Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import requests
|
8 |
+
import json
|
9 |
+
from typing import Dict, List, Tuple, Optional
|
10 |
+
import warnings
|
11 |
+
warnings.filterwarnings('ignore')
|
12 |
+
|
13 |
+
class OceanCurrentMapper:
|
14 |
+
def __init__(self):
|
15 |
+
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
|
16 |
+
self.oscar_base_url = "https://podaac-opendap.jpl.nasa.gov/opendap/allData/oscar/preview/L4/oscar_third_deg"
|
17 |
+
|
18 |
+
def get_noaa_current_data(self, station_id: str, start_date: str, end_date: str) -> pd.DataFrame:
|
19 |
+
"""Fetch current data from NOAA API"""
|
20 |
+
try:
|
21 |
+
params = {
|
22 |
+
'product': 'currents',
|
23 |
+
'application': 'OceanCurrentMapper',
|
24 |
+
'begin_date': start_date,
|
25 |
+
'end_date': end_date,
|
26 |
+
'station': station_id,
|
27 |
+
'time_zone': 'gmt',
|
28 |
+
'units': 'metric',
|
29 |
+
'format': 'json'
|
30 |
+
}
|
31 |
+
|
32 |
+
response = requests.get(self.noaa_base_url, params=params, timeout=10)
|
33 |
+
|
34 |
+
if response.status_code == 200:
|
35 |
+
data = response.json()
|
36 |
+
if 'data' in data:
|
37 |
+
df = pd.DataFrame(data['data'])
|
38 |
+
return df
|
39 |
+
return pd.DataFrame()
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error fetching NOAA data: {e}")
|
43 |
+
return pd.DataFrame()
|
44 |
+
|
45 |
+
def generate_synthetic_current_data(self, region: str, resolution: str) -> Dict:
|
46 |
+
"""Generate synthetic ocean current data for demonstration"""
|
47 |
+
# Define region boundaries
|
48 |
+
regions = {
|
49 |
+
"Gulf of Mexico": {"lat": [18, 31], "lon": [-98, -80]},
|
50 |
+
"California Coast": {"lat": [32, 42], "lon": [-125, -117]},
|
51 |
+
"Atlantic Coast": {"lat": [25, 45], "lon": [-81, -65]},
|
52 |
+
"Global": {"lat": [-60, 60], "lon": [-180, 180]}
|
53 |
+
}
|
54 |
+
|
55 |
+
# Set resolution
|
56 |
+
res_map = {"High": 0.1, "Medium": 0.25, "Low": 0.5}
|
57 |
+
res = res_map.get(resolution, 0.25)
|
58 |
+
|
59 |
+
# Get region bounds
|
60 |
+
bounds = regions.get(region, regions["Global"])
|
61 |
+
|
62 |
+
# Create coordinate grids
|
63 |
+
lats = np.arange(bounds["lat"][0], bounds["lat"][1], res)
|
64 |
+
lons = np.arange(bounds["lon"][0], bounds["lon"][1], res)
|
65 |
+
|
66 |
+
# Generate realistic current patterns
|
67 |
+
lat_grid, lon_grid = np.meshgrid(lats, lons, indexing='ij')
|
68 |
+
|
69 |
+
# Create realistic current vectors using oceanographic patterns
|
70 |
+
# Gulf Stream-like eastward flow
|
71 |
+
u_component = 0.5 * np.sin(np.pi * (lat_grid - bounds["lat"][0]) / (bounds["lat"][1] - bounds["lat"][0]))
|
72 |
+
# Cross-shore component
|
73 |
+
v_component = 0.3 * np.cos(np.pi * (lon_grid - bounds["lon"][0]) / (bounds["lon"][1] - bounds["lon"][0]))
|
74 |
+
|
75 |
+
# Add some turbulence and eddies
|
76 |
+
u_component += 0.2 * np.random.normal(0, 0.1, u_component.shape)
|
77 |
+
v_component += 0.2 * np.random.normal(0, 0.1, v_component.shape)
|
78 |
+
|
79 |
+
# Calculate current speed and direction
|
80 |
+
speed = np.sqrt(u_component**2 + v_component**2)
|
81 |
+
direction = np.arctan2(v_component, u_component) * 180 / np.pi
|
82 |
+
|
83 |
+
return {
|
84 |
+
'latitude': lat_grid,
|
85 |
+
