|
import gradio as gr |
|
import os |
|
|
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
|
|
from pathlib import Path |
|
import chromadb |
|
from unidecode import unidecode |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
import tqdm |
|
import accelerate |
|
import re |
|
|
|
LLM_MODEL = "mistralai/Mistral-7B-Instruct-v0.2" |
|
LLM_MAX_TOKEN = 512 |
|
DB_CHUNK_SIZE = 512 |
|
CHUNK_OVERLAP = 24 |
|
TEMPERATURE = 0.1 |
|
MAX_TOKENS = 512 |
|
TOP_K = 20 |
|
pdf_url = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Privacy-Policy%20(1).pdf" |
|
|
|
|
|
|
|
def load_doc(pdf_url, chunk_size, chunk_overlap): |
|
loader = PyPDFLoader(pdf_url) |
|
pages = loader.load() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
|
|
def create_db(splits, collection_name): |
|
embedding = HuggingFaceEmbeddings() |
|
new_client = chromadb.EphemeralClient() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
client=new_client, |
|
collection_name=collection_name, |
|
) |
|
return vectordb |
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
progress(0.5, desc="Initializing HF Hub...") |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
|
|
progress(0.75, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
retriever = vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
|
|
|
|
def create_collection_name(filepath): |
|
collection_name = Path(filepath).stem |
|
collection_name = collection_name.replace(" ", "-") |
|
collection_name = unidecode(collection_name) |
|
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) |
|
collection_name = collection_name[:50] |
|
if len(collection_name) < 3: |
|
collection_name = collection_name + 'xyz' |
|
if not collection_name[0].isalnum(): |
|
collection_name = 'A' + collection_name[1:] |
|
if not collection_name[-1].isalnum(): |
|
collection_name = collection_name[:-1] + 'Z' |
|
return collection_name |
|
|
|
|
|
|
|
def initialize_database(pdf_url, chunk_size, chunk_overlap, progress=gr.Progress()): |
|
collection_name = create_collection_name(pdf_url) |
|
progress(0.25, desc="Loading document...") |
|
doc_splits = load_doc(pdf_url, chunk_size, chunk_overlap) |
|
progress(0.5, desc="Generating vector database...") |
|
vector_db = create_db(doc_splits, collection_name) |
|
progress(0.9, desc="Done!") |
|
return vector_db, collection_name, "Complete!" |
|
|
|
|
|
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
qa_chain = initialize_llmchain(LLM_MODEL, llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return qa_chain, "Complete!" |
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
|
|
def conversation(qa_chain, message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
new_history = history + [(message, response_answer)] |
|
return qa_chain, gr.update( |
|
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
|
|
def demo(): |
|
with gr.Blocks(theme="base") as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
collection_name = gr.State() |
|
|
|
gr.Markdown( |
|
"""<center><h2>PDF-based chatbot</center></h2> |
|
<h3>Ask any questions about your PDF documents</h3>""") |
|
gr.Markdown( |
|
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ |
|
The user interface explicitely shows multiple steps to help understand the RAG workflow. |
|
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br> |
|
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply. |
|
""") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Tab("Step 4 - Chatbot"): |
|
chatbot = gr.Chatbot(height=300) |
|
with gr.Accordion("Advanced - Document references", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) |
|
source1_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) |
|
source2_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) |
|
source3_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit message") |
|
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") |
|
|
|
|
|
db_progress = gr.Textbox(label="Vector database initialization", value="Initializing...") |
|
db_btn = gr.Button("Generate vector database", visible=False) |
|
qachain_btn = gr.Button("Initialize Question Answering chain", visible=False) |
|
llm_progress = gr.Textbox(value="None", label="QA chain initialization") |
|
|
|
def auto_initialize(): |
|
vector_db, collection_name, db_status = initialize_database(pdf_url, DB_CHUNK_SIZE, CHUNK_OVERLAP) |
|
qa_chain, llm_status = initialize_LLM(TEMPERATURE, LLM_MAX_TOKEN, 20, vector_db) |
|
return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete." |
|
|
|
demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress]) |
|
|
|
|
|
msg.submit(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, |
|
source3_page], \ |
|
queue=False) |
|
submit_btn.click(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, |
|
doc_source3, source3_page], \ |
|
queue=False) |
|
return demo.queue().launch(debug=True) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|