Frequently Selected Models')
|
| 1166 |
+
|
| 1167 |
+
# 3. Parameter evolution across experiments
|
| 1168 |
+
ax3 = axes[1, 0]
|
| 1169 |
+
ax3.text(0.5, 0.5, 'Parameter Evolution\\nAcross Experiments',
|
| 1170 |
+
ha='center', va='center', transform=ax3.transAxes)
|
| 1171 |
+
ax3.set_title('Parameter Trends')
|
| 1172 |
+
|
| 1173 |
+
# 4. Overall best models summary
|
| 1174 |
+
ax4 = axes[1, 1]
|
| 1175 |
+
ax4.axis('off')
|
| 1176 |
+
|
| 1177 |
+
summary_text = "🏆 OVERALL BEST MODELS\\n\\n"
|
| 1178 |
+
for var_type, model_info in self.overall_best_models.items():
|
| 1179 |
+
if model_info:
|
| 1180 |
+
summary_text += f"{var_type.upper()}:\\n"
|
| 1181 |
+
summary_text += f" Model: {model_info['name']}\\n"
|
| 1182 |
+
summary_text += f" Avg R²: {model_info['avg_r2']:.4f}\\n"
|
| 1183 |
+
summary_text += f" Tested in: {model_info['n_experiments']} experiments\\n\\n"
|
| 1184 |
+
|
| 1185 |
+
ax4.text(0.1, 0.9, summary_text, transform=ax4.transAxes,
|
| 1186 |
+
fontsize=12, verticalalignment='top', fontfamily='monospace')
|
| 1187 |
+
ax4.set_title('Overall Best Models Summary')
|
| 1188 |
+
|
| 1189 |
+
plt.tight_layout()
|
| 1190 |
+
plt.show()
|
| 1191 |
+
|
| 1192 |
+
def generate_summary_table(self) -> pd.DataFrame:
|
| 1193 |
+
\"\"\"Generate a summary table of best models by experiment and type\"\"\"
|
| 1194 |
+
summary_data = []
|
| 1195 |
+
|
| 1196 |
+
for exp, results in self.best_models_by_experiment.items():
|
| 1197 |
+
for var_type, var_results in results.items():
|
| 1198 |
+
summary_data.append({
|
| 1199 |
+
'Experiment': exp,
|
| 1200 |
+
'Variable_Type': var_type,
|
| 1201 |
+
'Best_Model': var_results['best_model'],
|
| 1202 |
+
'R2': var_results['r2'],
|
| 1203 |
+
'RMSE': var_results['rmse']
|
| 1204 |
+
})
|
| 1205 |
+
|
| 1206 |
+
summary_df = pd.DataFrame(summary_data)
|
| 1207 |
+
|
| 1208 |
+
print("\\n📋 SUMMARY TABLE: BEST MODELS BY EXPERIMENT AND VARIABLE TYPE")
|
| 1209 |
+
print("="*80)
|
| 1210 |
+
print(summary_df.to_string(index=False))
|
| 1211 |
+
|
| 1212 |
+
return summary_df
|
| 1213 |
|
| 1214 |
+
# Example usage
|
| 1215 |
+
if __name__ == "__main__":
|
| 1216 |
+
print("🧬 Experimental Model Comparison System")
|
| 1217 |
+
print("="*60)
|
| 1218 |
+
|
| 1219 |
+
# Example data structure with experiments
|
| 1220 |
+
example_data = {
|
| 1221 |
+
'Experiment': ['pH_7.0', 'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5', 'pH_7.5',
|
| 1222 |
+
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5',
|
| 1223 |
+
'pH_7.0', 'pH_7.0', 'pH_7.5', 'pH_7.5'],
|
| 1224 |
+
'Model': ['Monod', 'Logistic', 'Gompertz', 'Monod', 'Logistic', 'Gompertz',
|
| 1225 |
+
'First_Order', 'Monod_Substrate', 'First_Order', 'Monod_Substrate',
|
| 1226 |
+
'Luedeking_Piret', 'Linear', 'Luedeking_Piret', 'Linear'],
|
| 1227 |
+
'Type': ['Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass', 'Biomass',
|
| 1228 |
+
'Substrate', 'Substrate', 'Substrate', 'Substrate',
|
| 1229 |
+
'Product', 'Product', 'Product', 'Product'],
|
| 1230 |
+
'R2': [0.9845, 0.9912, 0.9956, 0.9789, 0.9834, 0.9901,
|
| 1231 |
+
0.9723, 0.9856, 0.9698, 0.9812,
|
| 1232 |
+
0.9634, 0.9512, 0.9687, 0.9423],