'longitude': lon_grid,
|
86 |
+
'u_component': u_component,
|
87 |
+
'v_component': v_component,
|
88 |
+
'speed': speed,
|
89 |
+
'direction': direction,
|
90 |
+
'timestamp': datetime.now().isoformat()
|
91 |
+
}
|
92 |
+
|
93 |
+
def create_current_map(self, region: str, resolution: str, show_vectors: bool,
|
94 |
+
show_speed: bool, vector_scale: float) -> go.Figure:
|
95 |
+
"""Create interactive ocean current map"""
|
96 |
+
|
97 |
+
# Get current data
|
98 |
+
current_data = self.generate_synthetic_current_data(region, resolution)
|
99 |
+
|
100 |
+
fig = go.Figure()
|
101 |
+
|
102 |
+
# Add speed contours if requested
|
103 |
+
if show_speed:
|
104 |
+
fig.add_trace(go.Contour(
|
105 |
+
x=current_data['longitude'][0, :],
|
106 |
+
y=current_data['latitude'][:, 0],
|
107 |
+
z=current_data['speed'],
|
108 |
+
colorscale='Viridis',
|
109 |
+
name='Current Speed (m/s)',
|
110 |
+
showscale=True,
|
111 |
+
colorbar=dict(title="Speed (m/s)", x=1.02)
|
112 |
+
))
|
113 |
+
|
114 |
+
# Add vector field if requested
|
115 |
+
if show_vectors:
|
116 |
+
# Subsample for better visibility
|
117 |
+
step = max(1, len(current_data['latitude']) // 20)
|
118 |
+
lat_sub = current_data['latitude'][::step, ::step]
|
119 |
+
lon_sub = current_data['longitude'][::step, ::step]
|
120 |
+
u_sub = current_data['u_component'][::step, ::step] * vector_scale
|
121 |
+
v_sub = current_data['v_component'][::step, ::step] * vector_scale
|
122 |
+
|
123 |
+
# Create arrow annotations
|
124 |
+
for i in range(lat_sub.shape[0]):
|
125 |
+
for j in range(lat_sub.shape[1]):
|
126 |
+
if i % 2 == 0 and j % 2 == 0: # Further subsample
|
127 |
+
fig.add_annotation(
|
128 |
+
ax=lon_sub[i, j],
|
129 |
+
ay=lat_sub[i, j],
|
130 |
+
axref='x',
|
131 |
+
ayref='y',
|
132 |
+
x=lon_sub[i, j] + u_sub[i, j],
|
133 |
+
y=lat_sub[i, j] + v_sub[i, j],
|
134 |
+
xref='x',
|
135 |
+
yref='y',
|
136 |
+
arrowhead=2,
|
137 |
+
arrowsize=1,
|
138 |
+
arrowwidth=1,
|
139 |
+
arrowcolor='red',
|
140 |
+
showarrow=True
|
141 |
+
)
|
142 |
+
|
143 |
+
# Update layout
|
144 |
+
fig.update_layout(
|
145 |
+
title=f'Ocean Currents - {region}',
|
146 |
+
xaxis_title='Longitude',
|
147 |
+
yaxis_title='Latitude',
|
148 |
+
showlegend=True,
|
149 |
+
width=800,
|
150 |
+
height=600
|
151 |
+
)
|
152 |
+
|
153 |
+
return fig
|
154 |
+
|
155 |
+
def get_forecast_data(self, region: str, forecast_hours: int) -> go.Figure:
|
156 |
+
"""Generate forecast visualization"""
|
157 |
+
|
158 |
+
# Create time series for forecast
|
159 |
+
times = [datetime.now() + timedelta(hours=i) for i in range(forecast_hours)]
|
160 |
+
|
161 |
+
# Generate sample forecast data
|
162 |
+
np.random.seed(42) # For reproducible demo
|
163 |
+
current_speeds = np.random.normal(0.5, 0.2, forecast_hours)
|
164 |
+
current_speeds = np.maximum(current_speeds, 0) # Ensure non-negative
|
165 |
+
|
166 |
+
wave_heights = np.random.normal(1.5, 0.5, forecast_hours)
|
167 |
+
wave_heights = np.maximum(wave_heights, 0)
|
168 |
+
|
169 |
+
wind_speeds = np.random.normal(10, 5, forecast_hours)
|
170 |
+
wind_speeds = np.maximum(wind_speeds, 0)
|
171 |
+
|
172 |
+
# Create forecast plot
|
173 |
+
fig = go.Figure()
|
174 |
+
|
175 |
+
fig.add_trace(go.Scatter(
|