|
| 1233 |
+
'RMSE': [0.0234, 0.0189, 0.0145, 0.0267, 0.0223, 0.0178,
|
| 1234 |
+
0.0312, 0.0245, 0.0334, 0.0289,
|
| 1235 |
+
0.0412, 0.0523, 0.0389, 0.0567],
|
| 1236 |
+
'mu_max': [0.45, 0.48, 0.52, 0.42, 0.44, 0.49,
|
| 1237 |
+
None, None, None, None, None, None, None, None],
|
| 1238 |
+
'Ks': [None, None, None, None, None, None,
|
| 1239 |
+
2.1, 1.8, 2.3, 1.9, None, None, None, None]
|
| 1240 |
+
}
|
| 1241 |
+
|
| 1242 |
+
# Create analyzer
|
| 1243 |
+
analyzer = ExperimentalModelAnalyzer()
|
| 1244 |
+
|
| 1245 |
+
# Load data
|
| 1246 |
+
analyzer.load_results(data_dict=example_data)
|
| 1247 |
+
|
| 1248 |
+
# Analyze by experiment
|
| 1249 |
+
results = analyzer.analyze_by_experiment()
|
| 1250 |
+
|
| 1251 |
+
# Create visualizations
|
| 1252 |
+
analyzer.create_comparison_visualizations()
|
| 1253 |
+
|
| 1254 |
+
# Generate summary table
|
| 1255 |
+
summary = analyzer.generate_summary_table()
|
| 1256 |
+
|
| 1257 |
+
print("\\n✨ Analysis complete! Best models identified for each experiment and variable type.")
|
| 1258 |
+
"""
|
| 1259 |
+
|
| 1260 |
+
return code
|
| 1261 |
+
|
| 1262 |
+
# Estado global para almacenar resultados
|
| 1263 |
+
class AppState:
|
| 1264 |
+
def __init__(self):
|
| 1265 |
+
self.current_analysis = ""
|
| 1266 |
+
self.current_code = ""
|
| 1267 |
+
self.current_language = "en"
|
| 1268 |
+
|
| 1269 |
+
app_state = AppState()
|
| 1270 |
+
|
| 1271 |
+
def export_report(export_format: str, language: str) -> Tuple[str, str]:
|
| 1272 |
+
"""Exporta el reporte al formato seleccionado"""
|
| 1273 |
+
if not app_state.current_analysis:
|
| 1274 |
+
error_msg = {
|
| 1275 |
+
'en': "No analysis available to export",
|
| 1276 |
+
'es': "No hay análisis disponible para exportar",
|
| 1277 |
+
'fr': "Aucune analyse disponible pour exporter",
|
| 1278 |
+
'de': "Keine Analyse zum Exportieren verfügbar",
|
| 1279 |
+
'pt': "Nenhuma análise disponível para exportar"
|
| 1280 |
+
}
|
| 1281 |
+
return error_msg.get(language, error_msg['en']), ""
|
| 1282 |
+
|
| 1283 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 1284 |
+
|
| 1285 |
+
try:
|
| 1286 |
+
if export_format == "DOCX":
|
| 1287 |
+
filename = f"biotech_analysis_report_{timestamp}.docx"
|
| 1288 |
+
ReportExporter.export_to_docx(app_state.current_analysis, filename, language)
|
| 1289 |
+
else: # PDF
|
| 1290 |
+
filename = f"biotech_analysis_report_{timestamp}.pdf"
|
| 1291 |
+
ReportExporter.export_to_pdf(app_state.current_analysis, filename, language)
|
| 1292 |
+
|
| 1293 |
+
success_msg = TRANSLATIONS[language]['report_exported']
|
| 1294 |
+
return f"{success_msg} {filename}", filename
|
| 1295 |
+
except Exception as e:
|
| 1296 |
+
return f"Error: {str(e)}", ""
|
| 1297 |
+
|
| 1298 |
+
# Interfaz Gradio con soporte multiidioma y temas
|
| 1299 |
+
def create_interface():
|
| 1300 |
+
# Estado inicial
|
| 1301 |
+
current_theme = "light"
|
| 1302 |
+
current_language = "en"
|
| 1303 |
+
|
| 1304 |
+
def update_interface_language(language):
|
| 1305 |
+
"""Actualiza el idioma de la interfaz"""
|
| 1306 |
+
app_state.current_language = language
|
| 1307 |
t = TRANSLATIONS[language]
|
| 1308 |
+
|
| 1309 |
return [
|
| 1310 |
+
gr.update(value=f"# {t['title']}"), # title_text
|
| 1311 |
+
gr.update(value=t['subtitle']), # subtitle_text
|
| 1312 |
+
gr.update(label=t['upload_files']), # files_input
|
| 1313 |
+
gr.update(label=t['select_model']), # model_selector
|
| 1314 |
+
gr.update(label=t['select_language']), # language_selector
|
| 1315 |
+
gr.update(label=t['select_theme']), # theme_selector
|
| 1316 |
+
gr.update(label=t['detail_level']), # detail_level
|
| 1317 |
+
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']), # additional_specs
|
| 1318 |
+
gr.update(value=t['analyze_button']), # analyze_btn
|
| 1319 |
+
gr.update(label=t['export_format']), # export_format
|
| 1320 |
+
gr.update(value=t['export_button']), # export_btn
|
| 1321 |
+
gr.update(label=t['comparative_analysis']), # analysis_output
|
| 1322 |
+
gr.update(label=t['implementation_code']), # code_output
|
| 1323 |
+
gr.update(label=t['data_format']) # data_format_accordion
|
| 1324 |
]
|
| 1325 |
+
|
| 1326 |
+
def process_and_store(files, model, detail, language, additional_specs):
|
| 1327 |
+
"""Procesa archivos y almacena resultados"""
|
| 1328 |
+
if not files:
|
| 1329 |
+
error_msg = TRANSLATIONS[language]['error_no_files']
|
| 1330 |
+
return error_msg, ""
|
| 1331 |
|
| 1332 |
+
analysis, code = process_files(files, model, detail, language, additional_specs)
|
| 1333 |
+
app_state.current_analysis = analysis
|
| 1334 |
+
app_state.current_code = code
|
| 1335 |
+
return analysis, code
|
| 1336 |
+
|
| 1337 |
+
with gr.Blocks(theme=THEMES[current_theme]) as demo:
|
| 1338 |
+
# Componentes de UI
|
| 1339 |
with gr.Row():
|
| 1340 |
+
with gr.Column(scale=3):
|
| 1341 |
+
title_text = gr.Markdown(f"# {TRANSLATIONS[current_language]['title']}")
|
| 1342 |
+
subtitle_text = gr.Markdown(TRANSLATIONS[current_language]['subtitle'])
|
| 1343 |
with gr.Column(scale=1):
|
| 1344 |
+
with gr.Row():
|
| 1345 |
+
language_selector = gr.Dropdown(
|
| 1346 |
+
choices=[("English", "en"), ("Español", "es"), ("Français", "fr"),
|
| 1347 |
+
("Deutsch", "de"), ("Português", "pt")],
|
| 1348 |
+
value="en",
|
| 1349 |
+
label=TRANSLATIONS[current_language]['select_language'],
|
| 1350 |
+
interactive=True
|
| 1351 |
+
)
|
| 1352 |
+
theme_selector = gr.Dropdown(
|
| 1353 |
+
choices=[("Light", "light"), ("Dark", "dark")],
|
| 1354 |
+
value="light",
|
| 1355 |
+
label=TRANSLATIONS[current_language]['select_theme'],
|
| 1356 |
+
interactive=True
|
| 1357 |
+
)
|
| 1358 |
+
|
| 1359 |
+
with gr.Row():
|
| 1360 |
+
with gr.Column(scale=1):
|
| 1361 |
+
files_input = gr.File(
|
| 1362 |
+
label=TRANSLATIONS[current_language]['upload_files'],
|
| 1363 |
+
file_count="multiple",
|
| 1364 |
+
file_types=[".csv", ".xlsx", ".xls", ".pdf", ".zip"],
|
| 1365 |
+
type="filepath"
|
| 1366 |
+
)
|
| 1367 |
|
| 1368 |
+
model_selector = gr.Dropdown(
|
| 1369 |
+
choices=list(CLAUDE_MODELS.keys()),
|
| 1370 |
+
value="claude-3-5-sonnet-20241022",
|
| 1371 |
+
label=TRANSLATIONS[current_language]['select_model'],
|
| 1372 |
+
info=f"{TRANSLATIONS[current_language]['best_for']}: {CLAUDE_MODELS['claude-3-5-sonnet-20241022']['best_for']}"