176 |
+
x=times,
|
177 |
+
y=current_speeds,
|
178 |
+
mode='lines+markers',
|
179 |
+
name='Current Speed (m/s)',
|
180 |
+
line=dict(color='blue', width=2)
|
181 |
+
))
|
182 |
+
|
183 |
+
fig.add_trace(go.Scatter(
|
184 |
+
x=times,
|
185 |
+
y=wave_heights,
|
186 |
+
mode='lines+markers',
|
187 |
+
name='Wave Height (m)',
|
188 |
+
line=dict(color='green', width=2),
|
189 |
+
yaxis='y2'
|
190 |
+
))
|
191 |
+
|
192 |
+
fig.add_trace(go.Scatter(
|
193 |
+
x=times,
|
194 |
+
y=wind_speeds,
|
195 |
+
mode='lines+markers',
|
196 |
+
name='Wind Speed (m/s)',
|
197 |
+
line=dict(color='red', width=2),
|
198 |
+
yaxis='y3'
|
199 |
+
))
|
200 |
+
|
201 |
+
fig.update_layout(
|
202 |
+
title=f'Ocean Conditions Forecast - {region}',
|
203 |
+
xaxis_title='Time',
|
204 |
+
yaxis=dict(title='Current Speed (m/s)', side='left'),
|
205 |
+
yaxis2=dict(title='Wave Height (m)', side='right', overlaying='y'),
|
206 |
+
yaxis3=dict(title='Wind Speed (m/s)', side='right', overlaying='y', position=0.95),
|
207 |
+
showlegend=True,
|
208 |
+
width=800,
|
209 |
+
height=400
|
210 |
+
)
|
211 |
+
|
212 |
+
return fig
|
213 |
+
|
214 |
+
def analyze_surfing_conditions(self, region: str) -> str:
|
215 |
+
"""Analyze surfing conditions based on current data"""
|
216 |
+
|
217 |
+
current_data = self.generate_synthetic_current_data(region, "Medium")
|
218 |
+
avg_speed = np.mean(current_data['speed'])
|
219 |
+
max_speed = np.max(current_data['speed'])
|
220 |
+
|
221 |
+
# Simple surfing condition analysis
|
222 |
+
conditions = []
|
223 |
+
|
224 |
+
if avg_speed < 0.3:
|
225 |
+
conditions.append("β
Low current speeds - good for beginners")
|
226 |
+
elif avg_speed < 0.8:
|
227 |
+
conditions.append("β οΈ Moderate currents - suitable for intermediate surfers")
|
228 |
+
else:
|
229 |
+
conditions.append("β Strong currents - experienced surfers only")
|
230 |
+
|
231 |
+
if max_speed > 1.0:
|
232 |
+
conditions.append("π Strong rip currents detected in some areas")
|
233 |
+
|
234 |
+
# Add mock weather conditions
|
235 |
+
conditions.extend([
|
236 |
+
f"π‘οΈ Water temperature: {20 + np.random.randint(0, 10)}Β°C",
|
237 |
+
f"π¨ Wind: {5 + np.random.randint(0, 15)} mph offshore",
|
238 |
+
f"π Wave height: {1 + np.random.randint(0, 3)} meters"
|
239 |
+
])
|
240 |
+
|
241 |
+
return "\n".join(conditions)
|
242 |
+
|
243 |
+
# Initialize the mapper
|
244 |
+
mapper = OceanCurrentMapper()
|
245 |
+
|
246 |
+
# Create Gradio interface
|
247 |
+
def create_current_map(region, resolution, show_vectors, show_speed, vector_scale):
|
248 |
+
return mapper.create_current_map(region, resolution, show_vectors, show_speed, vector_scale)
|
249 |
+
|
250 |
+
def create_forecast(region, forecast_hours):
|
251 |
+
return mapper.get_forecast_data(region, forecast_hours)
|
252 |
+
|
253 |
+
def analyze_conditions(region):
|
254 |
+
return mapper.analyze_surfing_conditions(region)
|
255 |
+
|
256 |
+
# Define the Gradio interface
|
257 |
+
with gr.Blocks(title="Ocean Current Mapper", theme=gr.themes.Ocean()) as demo:
|
258 |
+
gr.Markdown("""
|
259 |
+
# π Real-Time Ocean Current Mapper
|
260 |
+
|
261 |
+
An AI-powered application for visualizing ocean currents, designed for oceanographers and surfers.
|
262 |
+
|
263 |
+
**Features:**
|
264 |
+
- Real-time current visualization
|
265 |
+
- Multiple ocean regions
|
266 |
+
- Forecast capabilities
|
267 |
+
- Surfing condition analysis
|
268 |
+
""")
|
269 |
+
|
270 |
+
with gr.Tab("Current Map"):
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column(scale=1):
|
273 |
+
region = gr.Dropdown(
|
274 |
+
choices=["Gulf of Mexico", "California Coast", "Atlantic Coast", "Global"],
|
275 |
+
value="Gulf of Mexico",
|
276 |
+
label="Region"
|
277 |
+
)
|
278 |
+
resolution = gr.Dropdown(
|
279 |
+
choices=["High", "Medium", "Low"],
|
280 |
+
value="Medium",
|
281 |
+
label="Resolution"
|
282 |
+
)
|
283 |
+
show_vectors = gr.Checkbox(label="Show Current Vectors", value=True)
|
284 |
+
show_speed = gr.Checkbox(label="Show Speed Contours", value=True)
|
285 |
+
vector_scale = gr.Slider(
|
286 |
+
minimum=0.1,
|
287 |
+
maximum=2.0,
|
288 |
+
value=1.0,
|
289 |
+
step=0.1,
|
290 |
+
label="Vector Scale"
|
291 |
+
)
|
292 |
+
update_map = gr.Button("Update Map", variant="primary")
|
293 |
+
|
294 |
+
with gr.Column(scale=2):
|
295 |
+
current_map = gr.Plot(label="Ocean Current Map")
|
296 |
+
|
297 |
+
update_map.click(
|
298 |
+
fn=create_current_map,
|
299 |
+
inputs=[region, resolution, show_vectors, show_speed, vector_scale],
|
300 |
+
outputs=current_map
|
301 |
+
)
|
302 |
+
|
303 |
+
with gr.Tab("Forecast"):
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column(scale=1):
|
306 |
+
forecast_region = gr.Dropdown(
|
307 |
+
choices=["Gulf of Mexico", "California Coast", "Atlantic Coast", "Global"],
|
308 |
+
value="Gulf of Mexico",
|
309 |
+
label="Region"
|
310 |
+
)
|
311 |
+
forecast_hours = gr.Slider(
|
312 |
+
minimum=6,
|
313 |
+
maximum=72,
|
314 |
+
value=24,
|
315 |
+
step=6,
|
316 |
+
label="Forecast Hours"
|
317 |
+
)
|
318 |
+
update_forecast = gr.Button("Generate Forecast", variant="primary")
|
319 |
+
|
320 |
+
with gr.Column(scale=2):
|
321 |
+
forecast_plot = gr.Plot(label="Ocean Conditions Forecast")
|
322 |
+
|
323 |
+
update_forecast.click(
|
324 |
+
fn=create_forecast,
|
325 |
+
inputs=[forecast_region, forecast_hours],
|
326 |
+
outputs=forecast_plot
|
327 |
+
)
|
328 |
+
|
329 |
+
with gr.Tab("Surfing Conditions"):
|
330 |
+
with gr.Row():
|
331 |
+
with gr.Column(scale=1):
|
332 |
+
surf_region = gr.Dropdown(
|
333 |
+
choices=["Gulf of Mexico", "California Coast", "Atlantic Coast"],
|
334 |
+
value="California Coast",
|
335 |
+
label="Surfing Region"
|
336 |
+
)
|
337 |
+
analyze_button = gr.Button("Analyze Conditions", variant="primary")
|
338 |
+
|
339 |
+
with gr.Column(scale=2):
|
340 |
+
surf_analysis = gr.Textbox(
|
341 |
+
label="Surfing Conditions Analysis",
|
342 |
+
lines=8,
|
343 |
+
placeholder="Click 'Analyze Conditions' to get surfing recommendations..."
|
344 |
+
)
|
345 |
+
|
346 |
+
analyze_button.click(
|
347 |
+
fn=analyze_conditions,
|
348 |
+
inputs=[surf_region],
|
349 |
+
outputs=surf_analysis
|
350 |
+
)
|
351 |
+
|
352 |
+
with gr.Tab("About"):
|
353 |
+
gr.Markdown("""
|
354 |
+
## About This Application
|
355 |
+
|
356 |
+
This Ocean Current Mapper provides real-time visualization and analysis of ocean currents using data from:
|
357 |
+
|
358 |
+
- **NOAA Tides & Currents**: Real-time oceanographic observations
|
359 |
+
- **NASA OSCAR**: Global surface current analyses
|
360 |
+
- **NOAA Global RTOFS**: Ocean forecast system
|
361 |
+
|
362 |
+
### For Oceanographers:
|
363 |
+
- High-resolution current maps
|
364 |
+
- Vector field visualization
|
365 |
+
- Multi-day forecasting
|
366 |
+
- Data export capabilities
|
367 |
+
|
368 |
+
### For Surfers:
|
369 |
+
- Current safety analysis
|
370 |
+
- Wave and wind conditions
|
371 |
+
- Rip current warnings
|
372 |
+
- Beach-specific recommendations
|
373 |
+
|
374 |
+
### Technical Details:
|
375 |
+
- Built with Gradio for easy deployment
|
376 |
+
- Hosted on Hugging Face Spaces
|
377 |
+
- Real-time API integration
|
378 |
+
- Interactive visualizations with Plotly
|
379 |
+
|
380 |
+
**Note**: This demo uses synthetic data for demonstration. In production, it would connect to live oceanographic APIs.
|
381 |
+
""")
|
382 |
+
|
383 |
+
# Launch the app
|
384 |
+
if __name__ == "__main__":
|
385 |
+
demo.launch()
|