|
| 1373 |
+
)
|
| 1374 |
|
| 1375 |
+
detail_level = gr.Radio(
|
| 1376 |
+
choices=[
|
| 1377 |
+
(TRANSLATIONS[current_language]['detailed'], "detailed"),
|
| 1378 |
+
(TRANSLATIONS[current_language]['summarized'], "summarized")
|
| 1379 |
+
],
|
| 1380 |
+
value="detailed",
|
| 1381 |
+
label=TRANSLATIONS[current_language]['detail_level']
|
| 1382 |
+
)
|
| 1383 |
|
| 1384 |
+
# Nueva entrada para especificaciones adicionales
|
| 1385 |
+
additional_specs = gr.Textbox(
|
| 1386 |
+
label=TRANSLATIONS[current_language]['additional_specs'],
|
| 1387 |
+
placeholder=TRANSLATIONS[current_language]['additional_specs_placeholder'],
|
| 1388 |
+
lines=3,
|
| 1389 |
+
max_lines=5,
|
| 1390 |
+
interactive=True
|
| 1391 |
+
)
|
| 1392 |
|
| 1393 |
+
analyze_btn = gr.Button(
|
| 1394 |
+
TRANSLATIONS[current_language]['analyze_button'],
|
| 1395 |
+
variant="primary",
|
| 1396 |
+
size="lg"
|
| 1397 |
+
)
|
| 1398 |
|
| 1399 |
gr.Markdown("---")
|
| 1400 |
|
| 1401 |
+
export_format = gr.Radio(
|
| 1402 |
+
choices=["DOCX", "PDF"],
|
| 1403 |
+
value="PDF",
|
| 1404 |
+
label=TRANSLATIONS[current_language]['export_format']
|
| 1405 |
+
)
|
| 1406 |
+
|
| 1407 |
+
export_btn = gr.Button(
|
| 1408 |
+
TRANSLATIONS[current_language]['export_button'],
|
| 1409 |
+
variant="secondary"
|
| 1410 |
+
)
|
| 1411 |
+
|
| 1412 |
+
export_status = gr.Textbox(
|
| 1413 |
+
label="Export Status",
|
| 1414 |
+
interactive=False,
|
| 1415 |
+
visible=False
|
| 1416 |
+
)
|
| 1417 |
+
|
| 1418 |
+
export_file = gr.File(
|
| 1419 |
+
label="Download Report",
|
| 1420 |
+
visible=False
|
| 1421 |
+
)
|
| 1422 |
+
|
| 1423 |
with gr.Column(scale=2):
|
| 1424 |
+
analysis_output = gr.Markdown(
|
| 1425 |
+
label=TRANSLATIONS[current_language]['comparative_analysis']
|
| 1426 |
+
)
|
| 1427 |
+
|
| 1428 |
+
code_output = gr.Code(
|
| 1429 |
+
label=TRANSLATIONS[current_language]['implementation_code'],
|
| 1430 |
+
language="python",
|
| 1431 |
+
interactive=True,
|
| 1432 |
+
lines=20
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
data_format_accordion = gr.Accordion(
|
| 1436 |
+
label=TRANSLATIONS[current_language]['data_format'],
|
| 1437 |
+
open=False
|
| 1438 |
+
)
|
| 1439 |
+
|
| 1440 |
+
with data_format_accordion:
|
| 1441 |
+
gr.Markdown("""
|
| 1442 |
+
### Expected CSV/Excel structure:
|
| 1443 |
|
| 1444 |
+
| Experiment | Model | Type | R2 | RMSE | AIC | BIC | mu_max | Ks | Parameters |
|
| 1445 |
+
|------------|-------|------|-----|------|-----|-----|--------|-------|------------|
|
| 1446 |
+
| pH_7.0 | Monod | Biomass | 0.985 | 0.023 | -45.2 | -42.1 | 0.45 | 2.1 | {...} |
|
| 1447 |
+
| pH_7.0 | Logistic | Biomass | 0.976 | 0.031 | -42.1 | -39.5 | 0.42 | - | {...} |
|
| 1448 |
+
| pH_7.0 | First_Order | Substrate | 0.992 | 0.018 | -48.5 | -45.2 | - | 1.8 | {...} |
|
| 1449 |
+
| pH_7.5 | Monod | Biomass | 0.978 | 0.027 | -44.1 | -41.2 | 0.43 | 2.2 | {...} |
|
| 1450 |
|
| 1451 |
+
**Important columns:**
|
| 1452 |
+
- **Experiment**: Experimental condition identifier
|
| 1453 |
+
- **Model**: Model name
|
| 1454 |
+
- **Type**: Variable type (Biomass/Substrate/Product)
|
| 1455 |
+
- **R2, RMSE**: Fit quality metrics
|
| 1456 |
+
- **Parameters**: Model-specific parameters
|
| 1457 |
+
""")
|
| 1458 |
+
|
| 1459 |
+
# Definir ejemplos
|
| 1460 |
+
examples = gr.Examples(
|
| 1461 |
+
examples=[
|
| 1462 |
+
[["examples/biomass_models_comparison.csv"], "claude-3-5-sonnet-20241022", "detailed", ""],
|
| 1463 |
+
[["examples/substrate_kinetics_results.xlsx"], "claude-3-5-sonnet-20241022", "summarized", "Focus on temperature effects"]
|
| 1464 |
+
],
|
| 1465 |
+
inputs=[files_input, model_selector, detail_level, additional_specs],
|
| 1466 |
+
label=TRANSLATIONS[current_language]['examples']
|
| 1467 |
+
)
|
| 1468 |
+
|
| 1469 |
+
# Eventos - Actualizado para incluir additional_specs
|
| 1470 |
+
language_selector.change(
|
| 1471 |
+
update_interface_language,
|
| 1472 |
+
inputs=[language_selector],
|
| 1473 |
+
outputs=[
|
| 1474 |
+
title_text, subtitle_text, files_input, model_selector,
|
| 1475 |
+
language_selector, theme_selector, detail_level, additional_specs,
|
| 1476 |
+
analyze_btn, export_format, export_btn, analysis_output,
|
| 1477 |
+
code_output, data_format_accordion
|
| 1478 |
+
]
|
| 1479 |
+
)
|
| 1480 |
+
|
| 1481 |
+
def change_theme(theme_name):
|
| 1482 |
+
"""Cambia el tema de la interfaz"""
|
| 1483 |
+
# Nota: En Gradio actual, cambiar el tema dinámicamente requiere recargar
|
| 1484 |
+
# Esta es una limitación conocida
|
| 1485 |
+
return gr.Info("Theme will be applied on next page load")
|
| 1486 |
+
|
| 1487 |
+
theme_selector.change(
|
| 1488 |
+
change_theme,
|
| 1489 |
+
inputs=[theme_selector],
|
| 1490 |
+
outputs=[]
|
| 1491 |
+
)
|
| 1492 |
+
|
| 1493 |
analyze_btn.click(
|
| 1494 |
+
fn=process_and_store,
|
| 1495 |
+
inputs=[files_input, model_selector, detail_level, language_selector, additional_specs],
|
| 1496 |
+
outputs=[analysis_output, code_output]
|
| 1497 |
)
|
| 1498 |
|
| 1499 |
+
def handle_export(format, language):
|
| 1500 |
+
status, file = export_report(format, language)
|
| 1501 |
+
if file:
|
| 1502 |
+
return gr.update(value=status, visible=True), gr.update(value=file, visible=True)
|
| 1503 |
+
else:
|
| 1504 |
+
return gr.update(value=status, visible=True), gr.update(visible=False)
|
| 1505 |
+
|
| 1506 |
export_btn.click(
|
| 1507 |
+
fn=handle_export,
|
| 1508 |
+
inputs=[export_format, language_selector],
|
| 1509 |
+
outputs=[export_status, export_file]
|
| 1510 |
)
|
| 1511 |
+
|
| 1512 |
return demo
|
| 1513 |
|
| 1514 |
+
# Función principal
|
| 1515 |
def main():
|
| 1516 |
+
if not os.getenv("ANTHROPIC_API_KEY"):
|
| 1517 |
+
print("⚠️ Configure ANTHROPIC_API_KEY in HuggingFace Space secrets")
|
| 1518 |
+
return gr.Interface(
|
| 1519 |
+
fn=lambda x: TRANSLATIONS['en']['error_no_api'],
|
| 1520 |
+
inputs=gr.Textbox(),
|
| 1521 |
+
outputs=gr.Textbox(),
|
| 1522 |
+
title="Configuration Error"
|
| 1523 |
+
)
|
| 1524 |
|
| 1525 |
return create_interface()
|
| 1526 |
|
| 1527 |
+
# Para ejecución local
|
| 1528 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1529 |
demo = main()
|
| 1530 |
if demo:
|
| 1531 |
+
demo.launch(
|
| 1532 |
+
server_name="0.0.0.0",
|
| 1533 |
+
server_port=7860,
|
| 1534 |
+
share=False
|
| 1535 |
+
)
|